
Ontology-based neurointerface IoT integration
approach

Ivan Labutin1 and Svetlana Chuprina2

Faculty of Mechanics and Mathematics
Perm State University, 15 Bukireva Str., Perm, 614068, Russian Federation

ORCID: 10000-0001-6858-1479, 20000-0002-2103-3771

Abstract—Recently, there is a surge of interest in employing a
neurocomputer interfaces for a control contours implementation,
especially for different infrastructures of Internet of Things.
However, due to a low-level nature of such devices and related
tools, neurointerface integration with a large variety of IoT
devices is quite a tedious task, and the one that requires a lot
of knowledge in the neuroscience and signal processing to boot.
In this work we propose an ontology-based solution for facing
the upcoming challenges of unified integration of brain-computer
interfaces (BCI) into IoT ecosystems. This ontology driven high-
level approach enables researchers and engineers without strong
background in BCI to automate the integration neurointerfaces
with different infrastructures of Internet of Things.

Index Terms—neurointerface, BCI, ontology engineering, IoT

I. INTRODUCTION

Due to the widespread digitization and an active expansion
of the application areas of Internet of Things (IoT), virtual
reality and augmented reality, methods and tools for managing
software systems based on neurointerfaces are developing
rapidly. Of crucial concern here is that there is no universal
standard for the integration of different IoT infrastructures
nowadays. The diversity of existing protocols and standards
for device interaction in the IoT, as well as their lack of
compatibility, leads to communication problems between de-
vices within a single infrastructure. Therefore, the call for
development and implementation of a new unified concepts
and refinement of existing ones to increase the level of
interoperability of devices seems to be quite an essential
one, especially when it comes to the task of embedding
neurointerfaces into already existing software systems.

In the current state of the art, issues related to creating
unified methods and tools to automate the process of integra-
tion of neurointerfaces into the IoT ecosystem with a goal of
controlling its components (target systems and subsystems) are
still insufficiently studied, although the literature recognizes
the need to develop such methods and approaches [1]–[4].

In most cases, neurointerface equipment is able to function
properly only with a narrow range of proprietary software
provided by the manufacturer. Therefore, employment of neu-
rointerfaces in the scenarios and pipelines not accounted by
a manufacturer poses quite a challenge, if ever possible, and
requires a deep knowledge in fields of both neuroscience and
computer science.

In this paper we present the concept of ontology-driven
system for integration of neurointerfaces into IoT ecosystems

and the approach to its implementation. The general idea
– automated generation of a firmware for a smart mediator
connecting together an IoT infrastructure and a neurointerface
– was introduced in our previous work[5]; in this paper,
we focus on proposing a formal model and describe it’s
implementation.

We shall note here that a general overview of neurocomputer
interfaces is out of scope of this work; interested readers can be
advised to familiarize themselves with an excellent summary
paper [6].

II. USE CASE SCENARIOS

Before building the system model in question, it is necessary
to understand the user’s general portrait and possible scenarios
of his interaction with the system.

It shall be noted that there are two categories of potential
users of our system in relation to the fields of neurointerfaces,
IoT and ontological engineering: nonspecialists and special-
ists.

Nonspecialists will use the system in the form provided to
them by specialists; nonspecialists don’t have the expertise
to (and, ideally, should not) configure and extend the system
as they may have no relevant competencies. In essence,
nonspecialists will employ the system ,,as is” as a set of
available tools for solving their own personal problems related
to integrating neurointerfaces into specific IoT infrastructure.

Specialists, on the other hand, in addition to the afore-
mentioned employment of the system, can also extend and
reconfigure it by adding new modules and their ontological
descriptions.

It is important to distinguish these two groups of users as
the former ones may need a complete and convenient high-
level interface; while the latter can use a lower-level means of
interaction with the system to increase flexibility and efficiency
of task solving.

The main nonspecialists’ scenario for the platform’s em-
ployment will be using a high-level visual user interface
to create a formalized description of a ,,smart assistant”’s
internal composition and employing some special means to
automatically generate its source code based on this formal
description. The generated code then becomes a part of the
software of such assistant and unifies the integration of user
selected modules. Based on our previous work[7] we propose
to use the tools of SciVi platform to tackle this problem.

SciVi is Russian scientific visualization and analytics platform
enabled describing the pipeline of analytical data processing
by means of data flow diagrams and generate the source code
in related programming language. This was made possible due
to SciVi being an ontology-driven solution.

This scenario is presented in Fig. 1 as a use-case diagram,
where two usage scenarios related to employing the platform
by nonspecialists are illustrated. First scenario – composing
DFD diagram in SciVi environment. Second scenario – gener-
ating code for the smart assistant based on previously created
DFD diagram.

