
This work is licensed under the Creative Commons Attribution License.

LLVM-based overlapped executable code generator

V. Aranov

Institute of applied mathematics and mechanics

SPbSPU

Saint-Petersburg, Russia

vladik@d-inter.ru

A. Terentiev

Institute of applied mathematics and mechanics

SPbSPU

Saint-Petersburg, Russia

alterterrific@gmail.com

Abstract—Overlapped executable code is an attractive artifact

of obfuscation technology not yet widely covered and researched.

Overlapped code and opaque predicates technologies together

allows creation of prominent software obfuscation technologies

featuring both obscure executable code and code protected from

patching due to hard-to-track relations with other code. The

paper provides polynomial algorithm to generate overlapped

executable code using LLVM framework and discuss results of

the generation implementation.

Keywords—obfuscation; LLVM; code transformation; code

generation; reverse engeneering

I. INTRODUCTION

The two main approaches to overcome software piracy
threats are used: administrative one, including legislation
support and organization piracy countermeasures and technical,
which include different kinds DRM, registration keys, software
activation technologies and so on. We are to concentrate our
efforts on the technical aspect of this problem. The need of
obfuscating code transformation in the industry is clear: a lot of
pirated software available in the Internet shows inefficiency of
current technical protection methods and techniques. There is
no need to go far away to find examples. The first KMS
activator for Windows 7 appeared in less than 3 months after
operating system gone alive. For Windows 8.1 the same took
place less than one month: in Oct. 17, 2013, the OS was
published and around Oct. 25 KMS activation solution was
readily available for everybody to download in the Internet [1].
The client activation code for MS Windows starting with
Windows XP uses an asymmetric cryptography, so it is
impossible to generate the valid activation response. However,
the valid KMS server can be bought by a client for local
activation and the code from it was used to create KMS
activator back in 2010 and 2013 years. No need to tell KMS
client and server codes in both products were protected with
anti-debugging techniques and properly obfuscated, but reality
tells us “not enough did”. This is only one story, but with best
“impact factor” which calls us for new code generation
methods for code execution in insecure environment.

Another example is WinRar – a popular data compression
product. Key-code generation algorithm or specifically private
key for registration verification code was never publicly
available, but counterfeit copies of WinRar are still available
despite of all measures taken by Eugene Roshal and his team.
The reason is simple: the code is either patched to ignore key
code check altogether (loosing archive authentication feature),

or public part of registration checking part of the executable
code was replaced with one in keygen [2]. These examples
demonstrate the need for patch-proof code that cannot be easily
modified by either third party or legal customer of the product.
Current obfuscation technologies include mostly virtual
machines, different morphing technologies, garbage code
insertion and code encryption with runtime decryption coupled
with heavy anti-debugging technologies, but every encrypted
code has to be decrypted before execution and therefore can be
patched. In addition, most anti-debugging technologies are well
known; morphing and garbage insertion do not prevent code
modification at all. Obfuscation virtual machines still provide
serious challenges for hackers, but still could be defeated with
enough efforts. So, something completely new should be
invited. Overlapped code is promised to be one of such
solutions.

II. OVERLAPPED CODE

A. Attacker’s model

From now on we are going to use Bruce Schneier
archetypes [3]. Let’s assume Eve as a person with malicious
intension to modify a program developed by Alice. Alice has
transferred to Eve full program consisting of executable
modules, dynamic linking libraries and data files. Eve has full
control over execution environment which means that she can:

 Modify any and every byte of executable program at
any given time.

 Set breakpoint at the any point of Alice application.

 Perform full snapshot of all address space Alice
application is running in.

 Record execution traces.

 Perform backtrack debugging.

 Alice cannot react to Eve actions.

Therefore, Eve is like omnipotent Supreme Being relative
to Alice code. However, no Eve actions except for the first one
break execution logic of Alice code. While modifying the code,
Eve supposes she does not break the logic of other parts of the
code except for that were just modified. However, two
technologies break this assumption: making check sums and
overlapped code.

