
Exploring the Taxonomy of Commits in
Cyber-Physical Systems

for Enhanced Error Fixes Investigation

Nikita Starovoytov
Applied mathematics department

Polzunov Altai State Technical University
Barnaul, Russia

0009-0007-0242-0198

Sergey Staroletov
Applied mathematics department

Polzunov Altai State Technical University
Barnaul, Russia

0000-0001-5183-9736

Abstract—Cyber-physical systems are a symbiosis of multi-
level control systems that take into account the physical aspects
of the functioning of target objects. Errors in such systems
can be associated both with incorrect organization of the
code and operation of the hardware, as well as with an
incorrect understanding of physical laws and their numerical
approximation. Continuing our previous work, we apply
technologies for analyzing commits in git repositories of some
well-known cyber-physical systems, followed by classification of
messages from developers. As a result, we discuss the identified
strong keywords and generalized fix messages that can reveal
the main classes of bugs in these projects. The results of the
work can be used in training and consulting on errors and
vulnerabilities in complex systems.

Index Terms—clustering, fixing commits, errors classification,
cyber-physical systems

I. INTRODUCTION

Modern software development environments are crucial for
improving the efficiency and quality of software development
processes. One such valuable tool is the git version control
system [1], which is widely used among developers and
provides a detailed change history in its repositories. Each
change to the code is documented with a message written in
natural language by the developer, making it easier to track
the evolution of the software.

This work seeks to leverage data analysis methods to
identify common types of errors in the source code of
software used in cyber-physical systems. By analyzing the
messages in git repositories, automated methods can be
used to detect patterns of errors fixes for the code. This
approach can help developers identify recurring issues and
take preventive measures to improve software quality.

By conducting such analysis, software development teams
can streamline their processes, reduce the occurrence of
errors, and enhance the overall quality of the software being
developed. By understanding the common types of errors
and their main causes, developers can implement targeted
solutions to address these issues and prevent them from
occurring in future projects to ensure that software for cyber-
physical systems is robust and reliable.

The rest of the paper has the following structure. In Section
II, we discus the background on commits to version control
systems and cyber-physical systems. Section III is about the
related works on errors detection in cyber-physical systems.

Section IV is devoted to the implementation plan. In Section
V, we discuss the results we got by running our software to
analyze some known repositories of cyber-physical systems.
In Conclusion, we point out the generalization of found errors
types.

II. BACKGROUND

A. The git version control system
A version control system is a system that helps manage

software development. It tracks changes, provides multiple
version control of files, and allows multiple developers to
collaborate [2]. The git version control system was created
by Linus Torvalds to manage the development of the Linux
kernel. Projects in the git system are called repositories. A git
repository contains a collection of files and folders associated
with a project, along with a history of changes to each file.
A file history is a list of changes at a specific moment called
commits. They can be organized into multiple development
lines called branches. Because git is a distributed version
control system, anyone with a copy of the repository can
access the entire project’s codebase and its history. Thus, by
analyzing the repository one can track the progress of project
development.

Each commit contains the following tracking information
[3]: (1) a snapshot of the current state of the files in the
repository at the time the changes were committed, a commit
stores all the changes that have been made to the files at the
time of the commit; (2) author of the commit; (3) the date
the commit was created; (4) a commit message written by
the developer in natural language that describes the essence
of the changes made in this commit; (5) hash sum; and (6)
parent commits.

B. Commit classification
The three most common reasons for making changes to

the code by introducing a commit, are [4], [5]:

1) Adding new functionality: this refers to the process of
introducing new features to the software application. It
could involve creating new modules, implementing new
algorithms, or integrating third-party libraries.

2) Improving code quality: this reason includes making
changes to the code to enhance its maintainability,

https://orcid.org/0009-0007-0242-0198
https://orcid.org/0000-0001-5183-9736


readability, and efficiency. It could involve refactoring
code to follow coding standards, optimizing algorithms
or improving documentation.

3) Bug fixes: they involve identifying and resolving issues
in the code that affect the functionality of the software
application.

While bug fixes and adding new functionality are closely
related reasons for code changes, it is essential to accurately
classify commits in a version control system to distinguish
between the two categories. To address this, some research
focused on identifying key features that differentiate bug fixes
from adding new functionality in commits. By analyzing the
patterns, code changes, and contextual information associated
with each type of commit, a commit classifier were made [6].
In our work we use almost the same ideas.