Fig. 1. Use cases for nonspecialists

For specialists, an additional scenario is added that involves
extending the system with new components. Aside from
components of interest they also need to add their ontological
descriptions (manually crafted or generated by some tooling)
into the system’s repository. This is is illustrated on Fig. 2
with three use cases related to employing the platform by
specialists. Compared with Fig. 1, there is an additional
third scenario – filling the system repository with ontological
descriptions of new modules available for potential inclusion
in code for the smart mediator.

Fig. 2. Use cases for specialists

Note here that this is by no means is not an exhaustive
list of potential ways to interact with the system; on practice,
other interaction scenarios are possible, which are not covered
in the paper. Their discovery and analysis is the topic of a
further study. In this paper, we focus on providing users who
belong to the category of ,,specialists” with the necessary tools
for integrating neurointerfaces into arbitrary IoT infrastructure.

To this end, we propose the ontology-driven solution in which
the so-called ,,smart mediator” plays a key role.

III. ONTOLOGICAL APPROACH TOWARDS INTEGRATION

In the context of computer science, ontology is seen as a
formal representation of knowledge about some domain in a
form of sets of concepts and relations between them, as well
as associated axiomatic. One of the founders of ontological
engineering, Thomas Gruber, defined ontology as ,,explicit
specification of conceptualization” [8].

Following [9] we will define a formal model of ontology O
an ordered triplet of the form:

O = ⟨X,R,Φ⟩, (1)

where X is a finite non-empty set of concepts (notions, terms)
in the domain area represented by ontology O;
R is a finite set of relationships between concepts;
Φ is a finite set of interpretation functions defined on the
concepts and relations of ontology O (axiomatic).

Furthermore, [9] points out that in an ontology-based system
model, there are three ontological components:

1) Metaontology, which contains general concepts and no-
tions independent of the domain area.

2) Domain ontology (one or several), which describes a
specific domain area.

3) Task ontology (one or several), which contains types of
tasks to be solved and their decomposition into sub-
tasks.

Regarding our goal, we will be mainly interested in do-
main ontologies. Metaontology for our purpose is not strictly
required due to a clearly defined (at least on this stage of
research) domain area. For similar reasons, we do not see a
need for a task ontologies: as it was noted above, the system
shall support only a narrow range of use cases, therefore
instead of an ontological description of tasks, knowledge about
them and ways of interpreting supported types of relationships
should be built into the inference engine.

This seems to be the most effective solution in the context
of current research, because in such a case it is possible to
use so-called ,,lightweight” ontologies[10].

Here and further, if nothing else is specified explicitly, under
the term ,,ontology” will be understood only ,,lightweight”
ontologies, which do not contain axiomatic (that is, in 1
Φ = ∅). Their interpretation falls entirely on the implemen-
tation of inference engine. We suggest to create ontologies
using environment of our visual ontology editor named ON-
TOLIS[11]–[13]. ONTOLIS is aimed at ordinary users and
at the same time allows developers uniformly storing a wide
range of attributes in the nodes and arcs of the ontology graph
in a unified form which is necessary to take into account
the specifics of solving specific tasks during inference[13].
This allows the user to expand the possibilities of interpreting
ontologies to some extent, providing an inference engine with
additional information in simple machine-readable format,
which gives the opportunity to modify its behavior (including
referencing external tools).

IV. REQUIREMENTS FOR SYSTEM AND ,,SMART
MEDIATOR”

Before describing the formal model of the system, it is
necessary to define a set of requirements that both the system
itself and its results should meet.

Functional requirements for the ,,smart mediator” logically
follow from the purpose of his existence.

1) The smart mediator must receive a signal from the neu-
rocomputer interface. Consequently, the smart mediator
should include a module responsible for communication
with the neurointerface.

2) The smart mediator must process the received signal.
Processing signals is a nontrivial issue per se and is
not the subject of this work. It is assumed that the
mediator should include several modules responsible for
this task. The question of suitability of these modules
lies on the shoulders of the user of the system (as was
said above, we are talking about a competent user).
Within the framework of this work, a set of modules
is implemented, sufficient for demonstrating the proof-
of-concept of suggested approach to unified integration
of the smart mediator into the IoT infrastructure.

3) The smart mediator must provide access to the result of
signal processing to other devices in the IoT infrastruc-
ture. This can be done in at least two ways (see section
V); the choice of a specific mechanism also depends on
requirements imposed by the user of the system.

The main non-functional requirements for an smart mediator
– flexibility, reliability, predictability – are described below.

1) Flexibility means that the algorithm of the ,,smart me-
diator” is not cut in stone once and for all: it can adapt
according with changing user needs or surrounding in-
frastructure. Within the proposed solution this means the
need for regenerating the code of the mediator based on
a formalized description of the changed infrastructure.