 Unfortunately, the code check sums are easy to defeat:
many platforms have hardware “Page guard” breakpoints to

This work is licensed under the Creative Commons Attribution License.

assist Eve. “Page guard” breakpoint only triggered when CPU
reads specific memory page, but not when executes. Therefore,
overlapped code is the only valid option.

B. Overlapped code idea

How one can make a patch-proof code in this case? At first,
such task seems to be impossible as soon as Eve has full
control over execution environment with specified capabilities.
However, there is a way showed on Fig. 1.

add al, 0a3h call dword ptr[eax]

mov edx, eax mov eax, 0805d0ffh

89 50 04 a3 ff d0 05 0889 50 04 a3 ff d0 05 08

Fig. 1. Overlapped code with 4 bytes overlapped and 2 bytes shift

Bytes on the Fig. 1 encode two sets of instructions at once:

mov edx,eax

mov ax, 0805d0ffh

and

add al, 0a3h

call dword ptr[eax]

Patching any overlapped byte will implicitly change
meaning of another instruction in other code execution path. If
this code path is not discovered by Eve, yet such code change
may even go unnoticed because the task of discovering all
executing control paths is not solvable for arbitrary case. In
most cases using common tools like IDA, Hex-Rays and
OllyDbg second layer code will not be even discovered using
static code disassembly analysis, which means this approach
not only having unclear way to defeat but also being hard to
detect.

III. OVERLAPPING CODE QUALITY

Before starting overlapping code generation it is important
to define exact goals of such generation, i.e. define a criterion
answering the question: which of two pieces of overlapped
code of the same functionality is better.

Let’s define requirements for such criterion with the
following assumptions: P – is a program of n size generated by
reference LLVM compiler, Q – is a program of m size
generated by overlapped code generator with same
functionality as P, – each byte usage count in
program code, – target quality measure:

 . We assume reference compiler
neither generate overlapped code nor use alignment
skips.

 .

 We do not
want a huge program size. The shorter program code,
the larger .

 The larger
program code, the lower .

 : m = n, xi = N, i = 1... m : WP() ≡ N. The
imaginary program of the exactly same size but with
every byte used exactly in N instructions will have N as
value of criterion.

 The more overlapping bytes in the code, the larger
 .

The task of creation desired criterion is not too complex as
it can be derived from the series of logical assumptions:

 Calculate the average overlap as

∑

 ,

where is the size of the program and is a number
of instructions i-th byte participate into.

 Calculate the specific average overlap over the size of

the code as

∑

⁄ .

 Define the quality function f for programs A, B:

 ()

. This function allows to compare to

programs and B. So when () the program

is considered better than the program B, when

 () the program is considered better than the

program and () means quality of programs

 and B are identical.

 For the regular program P created by the reference code
generator provide by LLVM with 1 byte alignment the

specific average overlap will be

,

considering the fact that xi ≡ 1, where n is the size of the
program P.

 The final formula will take form
(∑

)

 , where n is the size of the program P and m is

the size the program Q.

If we need to prioritize either overlap or generate code size
the suitable generalized criterion will be:

 √ ∑ (
)

where d – is an arbitrary float parameter from ,
where and is a small positive number, means we do
not care about overlapping at all and means we prefer
overlapping over the code size. Further we are going to use
formula (1) with .

In general, the more value, the better result.

This work is licensed under the Creative Commons Attribution License.

IV. GENERATION OF OVERLAPPED CODE

The ROP (Return-oriented programming) [4] technique had
been employed for overlapping code generation task. This
technique uses control over an exploited program to execute an
arbitrary code in vulnerable application. However, we are to
employ this technique for good. ROP defines sequences of
instructions ending with flow control instruction and not
containing flow control instructions as gadgets. It is worth to
mention, any instruction capable of modifying instruction
pointer register can be used as gadget finish instruction.
According to ROP, the gadgets are usually searched in an
application executable code or in dynamically linked libraries.

During ROP attack, Mallory[3] usually overwrites
executing program stack and creates gadgets library. The first
is not important for us and covered by R. Hund [5], but the
latter is the way to go for our purpose. Let’s consider two
major ways to create a gadget library:

 Explicit instruction sequences. Explicit sequences are
widely discovered in standard library functions.
According to Roemer [4], libc library contains more
than 4000 different potential gadgets capable to
implement almost arbitrary algorithm, while the library
size is only 1.3 Mbytes. However, explicit sequences
are not important for us because of not increasing
criterion (1).