C. Cyber-physical systems and errors in it
Edward Lee’s works on modeling cyber-physical systems

[7], [8] provide in-depth exploration of the fundamental
concepts underlying these complex systems. Lee points
out the importance of a precise definition of cyber-
physical systems, highlighting their evolution from the earlier
cybernetic systems studied in control theory. One key aspect
that sets modern cyber-physical systems apart is their reliance
on diverse sensor data, which necessitates a distributed
approach to operation. These systems not only interact with
their environment but also have direct impacts on human
lives, underscoring the need for accurate modeling to ensure
their safe and effective functioning.

Raj Rajkumar emphasizes the interconnected nature
of cyber-physical systems [9], notes how these systems
combine physical processes with communication networks
and computing capabilities. Helen Gill expands the definition
of cyber-physical systems to include human factors, taking
into account the role of human operators in these systems
[10]. Janos Sztipanovits highlighting the interdisciplinary
nature of cyber-physical systems, pointing how these systems
bring together expertise from various fields such as computer
science, engineering, and mathematics [11].

Errors in cyber-physical systems can
be categorized into various types [12] such as design errors,
implementation errors, communication errors, timing errors,
and environmental errors. These errors can result in safety,
system failures, performance, and security vulnerabilities.

Addressing errors in cyber-physical systems presents
numerous challenges [13] due to the intricate nature of
system interactions, real-time constraints, resource limita-
tions, and the necessity for interdisciplinary expertise. To
enhance error detection and mitigation strategies, researchers
are investigating advancements in formal methods, model-
based design, runtime monitoring, anomaly detection, and
machine learning techniques [14].

D. Examples of cyber-phisical systems to analyze
In this subsection, we describe some notable projects from

our past experience and from the list of projects on the
topic ”cyber-physical systems” on GitHub, which we chose
to analyze error fixes in their repositories.

The Ardupilot project [15] can be considered as a cyber-
physical system. Ardupilot is an open-source autopilot
software suite that enables autonomous control of drones,

unmanned aerial vehicles (UAVs), and other robotic systems.
It integrates physical components (such as sensors, actuators,
and communication modules, see the example of architectural
modeling in [16]) with computational elements (software
algorithms, control logic) to enable real-time monitoring,
control, and navigation of the vehicle.

The Scada-LTS project [17] can also be understood
as a cyber-physical system. SCADA (Supervisory Control
and Data Acquisition) systems are used to monitor and
control industrial processes, infrastructure systems, and
other complex systems that involve the interaction between
physical components and digital control systems. The
Scada-LTS project is an open-source SCADA software
system provides monitoring, control, monitoring, and data
acquisition capabilities for various industrial applications.

The Modelica project [18], [19] is related to the cyber-
physical system topic. Modelica is an open-source, object-
oriented modeling language used to model complex cyber-
physical systems that involve the interaction between physical
components and digital control systems. In a cyber-physical
system context, Modelica can be used to create models
that represent the behavior of physical components such
as mechanical systems, electrical systems, thermal systems,
and more. These physical component models can then
be integrated with control algorithms and other software
components to create a comprehensive model of the entire
system.

The KeYmaeraX project [20], [21] relates to the promising
topic of proving the correctness of cyber-physical systems.
KeYmaeraX is a theorem prover for hybrid systems,
which are systems that exhibit both continuous dynamics
(physical processes) and discrete dynamics (digital control
algorithms). Cyber-physical systems often fall into the
category of hybrid systems. KeYmaeraX supports the
verification of safety-critical properties, such as collision
avoidance, stability guarantees, reachability analysis, and
dynamic logic specifications [22]–[24], which are essential
for ensuring the reliable operation of cyber-physical systems.

III. RELATED WORK

To search for errors and vulnerabilities in cyber-physical
systems, both static and dynamic methods are applicable.
Since software for cyber-physical systems is a set of
executable programs (possibly running on different nodes),
general methods of analysis, testing and verification specific
to distributed software are applicable to it. For such systems,
monitoring is preferable, when the system is running and
its current state can be obtained and compared with the
expected one. The work [25] describes a review of this
kind of monitoring for given requirements in the form of
specifications. Specific signal analysis methods are applicable
for different classes of such systems [26]. For real-time
systems, this kind of monitoring can check parameters such
as input rate, scheduling delay, and processing time [27].
For systems dependent on network interactions, methods
for analyzing network vulnerabilities [28] are applicable. It
has long been discussed that static code analysis techniques
are applicable to such systems [29]. Although for special
domains, special approaches must be used to generate
benchmarks [30]. As theoretical research, first of all, methods
for constructing behavioral models of such systems and



Fig. 1. Solution diagram

testing them [31], as well as logical calculus systems for
modeling vulnerabilities [32] are known. Such models are
decoupled from real code, which entails the use of abstraction
and a potential loss of adequacy, but they can potentially test
situations that are difficult to reproduce.