2) Reliability implies that the mediator should have a cer-
tain degree of robustness to errors that inevitably occur
during interaction between software systems. A detailed
error typology is beyond the scope of this work, so from
here we assume that the requirement for reliability is
inherently implemented at the design stage of modules
from which the ,,mediator” is composed of.1

3) Predictability guarantees that the mediator will perform
only the task prescribed to it by the formal model. This
requirement can be received ,,for free” to some degree
if we strictly stick to the paradigm of open-source and
free software2.

1Strictly speaking, it was also worth to take into account problems arising
during interaction between modules of the mediator with each other. The
problem of organizing interaction between modules of the mediator among
themselves is not a key issue in this paper and is left for the specialist who
composes formal representation for further generation of code of the mediator.

2Of course, openness and freedom per se do not guarantee full absence of
random or deliberate defects leading to unexpected behavior, but they at least
minimize risks associated with them through the ,,thousand eyes effect” that
declares a positive correlation between the quality of the software and the
number of people who have access to its code

V. SYSTEM DEVELOPMENT CONCEPT

Based on our experience in the field of ontology-driven
human-machine interfaces [11]–[15], we propose a mechanism
for integrating brain-computer interfaces into the Internet of
Things infrastructure by introducing an intermediate layer –
a smart mediator that will be responsible for communication
between the environment (bci:Context in the terminology of
[16]) and neurointerface (bci:Device in [16]). The mediator’s
software is generated automatically, and this process is driven
by a managing ontology. In addition, to perform such a
generation some extra resources will be required:

• Ontology of semantic filters[17] that describes the nec-
essary transformations of data received from the neu-
rointerface. Parts of this ontology were borrowed from
SciVi and used in this work. In addition, it was extended
with additional modules specific to neuroscience (for
example, with a description of a module for inverse
Fourier transform).

• Ontology of target platform that reflects the characteris-
tics of the environment or device that will support the
execution of the mediator. This ontology was created
from the scratch but taking into account the quirks of
SciVi platform.

• Component ontology[18] that provides a complete de-
scription of the characteristics of the neurointerface suf-
ficient for establishing communication with it and ex-
changing data. This ontology was also created from the
scratch.

It is important to emphasize in the proposed approach the
key role of the mediator, which is considered and implemented
as a software module running on one of the devices in the in-
frastructure of the Internet of Things. In essence, it represents
a microservice that receives raw data of a biological nature
from a neurointerface and provides access to the results of
processing that data to other devices in the IoT infrastructure
in one of two possible ways:

1) The smart mediator publishes results of data processing
by some protocol, and other network nodes indepen-
dently and periodically call in to receive information
about some aspects of cognitive state of a human. For
example, ,,smart” lighting bulb can automatically obtain
fatigue level data and regulate the light intensity taking
into account this information.

2) The smart mediator generates a direct control signal
affecting one of IoT infrastructure devices. For example,
mediator may define the state of concentration of a
person and send it via MPRIS3 protocol to media device
playing multimedia (video / audio) command to pause
playback.

The mediator itself may execute either on a specialized
device (such as development board for ESP32 microcon-
troller), fully utilizing all its resources, or on an preexisting
infrastructure node (for example, a router or even a personal

3https://specifications.freedesktop.org/mpris-spec/latest/

computer). In the latter case such an mediator can be consid-
ered ,,virtual”. The only significant requirement is a physical
ability to connect the neurointerface to an equipment on which
the mediator works.

As noted above, software code of mediator is being gen-
erated following the managing ontology, contents of which
is vital for correctness of the mediator functioning. A very
important features of ontologies are their transparency, doc-
umentability and readability both for human and program
agent. This is a significant trait that allows reusing external
ontological resources.

Despite of existence of automated tools for creation and
validation of correctness of ontologies[19], [20], in reality
most practical approaches to choice and quality assessment
of ontologies is still rely on experts and knowledge engineers
(ontology engineers). The other popular approach is to deduce
a corectness of built ontology from the result of correctness
evaluation of ontologically driven solution.

From our point of view ontological descriptions of various
neurointerfaces are not obliged to be integrated in a frame-
work of one domain ontology. It seems viable to develop
an interface for so-called smart repository for conveniently
search and reuse ontologies of other neurointerfaces or/and
their parts. Work of such a repository shall be controlled
by metaontology (highest-level ontology), i.e. ontology that
is storing knowledge about all domain ontologies stored in
the repository. Naturally, at same time it is required to ensure
coherence and consistency of ontologies[21], [22], but with a
moderately small sizes of ontologies this condition can be met
with a relative ease.

Fig.3 demonstrates a general overview of proposed inte-
gration mechanism for neurointerfaces into IoT ecosystem.
Here bci:Device is denoting the neurointerface, bci:Context
describes environment to be integrated with, BCI-O – main
managing ontology, mediator – mediator itself, adapter – a
system that implements an integration mechanism integration
for a specific neurointerface into an IoT ecosystem.

The ontological device description (bci:Device) is being au-
tomatically united with the ontology describing infrastructure
(bci:Context) in one common domain ontology, using which a
system (,,Generator”) generates software for smart mediator.