 Implicit instruction sequences. These are instruction
sequences we are looking for, since each byte these
instructions consist of will increase (1). There
sequences are obtained through looking for specific
byte (or bytes) in code (for example: 0C3h – ret
instruction) and backward disassembly starting with this
specific byte. One such byte(s) can usually produce
more than one gadget. This approach would provide
even more gadgets than explicit instruction case.
However, one should be accurate with relocation items
addresses. Fig. 2 provides good example of implicit
gadget.

Fig. 2 Implicit gadget example

The main difference from standard ROP is that initially we
do not have any code to create gadgets from, because our
compilation unit is empty. The “Overlapped code generator”
algorithm pseudo code is proposed to get around this problem:

In: 𝑢 𝑐𝑠 = 𝑎𝑟[]𝑜 𝑦𝑡𝑒𝐹𝑢 𝑐𝑡 𝑜

Out: 𝑒𝑤𝐹𝑢 𝑐𝑠 = 𝑎𝑟[]𝑜 𝑦𝑡𝑒𝐹𝑢 𝑐𝑡 𝑜
Algorithm:

𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡=nil

 𝑒𝑤𝐹𝑢 𝑐𝑠[0]= 𝑢 𝑐𝑠[0]

for =1 to do

𝐹 𝑁𝑒𝑤𝐺𝑎 𝑔𝑒𝑡𝑠(𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡, 𝑒𝑤𝐹𝑢 𝑐𝑠[− 1])

 𝑒𝑤𝐹𝑢 𝑐𝑠[]=𝐼 𝑠𝑒𝑟𝑡𝐺𝑎 𝑔𝑒𝑡𝑠(𝑢 𝑐𝑠[],𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡)
end for

,where 𝐹 𝑁𝑒𝑤𝐺𝑎 𝑔𝑒𝑡𝑠 has following pseudo code:

In/Out:

𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡 = 𝑎𝑟𝑟𝑎𝑦 𝑜 𝐺𝑎 𝑔𝑒𝑡s
In:

 = 𝑦𝑡𝑒𝐹𝑢 𝑐𝑡 𝑜
Algorithm:

for = 0 to 𝑠 𝑧𝑒𝑜 () do

 if [] == 𝑟𝑒𝑡 then
 //Add gadgets ending with i

th
 byte

 𝐹 𝐺𝑎 𝑔𝑒𝑡𝑠(, 𝑎 𝐺𝑎 𝑔𝑒𝑡𝐿𝑒 𝑔𝑡ℎ, 𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡)
 end if

end for

Function 𝐹 New𝐺𝑎 𝑔𝑒𝑡𝑠 looks for all bytes with
specific instruction codes (ret in this example) in machine
bytes forming function . If specific byte sequence has been
found all byte sequences ending by this instruction are
disassembled (backward disassembly). Disassembly is
considered being successful if the last byte of disassembled

instruction sequence is byte []. If disassembly successful,
the disassembled instruction sequence is added as a gadget into
𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡.

“Overlapped code generator” works on function-based
level following next steps:

a) For very first function in compilation module the

code generated as usual using a normal LLVM codegenerator,

however no new .CODE section is created for each function to

disable function-level linkage and to enable cross-function

gadgets. For the same purpose alignment bytes are not inserted

between functions.

b) Inside every generated function new gadgets are

discovered and added to 𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡.

c) For every gadget added this way it’s LLVM

representation pattern is being created and added to instruction

list to enable this gadget used as a normal instruction in the

every case suitable.

d) Finally instruction selector priorities are being

manupulated to force instruction selector choose gadget type

instructions over ordinary ones.