Empirical work by Tan et al. [33] focuses on conducting
a comprehensive analysis of bugs in open-source software,
with a specific emphasis on the Linux kernel. In the case
of Linux, bugs are categorized based on their respective
subsystems, such as core, driver, network, FS, arch, or other.
The study utilizes BugZilla’s message text for various open-
source components, employing vectorization techniques for
automatic bug classification. In a similar vein, Xiao et al. [34]
proceed with a detailed examination of 5741 Linux kernel
bug reports. Their analysis delves into bug descriptions,
comments, and attached files from the Linux kernel bug
tracker, BugZilla. The bugs are further classified as fast-
reproducible (Bohrbug), difficult-to-reproduce (Mandelbug),
or context-dependent. Additionally, the researchers define
specific categories to which bugs can be attributed, such as
memory errors or unfreed resources, based on their contextual
dependencies. In the present work, we are going to do such
kind of analysis. By focusing on cyber-physical systems
rather than Linux kernels, we can uncover specific issues
and vulnerabilities that are relevant to this particular domain.
Utilizing git repositories as the source for messages provides
a wealth of data that can offer insight into the development
and maintenance of these systems. By differentiating between
fixing commit messages, we can pinpoint common errors and
identify patterns that may indicate underlying issues within
the codebase.

IV. ON THE IMPLEMENTATION

The internal flow and main modules of our solution are
presented in Fig. 1. The ideas to implement the approach
are presented in our previous paper [35]. To repeat, this is

getting the text of commits, identifying commits that commit,
representing its text in vector form using a “bag of words”,
working with increasing the role of significant words, and
further clustering such vectors into generalizing centroids
with the ability to restore close messages from commits for
each of the found centroids. Les us just describe the logical
modules.

The Intermediate storage is a module necessary to be
able to interrupt the progress of the program and replace
other modules without completely losing the result of the
work, it can be presented in the form of a small database
management system.

The Commits loader loads commit information from the
git system. This module is necessary because calculating file
changes can be a costly operation, and preloading information
allows it to be done only once.

The Transformation to classifier vectors module obtains
commits in a vector representation. For conversion, both data
from the commit information in natural language and in a
programming language are used. Priority in classification is
given to control flow graph representation of the commit diff.
The vector data is used only for classification and is not used
further in commit clustering.

The Commit classifier module determines whether a
certain commit is a bug fix.

The Selection module makes a selection from the general
pool of commits that will be needed for a specific study. For
example, the comment belongs to a specific domain and time
period.

The Tokenization module converts a commit message to
a list of keywords. This process involves removing technical
information, converting words to a basic form, and removing
unimportant words.

The Transformation to clusterization vectors module
converts a list of keywords to numeric vectors, and also
generates a dictionary for the reverse arrangement of vectors.



The Clustering module defines a certain cluster for a
specific commit or assigns it to an outlier (does not assign it
to any of the clusters). Works with the Distance calculation
module which calculates the matrix of distances between all
vectors.

The Representation module collects data from different
modules, organizes them and presents them in a user-friendly
format.

V. RESULTS OF ANALYSIS OF REPOSITORIES WITH
CYBER-PHYSICAL SYSTEMS PROJECTS

In this section, we show the results of the analysis of the git
repositories of the specified projects by our software. First,
we demonstrate the generalized vectors found, with the words
there arranged in descending order of weight using tf-idf.
Next, for each vector, we show examples of the most relevant
messages from commits that match this vector.

A. The Ardupilot project
Vector #1: [’apvehicle’, ’compiler’, ’float’, ’override’,

’keyword’, ’old’, ’airspeed’, ’double’, ’gc’, ’initialisation’,
’serial’, ’avoid’, ’wrapper’, ’older’, ’return’]

AP_PID: compiler warnings: apply is_zero(
float)

APMrover2: compiler warnings: apply
is_zero(float) or is_equal(float)

Plane: compiler warnings: apply is_zero(
float) or is_equal(float)

AP_Compass: compiler warnings: apply
is_zero(float) or is_equal(float)

AntennaTracker: compiler warnings: apply
is_zero(float) or is_equal(float)

This vector represents a fix for the compiler warning when
working with floating-point values.

Vector #2: [’hwdef’, ’binding’, ’copter’, ’register’, ’match’,
’changes’, ’update’, ’sub’, ’optional’, ’recent’, ’upstream’,
’manual’, ’i2c’, ’avoid’, ’lua’]

AP_HAL_ChibiOS: hwdef add support for
Networking

hwdef: add hwdef for SDMODELH7V1
AP_HAL_ChibiOS: update truenav hwdef
AP_HAL_ChibiOS: hwdef for Flywoo F405 Pro
AP_HAL: move defaulting of

HAL_DSHOT_ALARM into hwdef

This vector represents an improvement to the hardware
definition for hardware abstraction components.