To perform an integration of a neurointerface into existing
IoT infrastructure (for example, a ,,smart home” ecosystem)
it’s necessary to execute following steps (through suggested
algorithm description every mention of creation of ontologies
assumes that this can be performed employing ontology learn-
ing tools for automated creating of ontologies):

1) Either select an existing ontological neurointerface de-
scription from the repository of the SciVi platform[23]
or create a new one in the visual ontology editor
ONTOLIS saving it to the SciVi repository.

2) Choose a preexisting or create a new ontological descrip-
tions of semantic filters for preprocessing input/interme-
diate/output signals based on the task requirements, sim-
ilar to how this is implemented in our colleagues’ work

Fig. 3. Proposed integration mechanism

dedicated to the SciVi system for scientific visualization
and visual analysis.

3) Either select an existing ontological description of the
specific IoT ecosystem from the repository of the SciVi
or create a new one consistent with BCI-O and IoT-
O[24].

4) Use services of the proposed system for an automatic
construction of adapters for neurodevices and an auto-
matic generation of the smart mediator’s firmware from
obtained ontologies; this firmware will be responsible
for integration of neurointerface in the infrastructure of
IoT.

A mechanism for ontology-driven generation of firmware’s
source code for IoT ecosystem was previously developed
by our colleagues as a part of a project aimed at creating
and improving the scientific visualization and visual analysis
platform SciVi[23]. We reuse similar concepts when solving
tasks related to integrating neurointerfaces into an already
existing, or created from scratch ecosystem of IoT.

The proposed solution allows to unify the process of
integration of neurointerfaces in a specific IoT ecosystem.
Building an ontology describing a particular neurointerface
must be performed only once, after which it is added to the
corresponding repository of ontologies and can be repeatedly
reused for automatic regeneration of mediator’s firmware with
the goal of integrating it with different environments.

Thus, unification of integration tools is achieved by reusing
ontologies and the ability to adapt an ontology-driven system
to solve specific problems through replacing ontologies with-
out the need to make changes in previously developed source
code for other components of the system[12], [13], [15].

VI. FORMAL MODEL OF A SYSTEM

In this paper we propose the following formal model of the
system described in set-theoretic notation:

Ξ = ⟨Ω,∆, Ob, OF , Oi,Γ,M,E,Λ, OL, S⟩, (2)

where Ω is the operator for generating source code for mediator,
Ω : OD → S;

Λ is the operator for building an ontology of module
connections, Λ : Ob ×OF ×Oi ×D → OL;
OD is the ontological description of the domain area;
Ob is the ontological description of a specific neuroint-
erface;
OF = ∪ki=1Ofi – the set of k ontological descriptions of
modules that implement data transformation;
Oi is an ontological description of the infrastructure,
management of which is assumed to be implemented
(module for controlling this infrastructure);
OL is an ontological description of the links between
modules included in the mediator’s firmware;
∆ is the operator for building an ontology from parts,
∆ : Ob ×OF ×Oi ×OL → OD;
Γ is an interaction operator, Γ : E ×M → D;
M is a set of supported control elements;
E is a set of supported user actions;
D is a user-created formal description of the interconnec-
tion of modules in the form of DFD diagrams in SciVi
toolbox;
S is the source code for the mediator’s software.

Let’s note that Γ, M and E are out of scope of this paper
and are based on reusing results obtained by our colleagues
within the framework of the SciVi platform[12], [13], [15],
[23].

A ∆ operator responsible for building an integrated domain
ontology is described at Alg. 1.

Algorithm 1 ∆ operator
procedure MERGE(Om, Oi)

for all n ∈Nodes(Oi) do
if n ̸∈ Om then

AddNode(Om, n)
end if

end for
for all r ∈Relations(Oi) do

if r ̸∈ Om then
AddRelation(Om, r)

end if
end for

end procedure
OD ← ∅
Merge(OD, Ob)
for all Ofi ∈ OF do

Merge(OD, Ofi)
end for
Merge(OD, Oi)
Merge(OD, OL)

A Λ operator that builds an ontological representation of
connections between modules is described at Alg. 2. It reuses
a Merge function from Alg. 1.

