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Abstract—Overlapped executable code is an attractive artifact 

of obfuscation technology not yet widely covered and researched. 

Overlapped code and opaque predicates technologies together 

allows  creation of prominent software obfuscation technologies 

featuring both obscure executable code and code protected from 

patching due to hard-to-track relations with other code. The 

paper provides polynomial algorithm to generate overlapped 

executable code using LLVM framework and discuss results of 

the generation implementation. 
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I.  INTRODUCTION  

The two main approaches to overcome software piracy 
threats are used: administrative one, including legislation 
support and organization piracy countermeasures and technical, 
which include different kinds DRM, registration keys, software 
activation technologies and so on. We are to concentrate our 
efforts on the technical aspect of this problem. The need of 
obfuscating code transformation in the industry is clear: a lot of 
pirated software available in the Internet shows inefficiency of 
current technical protection methods and techniques. There is 
no need to go far away to find examples. The first KMS 
activator for Windows 7 appeared in less than 3 months after 
operating system gone alive. For Windows 8.1 the same took 
place less than one month: in Oct. 17, 2013, the OS was 
published and around Oct. 25 KMS activation solution was 
readily available for everybody to download in the Internet [1]. 
The client activation code for MS Windows starting with 
Windows XP uses an asymmetric cryptography, so it is 
impossible to generate the valid activation response. However, 
the valid KMS server can be bought by a client for local 
activation and the code from it was used to create KMS 
activator back in 2010 and 2013 years. No need to tell KMS 
client and server codes in both products were protected with 
anti-debugging techniques and properly obfuscated, but reality 
tells us “not enough did”. This is only one story, but with best 
“impact factor” which calls us for new code generation 
methods for code execution in insecure environment. 

Another example is WinRar – a popular data compression 
product. Key-code generation algorithm or specifically private 
key for registration verification code was never publicly 
available, but counterfeit copies of WinRar are still available 
despite of all measures taken by Eugene Roshal and his team. 
The reason is simple: the code is either patched to ignore key 
code check altogether (loosing archive authentication feature), 

or public part of registration checking part of the executable 
code was replaced with one in keygen [2]. These examples 
demonstrate the need for patch-proof code that cannot be easily 
modified by either third party or legal customer of the product. 
Current obfuscation technologies include mostly virtual 
machines, different morphing technologies, garbage code 
insertion and code encryption with runtime decryption coupled 
with heavy anti-debugging technologies, but every encrypted 
code has to be decrypted before execution and therefore can be 
patched. In addition, most anti-debugging technologies are well 
known; morphing and garbage insertion do not prevent code 
modification at all. Obfuscation virtual machines still provide 
serious challenges for hackers, but still could be defeated with 
enough efforts. So, something completely new should be 
invited. Overlapped code is promised to be one of such 
solutions. 

II. OVERLAPPED CODE 

A. Attacker’s model 

From now on we are going to use Bruce Schneier 
archetypes [3]. Let’s assume Eve as a person with malicious 
intension to modify a program developed by Alice. Alice has 
transferred to Eve full program consisting of executable 
modules, dynamic linking libraries and data files. Eve has full 
control over execution environment which means that she can: 

 Modify any and every byte of executable program at 
any given time. 

 Set breakpoint at the any point of Alice application. 

 Perform full snapshot of all address space Alice 
application is running in. 

 Record execution traces. 

 Perform backtrack debugging. 

 Alice cannot react to Eve actions. 

Therefore, Eve is like omnipotent Supreme Being relative 
to Alice code. However, no Eve actions except for the first one 
break execution logic of Alice code. While modifying the code, 
Eve supposes she does not break the logic of other parts of the 
code except for that were just modified. However, two 
technologies break this assumption: making check sums and 
overlapped code. 

 Unfortunately, the code check sums are easy to defeat: 
many platforms have hardware “Page guard” breakpoints to 
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assist Eve. “Page guard” breakpoint only triggered when CPU 
reads specific memory page, but not when executes. Therefore, 
overlapped code is the only valid option. 

B. Overlapped code idea 

How one can make a patch-proof code in this case? At first, 
such task seems to be impossible as soon as Eve has full 
control over execution environment with specified capabilities. 
However, there is a way showed on Fig. 1. 

 

add al, 0a3h  call dword ptr[eax]

mov edx, eax mov eax, 0805d0ffh

89        50         04        a3        ff        d0         05        0889        50         04        a3        ff        d0         05        08

 

Fig. 1. Overlapped code with 4 bytes overlapped and 2 bytes shift 

 

Bytes on the Fig. 1 encode two sets of instructions at once: 

mov edx,eax 

mov ax, 0805d0ffh 

and 

add al, 0a3h   

call dword ptr[eax] 

Patching any overlapped byte will implicitly change 
meaning of another instruction in other code execution path. If 
this code path is not discovered by Eve, yet such code change 
may even go unnoticed because the task of discovering all 
executing control paths is not solvable for arbitrary case. In 
most cases using common tools like IDA, Hex-Rays and 
OllyDbg second layer code will not be even discovered using 
static code disassembly analysis, which means this approach 
not only having unclear way to defeat but also being hard to 
detect. 