Vector #3: [’hil’, ’initial’, ’wrapper’, ’implementation’,
’roll’, ’tailsitter’, ’pitch’, ’eliminate’, ’transition’, ’ap’,
’attitude’, ’call’, ’vtol’, ’timing’, ’creation’]

ACM: fixed HIL build again
ArduPlane: remove HIL support
AP_Compass: remove HIL support
Blimp: remove HIL support
GCS_MAVLink: remove HIL support

This vector deals with support for the Hardware-in-the-
loop simulator, which was gradually removed from the
project.

Vector #4: [’define’, ’separate’, ’send’, ’patch’, ’stability’,
’simple’,
’hold’, ’alt’, ’ability’, ’able’, ’absolute’, ’abstraction’, ’ac’,
’accel’, ’acceleration’]

AP_RCProtocol: add separate define for
AP_RCPROTOCOL_PPMSUM_ENABLED

AP_RCProtocol: add separate define for
AP_RCPROTOCOL_ST24_ENABLED

AP_RCProtocol: add separate define for
AP_RCPROTOCOL_DSM_ENABLED

AP_RCProtocol: add separate define for
AP_RCPROTOCOL_SUMD_ENABLED

AP_RCProtocol: add separate define for
AP_RCPROTOCOL_IBUS_ENABLED

This vector deals with define macros in code.

Vector #5: [’fence’, ’without’, ’register’, ’attitude’,
’pointer’, ’must’, ’collective’, ’avoid’, ’quad’, ’horizontal’,
’next’, ’tradheli’, ’heli’, ’term’, ’structure’]

AC_Fence: add polygon fence check to
check_destination_within_fence

AC_Avoid: add support for stopping at
polygon fence

AC_Fence: add support for polygon fences
AP_OSD: Add fence indicator panel
Rover: add fence support

This vector deals with fixes for obstacle avoidance
functions.

Vector #6: [’location’, ’adjust’, ’vector3f’, ’require’,
’accepts’, ’send’, ’home’, ’packet’, ’specify’, ’original’,
’unify’, ’circle’, ’mount’, ’support’, ’usage’]

autotest: fixed buildlogs location for *.
BIN

AP_Math: move line_path_proportion to
Location

ArduPlane: use past_interval_finish_line
and line_path_proportion from
Location

Tweaks to fix Loiter
Changed save location to int32
added some filtering and smoothing
APMrover2: use past_interval_finish_line

and line_path_proportion from
Location

This vector deals with fixes for location objects.

Vector #7: [’scheduler’, ’enum’, ’old’, ’ability’,
’able’, ’absolute’, ’abstraction’, ’ac’, ’accel’, ’acceleration’,
’accelerometer’, ’accept’, ’accepts’, ’access’, ’accessor’]

Rover: windvane update called from
scheduler at 20hz

AP_NavEKF: Scheduler Improvements
Plane: remove update_events scheduler

shim
AP_HAL_AVR: Scheduler extensions

implemented



Copter: remove shims used in scheduler

This vector deals with fixes for the scheduler.

Vector #8: [’macro’, ’rewrite’, ’frontend’, ’flag’, ’ability’,
’able’, ’absolute’, ’abstraction’, ’ac’, ’accel’, ’acceleration’,
’accelerometer’, ’accept’, ’accepts’, ’access’]

all: use CLASS_NO_COPY() macro
Copter: Obey RANGEFINDER_ENABLED,

AUTOTUNE_ENABLED and AC_TERRAIN build
macros

AP_HAL_SMACCM: fix to goofed
PPM_MAX_CHANNELS macro

HAL_ChibiOS: use EXPECT_DELAY() macro
AP_InertialSensor: use EXPECT_DELAY()

macro

This vector deals with various code fixes in macros
(specific to C/C++ projects).

Vector #9: [’script’, ’reset’, ’last’, ’install’, ’readme’,
’folder’, ’dronecan’, ’style’, ’multiple’, ’optflow’, ’byte’,
’iofirmware’, ’lua’, ’jsbsim’, ’enumeration’]

AP_HAL_ChibiOS: fix script for HerePro
AP_HAL_F4Light: fixed some support

scripts
AP_Scripting: add arming check for failed

scripts
HAL_ChibiOS: moved to generated loader

script
AP_Scripting: add checksum of running and

loaded scripts with arming check

This vector deals with fixes for built-in scripts.