Algorithm 2 Λ operator
Merge(OD, Ob)
for all Ofi ∈ OF do

Merge(OD, Ofi)
end for
Merge(OD, Oi)
OL ← ∅
root out← FindNode(OT ,

′ Output′)
for all block ∈ D do

name← Name(block)
start← FindNode(OT , name)
outputs← GetAdjNodes(OT , {start, root out})
for all dfd out ∈ Outputs(block) do

ont out← outputs[Name(dfd out)]
if ont out ̸∈ L then

AddNode(L, ont out)
end if
for all dfd conn ∈ Connections(dfd out) do

t name← Name(Target(dfd conn))
ont in← FindNode(OT , t name)
if ont in ̸∈ L then

AddNode(L, ont in)
end if
r ← Relation(ont in, ont out,′ use′)
AddRelation(L, r)

end for
end for

end for

VII. BASIC CONCEPTS AND RELATIONSHIPS OF
ONTOLOGICAL DESCRIPTIONS

In order to maintain compatibility with the SciVi system
(in particular, for reusing the operator Γ, which is responsible
for providing users with an easy-to-use interface for building
a formal description of module interaction) in this work we
largely reused a set of basic concepts and types of relationships
that SciVi supports. Such modules and relationship types are
highlighted in italics.

The basic (root) concepts of the ontological model of the
system include:

• Root – root node, required by SciVi for the proper
operation of Γ operator.

• Module – a concept reflecting a specific software module
potentially available for inclusion in the firmware.

• Type – data type.
• Entry – entry point into the module.
• Input – input data of the module.
• Output – output data of the module.
• Array – subtype of ,,array” data introduced to simplify

the implementation of an inference engine.

Relationship types supported by the system:

• is a – inheritance relation.
• has – relation of ownership.

• use – relation of employment. In the context of the
system, it means ,,consumes” in the sense ,,the input
parameter A of procedure P1 consumes the output pa-
rameter B of procedure P2.”

The system allows for the existence of other basic concepts
and types of relationships in ontologies, but does not try to
interpret them. This architectural solution was also dictated
by the desire to maintain compatibility between ontological
descriptions with a representation understood by operator Γ.
However, some relationship types, which are not strictly nec-
essary, were excluded for maintaining readability of ontologies
– for example, the ,,base type” relation used by operator Γ to
display array element type to user during building of formal
description D.

Examples of an ontological description of the module and
link between modules using aforementioned concepts and
relationship types are shown on Fig. 4 and Fig. 5, respectively.
The Test1 module illustrated on Fig. 4 has a ,,test1 process”
entry point and three parameters: a1, a2 (input) and a3
(output). Parameters a1 and a3 have an integer type int,
while parameter a2 – the integer type short. The fragment
of ontological description of link between module parameters
on Fig. 5 reflects the following dependencies: parameter a2
gets its value from a parameter k2, parameter a1 – from k1,
and a3 – from q3.

Fig. 4. Example of ontological description of module

VIII. SYSTEM DEVELOPMENT AND IMPLEMENTATION

Within the framework of current research, a system proto-
type was developed and implemented based on the proposed
approach. The system allows its users to:

Fig. 5. Fragment of ontology describing link between modules

• create a formal description of the relationship between
,,smart mediator” modules employing the user-created
ontological descriptions of these modules, then

• automatically build an overall domain ontology using
merging strategy[12], [13] without performing the ,,align-
ment” procedure, describing the structure of a firmware
for a smart mediator, and finally

• generate code that connects modules into a whole pro-
gram component.

On Fig. 6, the architecture of the developed system is
presented. Green color is used to highlight components im-
plemented within the scope of this research. SciVi platform
here acts as an ontology repository and is used by a user for
creating a formal description of connection modules in the
form of DFD diagram.

Fig. 6. Architecture of the developed system

General user-specialist workflow with system presented on
Fig. 7. First (if necessary), all required program modules are
created and their ontological descriptions are built. Then a
DFD diagram describing connection these modules is created
in SciVi environment. Based on this diagram and ontological
descriptions of modules a general domain ontology is created,
and after that a smart mediator code generator is executed.

System input data are a set of ontological descriptions
of program modules available for inclusion in mediator’s

Fig. 7. System usage

firmware and a formal description of connection these mod-
ules. As a result, the system generates a source code of a
software module in C programming language, which after
compilation and linkage with software modules chosen by user
become a firmware for a ,,smart mediator” with goal to solve
task of integrating a neurointerface into Internet of Things
ecosystem.

Ontological descriptions of program modules are composed
from a set of relations and basic concepts described in section
VII. These ontological descriptions act as input data for the
system, being combined into a whole general domain ontology
that becomes the basis for further mediator’s firmware code
generation.

In addition, these ontological descriptions are used by SciVi
platform to provide user with an interface of constructing
formal description of program module connection.

Ontological descriptions aligned with program modules
code are created (automatically or manually) and placed in
SciVi repository from where they will be loaded during
system’s operation.

The system uses the JSON-based format of ontological
descriptions – ONT. It’s a proprietary format for represent-
ing ontologies supported by ONTOLIS[25], [26] and SciVi
platform. Choosing it ensures interoperability between two
systems.

Formal description of connection of modules is produced
by a user in SciVi platform in form of a data flow diagram.
Example of such description is presented on Fig. 8.

Pipeline presented above was designed for the task of brain
activity analysis for processing recorded data and used in
another work of the author[7].