The greedy approach is used while inserting gadgets into
newly generated code: if we can insert longer gadgets we
continue adding first suitable instruction into gadgets as much
as possible. Such approach could potentially lead to miss of
longer gadgets, however, experiments does not show big loss
of the criterion (1) value, while avoiding of exhaustive search
is very important. As soon as we can add instructions to match
our gadget no more, we completely remove generated gadget
code replacing it with call or jump to gadget found. The
overview of the algorithm is provided on the Fig. 3.

This work is licensed under the Creative Commons Attribution License.

Fig. 3 The “Overlapped code generator” algorithm overview

Unfortunately, the existing LLVM structure was not
suitable to implement “Overlapped code generator” algorithm.
It order to increase number of gadgets the modification of
LLVM pipeline showed on Fig. 4 have been implemented.
Unfortunately current implementation of LLVM pipeline
modification is not optimal and quite slow.

Additional feedback added for overlapped codegeneratorAdditional feedback added for overlapped codegenerator

Targed definition file
for x86 platform

Targed definition file
for x86 platform

Codegenerator *.inc
files

Codegenerator *.inc
files

LLVM codegeneratorLLVM codegenerator

Updated target
definition tables

Updated target
definition tables

New prioritiesNew priorities

Codegenerator
compiling

Codegenerator
compiling

Code generationCode generationLLVM TableGenLLVM TableGen

Fig. 4 Modification of LLVM pipeline for purpose of overlapped code

generation

Having the aforementioned approach in mind it is possible

to calculate time complexity of the approach. Disassembly of

the size limited sequence takes O(1), the gadget list creation –

O(n). Insertion gadgets into
Having the aforementioned approach in mind it is possible

to calculate time complexity of the approach. Disassembly of
the size limited sequence takes O(1), the gadget list creation –
O(n). Insertion gadgets into the code – O(n

2
). Therefore in the

worst case the total time complexity of all actions performed is
O(n

2
).

V. PRACTICAL IMPLEMENTATION EVALUATION

The proposed approach has been evaluated using LLVM
stress test kit. More than 1000 different programs has been
generated and compiled using the standard LLVM code
generator and the our code generator enhanced with approach
proposed in this paper. The results are shown on Fig. 5. Value
of criterion (1) here is the average value for all sample
programs compiled.

Fig. 5 Dependence of WP(Q) from compilation module size (d = 1)
For d = 1 (Fig. 5) we virtually prefer neither size of the

program nor amount of instruction bytes being overlapped. Fig.
5 demonstrates with such choice of value d, that the quality of
the code produced by the proposed code generator gradually
increase with the increase of the amount of the code being
compiled. This is the expected result because the more LLVM
instruction the proposed code generator has the more probable
is to discover gadget in the code already compiled and more
versatile gadgets discovered are. However the aggressiveness
of gadgets usage is limited by the size of output data
considerations. The exact data is shown in table 1.

Table 1. Dependence of WP(Q) from the compilation module size.

Size Avg. WP(Q) σ Max. WP(Q) Min. WP(Q)

500 1.428 0.0858 2.862 1.214

1000 1.608 0.0317 2.106 1.387

1500 1.735 0.0292 2.247 1.514

2000 1.850 0.0485 2.406 1.610

According to Callberg [6] it is important to mention to

have performance of the obfuscated code measured compared

to clear machine text versions.

To perform such tests each function has been called

100 000 times on Intel Core i7 2600K with thread and process

affinity set and with power management disabled to minimize

measurements fluctuations. Three different algorithms were

tested: sine calculations using Tylor series, iterative factorial

calculation and Fibonacci series (Fig.5).

Fig. 6 Compiled program size reduction

The following marker values were calculated to estimate

performance impact of overlapped code:

, where CPU cycles

required to execute program P and

This work is licensed under the Creative Commons Attribution License.

, where time is seconds

required to execute program P.

The full results are provided in Table 2:

Table 2. Performance of the overlapped code.

Test T(P),sec T(Q),sec

Sine 36.149 36.044 -0.29 +0.07

Factorial 3.334 4.477 +4.2 +4.5

Fibonacci 3.211 3.301 +2.8 +2.7

Table 2 demonstrates the obfuscated code sometimes

executes faster, rather than original code, however such effect

is unreliable. Anyway proposed approach does not impose

large performance drawback. The “optimization” can be

explained through overall program size reduction and

therefore better CPU cache performance.