Vector #10: [’quadplane’, ’adjust’, ’ability’,
’able’, ’absolute’, ’abstraction’, ’ac’, ’accel’, ’acceleration’,
’accelerometer’, ’accept’, ’accepts’, ’access’, ’accessor’,
’accessors’]

Plane: Quadplane: use uint16_t for
output_motor_mask

Plane: added QTUN logging for quadplane
AC_WPNav: converted to use AP_AHRS_View
Plane: Quadplane remove THR_MIN_PWM and

THR_MAX_PWM
Plane: allow for NAV_LOITER_UNLIM and

NAV_LOITER_TIME in quadplane

This vector deals with fixes for working with QuadPlane,
which is a combined fixed wing and MultiCopter aircraft.

B. The Scada-LTS project
Vector

#1 [’settimeout’, ’state’, ’commonjs’, ’pointpropertiesapi’,
’eventtextrenderer’, ’translate’, ’interface’, ’messagesms’,
’localization’, ’validate’, ’copy’, ’plcalarmsdao’, ’messages’,
’adapter’, ’miscdwrdolongpoll’]

#2111 Fixed using setTimeout in common.js
- added multi thread tests:

MiscDwrDoLongPollAlarmsMultiThreadTest
, MiscDwrDoLongPollMultiThreadTest;
corrected MiscDwr.doLongPoll, without
copy state

#2111 Fixed using setTimeout in common.js
- use setInterval

#2111 Fixed using setTimeout in common.js
3 - setTimeout functionality ported

to java
#2111 Fixed using setTimeout in common.js

- validate uiPerformance, added ’
Very high’ option (1000ms)

#2111 Fixed using setTimeout in common.js
- corrected refresh points with

statistics, for request that run
longer than the Interval Time

This vector is a fix for the timer function - executing code
by timeout in JS.

Vector #2: [’patch’, ’vue’, ’views’, ’tests’, ’ability’, ’able’,
’abstract’, ’abstractbeforeafterworkitem’, ’accept’, ’access’,
’accetable’, ’acknowledge’, ’acl’, ’action’, ’active’]

patch removed newline
patch MangoTextContent.java
Refactor Vue Unit Tests #1533
#1641 ADD [NotFinished] VirtualDataPoint

Vue
#1894 Views caching - corrected

This vector represents patches for views (that is,
representing the states of objects on the screen).

Vector #3: [’correction’,
’commit’, ’display’, ’partial’, ’isalive2’, ’viewdao’, ’clean’,
’eventdetectorapi’, ’not’, ’eventlist’, ’component’, ’number’,
’ability’, ’able’, ’abstract’]

Correction of commit number display.
#1502

#2051 Visual corrections (component
shrink)

EventDetectorAPI corrections #1532
#2051 Add corrections to the IsAlive2
SLTS-40 Add correction to ViewDAO

This vector represents various corrections associated with
the display of information and events in the system.

Vector
#4: [’slts13’, ’testdao’, ’annotation’, ’cleanup’, ’scriptdao’,
’direct’, ’rewrite’, ’navigation’, ’link’, ’controller’, ’ability’,
’able’, ’abstract’, ’abstractbeforeafterworkitem’, ’accept’]

SLTS-13 Added FlexProjectRowMapper and
remove @SuppressWarning annotation

SLTS-13 move expectedException to TestDAO
SLTS-13 Rewrite ScriptDAO
SLTS-13 controller’s clean-up
SLTS-132 Implemented direct link

navigation.

This vector represents fixes for DAO (data access object).

Vector #5: [’log4j’, ’pointdetails’, ’slts34’, ’logger’,
’ability’, ’able’, ’abstract’, ’abstract before after workitem’,
’accept’, ’access’, ’accetable’, ’acknowledge’, ’acl’, ’action’,
’active’]



#1982 - log4j update
#1982 - log4j update
SLTS-97 Add logger for log4j. Correct

PointValueService.
WORKSAVE New PointDetails ideas
SLTS-34 Add DataSourceServiceTest

This vector represents logging fixes using log4j (log for
Java).

C. The Modelica project
Vector #1: [’proper’, ’word’, ’format’, ’use’,

’number’, ’leakage’, ’accordingly’, ’individual’, ’usersguide’,
’magnetic’, ’electrical’, ’work’, ’ha’, ’implementation’, ’09’]

Use proper number formats
Proper word
Use proper number formats
Proper word
SymmetricPolyphaseWinding: moved

individual leakage from magnetic to
electrical implementation: it works!

UsersGuide has to be adapted accordingly.

This vector represents fixes for formatting messages with
the correct number format.