Fig. 8. DFD diagram example

After formal description is built it is exported from SciVi
platform for further employment. This file uses the proprietary
format based on JSON (JavaScript Object Notation) and
should be integrated with ontological descriptions of mod-
ules mentioned above. This task is performed by a system’s
module that executes that transformation by accepting as
input aforementioned file of proprietary format together with
ontological descriptions of modules. It extracts information
about parameters of modules and their connection, after which
it creates ontology describing dependencies between data of
modules which in turn is the result produced by this module.

The obtained ontology reflecting relations between param-
eters of modules gets combined with ontologies describing
separate modules and general domain ontology is built de-
scribing internal structure of a smart mediator. This ontology
represents different modules to be included into a firmware as
well their data interconnections and in fact represents applied
ontology for the task at hand.

On Fig. 9 example fragment of such ontology is presented.

Fig. 9. Example of domain ontology

This ontology gets transferred to the input of the code
generator. Generator uses information about modules and their
interdependencies extracted from ontology and builds a direct
graph describing modules interconnected by data transfers.
This graph is processed using topological analysis methods
is then transformed such that a following partial order is es-
tablished: vertex Vi describing module Mi precedes vertex Vj

describing module Mj only when there is no path from vertex
Vj to vertex Vi. If for some module pair establishing such an
order is not possible (it means there is a data cycle dependency
between modules) generator stops processing and displays an
error message. In case of a successful transformation generator
proceeds to generate a source code calling modules’ entry
points in the order defined by dependencies graph taking into
account types of parameters and their direction (input / output).

As a final result the system produces a file with a source
code in C language. This file contains instructions which
ensure interaction between ontologically described modules
according to given ontology. Example of such generated code
is provided in Fig. 10. We’d like to point out that while such a
code is by no means can be considered complex by a seasoned
system programmer, for a user with little to no background
in programming writing such a glue can pose a significant
challenge. Automated generation allows us to provide the less
acquaint users with a tools to solve their tasks in a more
efficient way.

f l o a t * e e g b u f f e r ;
i n t c h a n n e l c o u n t ;
i n t s a m p l e c o u n t ;
f l o a t * sample s ;
i n t bands num o ;
f l o a t * bands avg power o ;
f l o a t * b a n d s s t d d e v o ;
i n t c o n c e n t r a t i o n o ;

void e e g s e t t i n g s (f l o a t ** e e g b u f f e r ,
i n t * c h a n n e l c o u n t , i n t *
s a m p l e c o u n t) ;

void med sampling (f l o a t * b u f f e r , i n t
med sample count i , i n t
med channe l coun t i , f l o a t ** sample s) ;

void band powers (f l o a t * eeg samples , i n t
c h a n n e l c o u n t i , i n t s a m p l e c o u n t i ,
i n t * bands num o , f l o a t **
bands avg power o , f l o a t **
b a n d s s t d d e v o) ;

void c o n c p r e d i c t (i n t bands num i ,
f l o a t * b a n d s s t d d e v i , f l o a t *
bands avg power i , i n t *
c o n c e n t r a t i o n o) ;

void e n a b l e l e d (i n t e n a b l e l e d i) ;

e e g s e t t i n g s (& e e g b u f f e r ,
&c h a n n e l c o u n t , &s a m p l e c o u n t) ;

med sampling (e e g b u f f e r , sample coun t ,
c h a n n e l c o u n t , &samples) ;

band powers (samples , c h a n n e l c o u n t ,
sample coun t , &bands num o ,
&bands avg power o , &b a n d s s t d d e v o) ;

c o n c p r e d i c t (bands num o ,
bands s td dev o , bands avg power o ,
&c o n c e n t r a t i o n o) ;

e n a b l e l e d (c o n c e n t r a t i o n o) ;

Fig. 10. Example of generated code

CONCLUSION AND FUTURE WORK

The paper is devoted to the urgent problem of automating
the process of integrating different types of neurointerfaces
into the IoT infrastructure and focuses on the development
of methods and tools for unifying the ways of integrating
neural interfaces with third-party systems on the principles
of adaptability using ontology engineering methods.

The presented concept and formal model of the proposed
solution are characterized by novelty, since a new ontology-
driven method of firmware generation for the so-called ”smart
mediator” is proposed, which plays a major role in integrating
a specific neural interface into arbitrary IoT infrastructure.
The proposed approach makes it possible to reuse third-party
ontological resources (BCI ontology) as a basis for building

new ontologies of neurointerfaces and expands the existing
functionality and ontological resources of the SciVi platform.

The proposed approach has been tested on several real-
world task and has proven its viability, as evidenced by the
existing act on the successful implementation of the developed
tools in the practical activity of the Educational and Scientific
Laboratory of Sociocognitive and Computational Linguistics
of PSU. The certificate of ROSPATENT № 2023612016[27]
on the state registration of the developed software has been
received.