It is noteworthy to tell that in some cases proposed

approach was able to produce code (Q) better than normal

code produce by compiler (P) not only in terms of criterion (1)

but in terms of the size in bytes too. This result was not

intentionally pursued and appeared as a positive side effect

demonstrated on Fig. 7. Fig. 7 shows the average reduction of

the compiled program size for about 4% is unrelated to the

size of the program being compiled. While the whole

reduction is not large and depends on the actual code, it still

worth to save about 700 bytes for 19Kbytes (roughly

corresponds 1000 LLVM instruction program) of the compiled

code.

Fig. 7 Compiled program size reduction

Unfortunately current algorithm cannot guarantee a

specific instruction to be overlapped, only some probability of

such overlap. Tables 3 and 4 demonstrates the more code we

have in compilation module the more gadgets we would find

and better result we able to produce:

Table 3. Average overlap of the program Q.

Size Avg. A(Q) Max. A(Q) Min. A(Q)

500 1.24 1.31 1.18

1000 1.28 1.41 1.21

1500 1.30 1.41 1.24

2000 1.33 1.49 1.25

VI. FUTURE WORK

The approach proposed by Joshua Mason [7] look like the
most prominent way to improve criterion (1) and make the
better overlapped code. Since we are interested in increase of

criterion (1) we can use Viterbi algorithm [8] to traverse our
collection of gadgets in conjunction with hidden Markov model
to reconstruct most probable sequence of states used in HMM.
Where each function being encoded in Markov model, whose
states consist of unknown parameters (most suitable gadgets or
ordinary glue instructions in our case) and known parameters
(list of gadgets we are already have).

Such approach would allow us to avoid using greedy
approach and has prominent potential to increase quality of
overlapped code.

Usage of proposed approach for compilation of size critical
code for SOCs and microcontrollers is a one of further research
goals and can be further improved.

REFERENCES

[1] Vlad Dudau, Windows 8.1 activation has been bypassed, 2013, URL:
http://www.neowin.net/news/windows-81-can-now-be-activated-with-
kms-workaround-tool (accesses April 11 2014)

[2] Practical Reverse Engineering Tutorial - Cracking Winrar, 2011, URL:
http://www.hackingalert.net/2011/09/practical-reverse-engineering-
tutorial.html (accesses April 12 2014)

[3] Bruce Schneier, Applied cryptography (2nd ed.): protocols, algorithms,
and source code in C, John Wiley & Sons, Inc., New York, NY, 1995

[4] Ryan Roemer , Erik Buchanan , Hovav Shacham , Stefan Savage,
Return-Oriented Programming: Systems, Languages, and Applications,
ACM Transactions on Information and System Security (TISSEC), v.15
n.1, p.1-34, March 2012 .

[5] Ralf Hund , Thorsten Holz , Felix C. Freiling, Return-oriented rootkits:
bypassing kernel code integrity protection mechanisms, Proceedings of
the 18th conference on USENIX security symposium, p.383-398,
August 10-14, 2009, Montreal, Canada.

[6] Christian Collberg, Clark Thomborson, Douglas Low, A Taxonomy of
Obfuscating Transformations, Technical report 148, Department of
Cumputer Science, University of Auckland, July 1997.

[7] Joshua Mason , Sam Small , Fabian Monrose , Greg MacManus, English
shellcode, Proceedings of the 16th ACM conference on Computer and
communications security, November 09-13, 2009, Chicago, Illinois,
USA .

[8] A. J. Viterbi. Error Bounds for Convolutional Codes and an
Asymptotically Optimum Decoding Algorithm. IEEE Transactions on
Information Theory, 13(2):260--269, April 1967

http://www.neowin.net/news/windows-81-can-now-be-activated-with-kms-workaround-tool
http://www.neowin.net/news/windows-81-can-now-be-activated-with-kms-workaround-tool
http://www.hackingalert.net/2011/09/practical-reverse-engineering-tutorial.html
http://www.hackingalert.net/2011/09/practical-reverse-engineering-tutorial.html