Vector #2: [’unify’, ’time’, ’ccr’, ’event’, ’enhancement’,
’cleanup’, ’drive’, ’controller’, ’some’, ’powerconverters’,
’partial’, ’interface’]

refs #1627: Fix detection of (scaled)
time events

refs #1627: Fix detection of scaled time
events

CCR: corrected error in setState_ps

This vector represents fixes for working with time events.

Vector #3: [’electricaldigital’, ’correction’, ’elementary’,
’grid’, ’fit’, ’mechanicsmultibody’, ’layout’, ’better’, ’info’,
’svn’, ’revision’, ’function’]

#799 solved for Electrical.Digital
errors fixed in Electrical.Digital
errors fixed in Electrical.Digital
corrections according to #994 in

Electrical.Spice3.Internal.Fet
Correction of info of function Matrices.

realSchur

This vector represents bug fixes in the Electrical.Digital
component (this library contains packages to model digital
electronic systems based on combinational and sequential
logic).

Vector #4: [’due’, ’picture’, ’complexblocks’,
’modification’, ’docu’, ’referenceair’, ’referencemoistair’,
’mass’, ’energy’, ’balance’, ’some’, ’static’]

Comments added due to #1475
modifications due to ComplexBlocks
due to #407 bugs 2, 3, 4, 5, 7 fixed (

docu, pictures)
Some changes due to renaming of

ReferenceMoistAir and ReferenceAir.

medium.preferredMediumStates is now false
if both mass and energy balances are
static

Attempt to fix issue #3236

This vector represents error fixes for complex blocks with
images.

Vector #5: [’dynamicselect’, ’boolean’, ’comparison’,
’real’, ’individual’, ’stray’, ’implementation’, ’09’, ’150’,
’2dtable’, ’3rdparty’, ’64bit’, ’abbreviation’]

Avoid Boolean comparison with Real in
DynamicSelect (#2862)

Avoid Boolean comparison with Real in
DynamicSelect (#2879)

corrected implementation of individual
stray permeances

This vector represents fixes for proper comparison with
real (floating-point) values.

D. The KeYmaeraX project
Vector #1: [’implement’, ’syntactic’, ’derivative’, ’index’,

’skeleton’, ’skolemization’, ’counting’, ’magic’,
’less’, ’20150824’, ’20160308’, ’20160601’, ’20160802’,
’20160816’, ’2sided’]

implement GetPathAll
implement the CreateProblemRequest
implement BranchRoot
implement skolemization
implement more of skeleton

This vector represents the addition of various functionality
to the project in the form of large commits, for example,
the implementation of skolemization (reduction to Skolem
normal form is an approach for removing existential
quantifiers from formal logic statements).

Vector #2: [’package’, ’private’, ’change’, ’moves’,
’datastructures’, ’firstintegrals’, ’fol’, ’replaceall’, ’tooltips’,
’dwplus’, ’compilability’, ’link’, ’thanks’, ’cert’, ’sos’]

packages
Change package
Change package for compilability.
merge tons of code from kaisar package to

experiments package, get bot working
again

Move strategic AxiomIndex to package
btactics

This vector represents fixes for rebuilding packages in the
logical organization of the architecture.

Vector #3: [’solve’, ’axiominfo’, ’nilpotent’, ’search’,
’feedback’, ’anyarg’, ’anything’,
’axiombase’, ’output’, ’rescue’, ’diffsolve’, ’theme’, ’choice’,
’consistently’, ’speedup’]

Nilpotent solve (preliminary)
Nilpotent solve speedup
Re-unification to solve p(.)˜>.>=0 , p(.)

˜>2>=0 issues as in



[x’:=2]x’>=0<->2>=0 against [’:=]
Nilpotent solve: dW only when provable
key/recusor in AxiomInfo

This vector represents fixes for Nilpotent solve (for solving
algebraic structures).

Vector
#4: [’unification’, ’derive’, ’bidirectional’, ’axindex’, ’imply’,
’monomial’, ’projection’, ’init’, ’sign’, ’bit’, ’variation’, ’dot’,
’dbx’, ’match’, ’dotterm’]

Colored-dots unification
Improve unification a bit further
Unification support for projection
Unification match: 0-indexed colored dots
DiffHelper derive fix (sign error)

This vector represents fixes for the unification algorithms
[36] in the theorem prover.

VI. DISCUSSION AND CONCLUSION

The results of the clusterer can be considered successful
only for the Ardupilot project. For the rest, there are problems
with obtaining both the required number of arbitrarily
representative clusters, and with the quality of the found
vectors, so that they actually represent fixes of repeating types
of errors. We see the main problems here in the organization
of development of the selected projects, when developers
write uninformative messages about commits. In addition,
task management suffers: code fixes are committed to solve
large problems at once, rather than small changes with a clear
justification. The final problem we see is the classification of
commits into adding functionality and fixes: the classifier is
based on the code and messages of Linux kernel commits
and for other repositories, as it turned out, it does not work
entirely correctly.