As a direction of further research we aim to concentrate on
improving usability of implemented tools and expanding their
abilities; one such point is introducing a recurring dependency
between program modules of the smart mediator.

ACKNOWLEDGMENT

The authors express their deep gratitude to the Educational
and Scientific Laboratory of Sociocognitive and Computer
Linguistics, Faculty of Philology, Perm State University, for
the provided equipment and support for the research.

REFERENCES

[1] S. Huang and E. Tognoli, “Brainware: Synergizing
software systems and neural inputs,” in Companion
Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE Companion 2014, Hy-
derabad, India: Association for Computing Machinery,
2014, pp. 444–447, ISBN: 9781450327688. DOI: 10 .
1145 / 2591062 . 2591131. [Online]. Available: https : / /
doi.org/10.1145/2591062.2591131.

[2] P. McCullagh, M. Ware, A. McRoberts, et al., “To-
wards standardized user and application interfaces
for the brain computer interface,” in Universal Ac-
cess in Human-Computer Interaction. Users Diver-
sity, C. Stephanidis, Ed., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 573–582, ISBN: 978-3-
642-21663-3.

[3] J. Huggins, C. Guger, E. Aarnoutse, et al., “Work-
shops of the seventh international brain-computer in-
terface meeting: Not getting lost in translation,” Brain-
Computer Interfaces, pp. 1–31, Dec. 2019. DOI: 10 .
1080/2326263X.2019.1697163.

[4] B. Allison, “The i of bcis: Next generation interfaces
for brain–computer interface systems that adapt to in-
dividual users,” in Human-Computer Interaction. Novel
Interaction Methods and Techniques, J. A. Jacko, Ed.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 558–568, ISBN: 978-3-642-02577-8.

[5] I. A. Labutin and S. I. Chuprina, “Kontseptsiya
postroeniya ontologicheski upravlyaemykh neirointer-
feisov,” Russian, Intellektual’nye sistemy v nauke i
tekhnike, pp. 105–111, 2020.

[6] D. Lunev, S. Poletykin, and D. O. Kudryavtsev,
“Brain-computer interfaces: Technology overview and
modern solutions,” Sovremennye innovatsii, sistemy i
tekhnologii - Modern Innovations, Systems and Tech-
nologies, vol. 2, no. 3, pp. 0117–0126, Jul. 2022, ISSN:
2782-2818. DOI: 10.47813/2782-2818-2022-2-3-0117-
0126. [Online]. Available: http://dx.doi.org/10.47813/
2782-2818-2022-2-3-0117-0126.

[7] K. Ryabinin, S. Chuprina, and I. Labutin, “Ontology-
driven toolset for audio-visual stimuli representation in
eeg-based bci research,” in Proceedings of the Interna-
tional Conference on Computer Graphics and Vision
“Graphicon”, CEUR, vol. 31, Keldysh Institute of
Applied Mathematics, 2021, pp. 223–234. DOI: https:
/ /doi .org /10 .20948/graphicon- 2021- 3027- 223- 234.
eprint: http : / / ceur - ws . org / Vol - 3027 / paper21 . pdf.
[Online]. Available: https : / / keldysh . ru / papers / 2021 /
prep vw.asp?pid=9273&lg=e.

[8] T. R. Gruber, “A translation approach to portable on-
tology specifications,” Knowledge Acquisition, vol. 5,
no. 2, pp. 199–220, 1993, ISSN: 1042-8143. DOI: https:
//doi.org/10.1006/knac.1993.1008. [Online]. Available:
https : / / www. sciencedirect . com / science / article / pii /
S1042814383710083.

[9] T. Gavrilova and V. Khoroshevskii, Bazy znanii in-
tellektual’nykh sistem: Uchebnik. Piter, 2000, ISBN:
9785272000712. [Online]. Available: https : / / books .
google.ru/books?id=biiTAAAACAAJ.

[10] S. I. Chuprina, “To adapt data fabric technology to
visual analytics systems development in the field of
digital medicine,” in Proceedings of the 33rd Inter-
national Conference on Computer Graphics and Vi-
sion, ser. GraphiCon-2023, Keldysh Institute of Applied
Mathematics, 2023. DOI: 10 .20948 /graphicon- 2023-
405 - 416. [Online]. Available: http : / / dx . doi . org / 10 .
20948/graphicon-2023-405-416.

[11] S. I. Chuprina, K. V. Ryabinin, D. V. Koznov, and
K. A. Matkin, “Ontology-driven visual analytics soft-
ware development,” Programming and Computer Soft-
ware, vol. 48, no. 3, pp. 208–214, Jun. 2022, ISSN:
1608-3261. [Online]. Available: https://doi.org/10.1134/
S0361768822030033.