As for the processed commits, in the Ardupilot
project the main errors were specific to the software
domain for unmanned vehicles, such as issues of location
processing, obstacle avoidance, abstraction from hardware
and scheduling. For SCADA systems, errors specific to Java
applications and MVC architecture were found, which is
not surprising, because such projects visualize monitoring
data of cyber-physical systems. For the Modelica system,
the Electrical.digital subsystem was found, which is prone
to errors, as well as other issues there are related to the
conversion of numeric floating-point values. Finally, in the
theorem prover for cyber-physical systems KeYmaeraX (with
not a good organization of commits that does not reveal the
full complexity of development), the main logical subsystems
for proving cyber-physical models in which there were many
changes in the code were found: skolemization, nilpotent
solve and unification.

The final advantages of our solution are the ability to
easily evaluate what is being done in a given repository (with
a sufficiently large number of well-organized commits) and
what errors were corrected in order to learn from examples
of the development of this kind of systems with increased
reliability requirements.

REFERENCES

[1] git. [Online]. Available: https://git-scm.com
[2] S. Otte, “Version control systems,” 2009. [Online]. Available:

https://api.semanticscholar.org/CorpusID:7541013
[3] S. Chacon and B. Straub, Pro git. Springer Nature, 2014.
[4] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how

misclassification impacts bug prediction,” in 2013 35th international
conference on software engineering (ICSE). IEEE, 2013, pp. 392–401.

[5] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution,” Journal of software maintenance and evolution: Research
and practice, vol. 19, no. 2, pp. 77–131, 2007.

[6] Y. Tian, J. Lawall, and D. Lo, “Identifying Linux bug fixing patches,”
in 2012 34th international conference on software engineering (ICSE).
IEEE, 2012, pp. 386–396.

[7] E. A. Lee, “The past, present and future of cyber-physical systems: A
focus on models,” Sensors, vol. 15, no. 3, pp. 4837–4869, 2015.

[8] ——, Plato and the nerd: The creative partnership of humans and
technology. MIT Press, 2017.

[9] R. Rajkumar, D. De Niz, and M. Klein, Cyber-physical systems.
Addison-Wesley Professional, 2016.

[10] H. Gill, “From vision to reality: cyber-physical systems,” in HCSS
national workshop on new research directions for high confidence
transportation CPS: automotive, aviation, and rail. Austin USA,
2008, pp. 1–29.

[11] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis,
V. Gupta, B. Goodwine, J. Baras, and S. Wang, “Toward a science of
cyber–physical system integration,” Proceedings of the IEEE, vol. 100,
no. 1, pp. 29–44, 2011.

[12] G. M. Siddesh, G. C. Deka, K. G. Srinivasa, and L. M. Patnaik, Cyber-
physical systems: a computational perspective. CRC Press, 2015.

[13] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems:
the next computing revolution,” in Proceedings of the 47th design
automation conference, 2010, pp. 731–736.

[14] Y. Luo, Y. Xiao, L. Cheng, G. Peng, and D. Yao, “Deep learning-
based anomaly detection in cyber-physical systems: Progress and
opportunities,” ACM Computing Surveys (CSUR), vol. 54, no. 5, pp.
1–36, 2021.

[15] ArduPilot Project. [Online]. Available: ⟩https://github.com/ArduPilot
/ardupilot

[16] S. Staroletov, “Architectural software-hardware co-modeling a real-
world cyber-physical system: Arduino-based ardupilot case,” in 2021
30th Conference of Open Innovations Association FRUCT. IEEE,
2021, pp. 267–278.

[17] Scada-LTS. [Online]. Available: https://github.com/SCADA-LTS/Sca
da-LTS

[18] Modelica Standard Library. [Online]. Available: https://github.com/m
odelica/ModelicaStandardLibrary

[19] P. Fritzson, Principles of object-oriented modeling and simulation with
Modelica 3.3: a cyber-physical approach. John Wiley & Sons, 2014.

[20] KeYmaera X Theorem Prover for Hybrid Systems. [Online]. Available:
https://github.com/LS-Lab/KeYmaeraX-release

[21] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer, “Keymaera
x: An axiomatic tactical theorem prover for hybrid systems,” in
Automated Deduction-CADE-25: 25th International Conference on
Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings
25. Springer, 2015, pp. 527–538.

[22] J.-D. Quesel, S. Mitsch, S. Loos, N. Aréchiga, and A. Platzer, “How to
model and prove hybrid systems with keymaera: a tutorial on safety,”
International Journal on Software Tools for Technology Transfer,
vol. 18, no. 1, pp. 67–91, 2016.

[23] S. Staroletov, “Automatic proving of stability of the cyber-physical
systems in the sense of Lyapunov with KeYmaera,” in 2021 28th
Conference of Open Innovations Association (FRUCT). IEEE, 2021,
pp. 431–438.

[24] S. Staroletov, H. Schulte, T. Baar, I. Konyukhov, N. Shilov, A. Rozov,
T. Liakh, and V. Zyubin, “Modeling and verification using different
notations for CPSs: The one-water-tank case study,” in 2021 16th
Conference on Computer Science and Intelligence Systems (FedCSIS).
IEEE, 2021, pp. 485–488.

[25] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos,
O. Maler, D. Ničković, and S. Sankaranarayanan, “Specification-
based monitoring of cyber-physical systems: a survey on theory, tools
and applications,” Lectures on Runtime Verification: Introductory and
Advanced Topics, pp. 135–175, 2018.

[26] J. Morgan and G. E. O’Donnell, “Cyber physical process monitoring
systems,” Journal of Intelligent Manufacturing, vol. 29, no. 6, pp.
1317–1328, 2018.

https://git-scm.com
https://api.semanticscholar.org/CorpusID:7541013
>https://github.com/ArduPilot/ardupilot
>https://github.com/ArduPilot/ardupilot
https://github.com/SCADA-LTS/Scada-LTS
https://github.com/SCADA-LTS/Scada-LTS
https://github.com/modelica/ModelicaStandardLibrary
https://github.com/modelica/ModelicaStandardLibrary
https://github.com/LS-Lab/KeYmaeraX-release


[27] M. Canizo, A. Conde, S. Charramendieta, R. Minon, R. G. Cid-
Fuentes, and E. Onieva, “Implementation of a large-scale platform for
cyber-physical system real-time monitoring,” IEEE Access, vol. 7, pp.
52 455–52 466, 2019.

[28] Y. Ashibani and Q. H. Mahmoud, “Cyber physical systems security:
Analysis, challenges and solutions,” Computers & Security, vol. 68,
pp. 81–97, 2017.

[29] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th
IEEE international symposium on object and component-oriented real-
time distributed computing (ISORC). IEEE, 2008, pp. 363–369.

[30] C. Eichler, P. Wägemann, and W. Schröder-Preikschat, “Genee: A
benchmark generator for static analysis tools of energy-constrained
cyber-physical systems,” in Proceedings of the 2nd Workshop on
Benchmarking Cyber-Physical Systems and Internet of Things, 2019,
pp. 1–6.

[31] T. Fabarisov, N. Yusupova, K. Ding, A. Morozov, and K. Janschek,
“Model-based stochastic error propagation analysis for cyber-physical
systems,” Acta Polytechnica Hungarica, vol. 17, no. 8, pp. 15–28,
2020.

[32] R. Lanotte, M. Merro, A. Munteanu, and L. Viganò, “A formal
approach to physics-based attacks in cyber-physical systems,” ACM
Transactions on Privacy and Security (TOPS), vol. 23, no. 1, pp. 1–
41, 2020.

[33] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai,
“Bug characteristics in open source software,” Empirical software
engineering, vol. 19, pp. 1665–1705, 2014.

[34] G. Xiao, Z. Zheng, B. Yin, K. S. Trivedi, X. Du, and K.-Y. Cai, “An
empirical study of fault triggers in the Linux operating system: An
evolutionary perspective,” IEEE Transactions on Reliability, vol. 68,
no. 4, pp. 1356–1383, 2019.

[35] S. Staroletov, N. Starovoytov, and N. Golovnev, “Analyzing hot bugs in
the Linux kernel by clustering fixing commit messages,” Proceedings
of the Institute for System Programming of RAS, vol. 35, no. 3, 2023.

[36] K. Hoder and A. Voronkov, “Comparing unification algorithms in
first-order theorem proving,” in KI 2009: Advances in Artificial
Intelligence: 32nd Annual German Conference on AI, Paderborn,
Germany, September 15-18, 2009. Proceedings 32. Springer, 2009,
pp. 435–443.


	Introduction
	Background
	The git version control system
	Commit classification
	Cyber-physical systems and errors in it
	Examples of cyber-phisical systems to analyze

	Related work
	On the implementation
	Results of analysis of repositories with cyber-physical systems projects
	The Ardupilot project
	The Scada-LTS project
	The Modelica project
	The KeYmaeraX project

	Discussion and Conclusion
	References