[12] S. I. Chuprina, K. V. Ryabinin, D. V. Koznov, and
K. A. Matkin, “Ontologicheski upravlyaemye sredstva
avtomatizatsii razrabotki prilozhenii vizual’noi anali-
tiki,” Programmirovanie, no. 3, pp. 70–77, 2022.

[13] S. I. Chuprina, “Using data fabric architecture to create
personalized visual analytics systems in the field of
digital medicine,” Scientific Visualization, vol. 15(5),
pp. 50–63, 2023. DOI: 10.26583/sv.15.5.05. [Online].
Available: https : / / api . semanticscholar.org /CorpusID:
266356696.

[14] K. Ryabinin, S. Chuprina, and K. Belousov, “Ontology-
driven automation of iot-based human-machine inter-
faces development,” in Computational Science – ICCS
2019, J. M. F. Rodrigues, P. J. S. Cardoso, J. Monteiro,

et al., Eds., Cham: Springer International Publishing,
2019, pp. 110–124, ISBN: 978-3-030-22750-0.

[15] S. I. Chuprina, “Adaptatsiya tekhnologii fabrik dan-
nykh k razrabotke sistem vizual’noi analitiki v oblasti
tsifrovoi meditsiny,” in Trudy 33 Mezhdunarodnoi kon-
ferentsii po komp’yuternoi grafike i mashinnomu zreniyu
”GrafiKon-2023”, Institut problem upravleniya im.
V.A. Trapeznikova RAN, 2023, pp. 405–416. DOI: 10.
20948/graphicon-2023-405-416.

[16] S. J. R. Méndez and J. K. Zao, “Bci ontology: A
context-based sense and actuation model for brain-
computer interactions,” in SSN@ISWC, 2018.

[17] K. Ryabinin and S. Chuprina, “High-level toolset for
comprehensive visual data analysis and model valida-
tion,” Procedia Computer Science, vol. 108, pp. 2090–
2099, Dec. 2017. DOI: 10.1016/j.procs.2017.05.050.

[18] K. Ryabinin, S. Chuprina, and M. Kolesnik, “Cali-
bration and monitoring of iot devices by means of
embedded scientific visualization,” Jan. 2018.

[19] C. Izumigawa, B. Taylor, and J. Sato, “Automated ontol-
ogy generation,” in HCI International 2023 Posters, C.
Stephanidis, M. Antona, S. Ntoa, and G. Salvendy, Eds.,
Cham: Springer Nature Switzerland, 2023, pp. 433–438,
ISBN: 978-3-031-36004-6.

[20] S. Elnagar, V. Y. Yoon, and M. A. Thomas, “An
automatic ontology generation framework with an or-
ganizational perspective,” CoRR, vol. abs/2201.05910,
2022. arXiv: 2201 . 05910. [Online]. Available: https :
//arxiv.org/abs/2201.05910.

[21] N. Sassi, W. Jaziri, and F. Gargouri, “How to evolve
ontology and maintain its coherence - a corrective
operations-based approach.,” Jan. 2009, pp. 384–387.

[22] W. Jaziri, N. Sassi, and F. Gargouri, “Approach and tool
to evolve ontology and maintain its coherence,” IJMSO,
vol. 5, pp. 151–166, May 2010. DOI: 10.1504/IJMSO.
2010.033284.

[23] K. Ryabinin, “Metody i sredstva razrabotki adaptivnykh
mul’tiplatformennykh sistem vizualizatsii nauchnykh
eksperimentov,” Dissertatsiya, IPM im. M.V.Keldysha,
Moskva, 2015, pp. 1–207. eprint: https : / /keldysh . ru /
council/1/2015- ryabinin/diss.pdf. [Online]. Available:
https://library.keldysh.ru/diss.asp?id=2015-ryabinin.

[24] N. Seydoux, K. Drira, N. Hernandez, and T. Monteil,
“Iot-o, a core-domain iot ontology to represent con-
nected devices networks,” in Knowledge Engineering
and Knowledge Management, E. Blomqvist, P. Cian-
carini, F. Poggi, and F. Vitali, Eds., Cham: Springer
International Publishing, 2016, pp. 561–576, ISBN: 978-
3-319-49004-5.

[25] S. Chuprina and D. V. Zinenko, “Ontolis: Adap-
tiruemyi vizual’nyi redaktor ontologii,” Russian, in
Vestnik Permskogo universiteta. Seriya: Matematika.
Mekhanika. Informatika., vol. 3 (22), 2013, pp. 106–
110.

[26] S. Chuprina and O. Nasraoui, “Using ontology-based
adaptable scientific visualization and cognitive graphics

tools to transform traditional information systems into
intelligent systems,” vol. 8, pp. 23–44, Jan. 2016.

[27] I. A. Labutin, “Sistema generatsii programmnogo obe-
specheniya dlya ustroistv interneta veshchei na baze
ontologicheskogo opisaniya infrastruktury,” Russian,
Jan. 17, 2023.