III. OVERLAPPING CODE QUALITY 

Before starting overlapping code generation it is important 
to define exact goals of such generation, i.e. define a criterion 
answering the question: which of two pieces of overlapped 
code of the same functionality is better. 

Let’s define requirements for such criterion with the 
following assumptions: P – is a program of n size generated by 
reference LLVM compiler, Q – is a program of m size 
generated by overlapped code generator with same 
functionality as P,          – each byte usage count in 
program code,       – target quality measure: 

               . We assume reference compiler 
neither generate overlapped code nor use alignment 
skips.  

                           .  

                             We do not 
want a huge program size. The shorter program code, 
the larger      .  

                             The larger 
program code, the lower      .  

    : m = n, xi = N, i = 1... m : WP( ) ≡ N. The 
imaginary program of the exactly same size but with 
every byte used exactly in N instructions will have N as 
value of criterion. 

 The more overlapping bytes in the code, the larger 
     . 

The task of creation desired criterion is not too complex as 
it can be derived from the series of logical assumptions: 

 Calculate the average overlap as      
 

 
∑   

 
    , 

where   is the size of the program   and    is a number 
of instructions i-th byte participate into. 

 Calculate the  specific average overlap over the size of 

the code as          

∑   
 
   

 
 

⁄ . 

 Define the quality function f for programs A, B: 

 (    )   
        

        
. This function allows to compare to 

programs   and B. So when  (    )    the program   

is considered better than the program B, when 

 (    )    the program   is considered better than the 

program   and  (    )      means quality of programs 

  and B are identical. 

 For the regular program P created by the reference code 
generator provide by LLVM with 1 byte alignment the 

specific average overlap will be          
 

 
, 

considering the fact that xi ≡ 1, where n is the size of the 
program P. 

 The final formula will take form              
(∑   

 
   )  

  , where n is the size of the program P and m is 

the size the program Q. 

If we need to prioritize either overlap or generate code size 
the suitable generalized criterion will be: 

       √  ∑ (  
 ) 

   

  

 

     

where d – is an arbitrary float parameter from         , 
where     and   is a small positive number, means we do 
not care about overlapping at all and      means we prefer 
overlapping over the code size. Further we are going to use 
formula (1) with    . 

In general, the more       value, the better result. 
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IV. GENERATION OF OVERLAPPED CODE 

The ROP (Return-oriented programming) [4] technique had 
been employed for overlapping code generation task. This 
technique uses control over an exploited program to execute an 
arbitrary code in vulnerable application. However, we are to 
employ this technique for good.  ROP defines sequences of 
instructions ending with flow control instruction and not 
containing flow control instructions as gadgets. It is worth to 
mention, any instruction capable of modifying instruction 
pointer register can be used as gadget finish instruction. 
According to ROP, the gadgets are usually searched in an 
application executable code or in dynamically linked libraries. 

During ROP attack, Mallory[3] usually overwrites 
executing program stack and creates gadgets library. The first 
is not important for us and covered by R. Hund [5], but the 
latter is the way to go for our purpose. Let’s consider two 
major ways to create a gadget library: 

 Explicit instruction sequences. Explicit sequences are 
widely discovered in standard library functions. 
According to Roemer [4], libc library contains more 
than 4000 different potential gadgets capable to 
implement almost arbitrary algorithm, while the library 
size is only 1.3 Mbytes. However, explicit sequences 
are not important for us because of not increasing 
criterion (1). 

 Implicit instruction sequences. These are instruction 
sequences we are looking for, since each byte these 
instructions consist of will increase (1). There 
sequences are obtained through looking for specific 
byte (or bytes) in code (for example: 0C3h – ret 
instruction) and backward disassembly starting with this 
specific byte. One such byte(s) can usually produce 
more than one gadget. This approach would provide 
even more gadgets than explicit instruction case. 
However, one should be accurate with relocation items 
addresses. Fig. 2 provides good example of implicit 
gadget. 

 

Fig. 2 Implicit gadget example 

 

The main difference from standard ROP is that initially we 
do not have any code to create gadgets from, because our 
compilation unit is empty. The “Overlapped code generator”  
algorithm pseudo code is proposed to get around this problem: 

In:  𝑢 𝑐𝑠 = 𝑎𝑟[ ]𝑜   𝑦𝑡𝑒𝐹𝑢 𝑐𝑡 𝑜  

Out:  𝑒𝑤𝐹𝑢 𝑐𝑠 = 𝑎𝑟[ ]𝑜   𝑦𝑡𝑒𝐹𝑢 𝑐𝑡 𝑜  
Algorithm: 

𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡=nil 

 𝑒𝑤𝐹𝑢 𝑐𝑠[0]= 𝑢 𝑐𝑠[0] 

for  =1 to   do 

𝐹   𝑁𝑒𝑤𝐺𝑎 𝑔𝑒𝑡𝑠(𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡,  𝑒𝑤𝐹𝑢 𝑐𝑠[  − 1]) 

 𝑒𝑤𝐹𝑢 𝑐𝑠[ ]=𝐼 𝑠𝑒𝑟𝑡𝐺𝑎 𝑔𝑒𝑡𝑠( 𝑢 𝑐𝑠[ ],𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡) 
end for 

,where 𝐹   𝑁𝑒𝑤𝐺𝑎 𝑔𝑒𝑡𝑠 has following pseudo code: 

In/Out: 

𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡 = 𝑎𝑟𝑟𝑎𝑦 𝑜  𝐺𝑎 𝑔𝑒𝑡s 
In: 

  =  𝑦𝑡𝑒𝐹𝑢 𝑐𝑡 𝑜  
Algorithm: 

for   = 0 to 𝑠 𝑧𝑒𝑜 ( ) do 

  if  [ ] == 𝑟𝑒𝑡 then 
   //Add gadgets ending with i

th
 byte 

        𝐹   𝐺𝑎 𝑔𝑒𝑡𝑠( ,  𝑎 𝐺𝑎 𝑔𝑒𝑡𝐿𝑒 𝑔𝑡ℎ, 𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡)  
  end if 

end for 

Function 𝐹   New𝐺𝑎 𝑔𝑒𝑡𝑠 looks for all bytes with 
specific instruction codes (ret in this example) in machine 
bytes forming function  . If specific byte sequence has been 
found all byte sequences ending by this instruction are 
disassembled (backward disassembly). Disassembly is 
considered being successful if the last byte of disassembled 

instruction sequence is byte [ ]. If disassembly successful, 
the disassembled instruction sequence is added as a gadget into 
𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡. 

“Overlapped code generator”  works on function-based 
level following next steps: 

a) For very first function in compilation module the 

code generated as usual using a normal LLVM codegenerator, 

however no new .CODE section is created for each function to 

disable function-level linkage and to enable cross-function 

gadgets. For the same purpose alignment bytes are not inserted 

between functions. 

b) Inside every generated function new gadgets are 

discovered and added to 𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡. 

c) For every gadget added this way it’s LLVM 

representation pattern is being created and added to instruction 

list to enable this gadget used as a normal instruction in the 

every case suitable. 

d) Finally instruction selector priorities are being 

manupulated to force instruction selector choose gadget type 

instructions over ordinary ones. 

The greedy approach is used while inserting gadgets into 
newly generated code: if we can insert longer gadgets we 
continue adding first suitable instruction into gadgets as much 
as possible. Such approach could potentially lead to miss of 
longer gadgets, however, experiments does not show big loss 
of the criterion (1) value, while avoiding of exhaustive search 
is very important. As soon as we can add instructions to match 
our gadget no more, we completely remove generated gadget 
code replacing it with call or jump to gadget found. The 
overview of the algorithm is provided on the Fig. 3. 
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Fig. 3 The “Overlapped code generator”  algorithm overview 

 

Unfortunately, the existing LLVM structure was not 
suitable to implement “Overlapped code generator” algorithm. 
It order to increase number of gadgets the modification of 
LLVM pipeline showed on Fig. 4 have been implemented. 
Unfortunately current implementation of LLVM pipeline 
modification is not optimal and quite slow. 

Additional feedback added for overlapped codegeneratorAdditional feedback added for overlapped codegenerator

Targed definition file 
for x86 platform

Targed definition file 
for x86 platform

Codegenerator *.inc 
files 

Codegenerator *.inc 
files 

LLVM codegeneratorLLVM codegenerator

Updated target 
definition tables

Updated target 
definition tables

New prioritiesNew priorities

Codegenerator 
compiling

Codegenerator 
compiling

Code generationCode generationLLVM TableGenLLVM TableGen

 
Fig. 4 Modification of LLVM pipeline for purpose of overlapped code 

generation 

Having the aforementioned approach in mind it is possible 

to calculate time complexity of the approach. Disassembly of 

the size limited sequence takes O(1), the gadget list creation – 

O(n). Insertion gadgets into 
Having the aforementioned approach in mind it is possible 

to calculate time complexity of the approach. Disassembly of 
the size limited sequence takes O(1), the gadget list creation – 
O(n). Insertion gadgets into the code – O(n

2
). Therefore in the 

worst case the total time complexity of all actions performed is 
O(n

2
). 

V. PRACTICAL IMPLEMENTATION EVALUATION 

The proposed approach has been evaluated using LLVM 
stress test kit. More than 1000 different programs has been 
generated and compiled using the standard LLVM code 
generator and the our code generator enhanced with approach 
proposed in this paper. The results are shown on Fig. 5. Value 
of criterion (1) here is the average value for all sample 
programs compiled. 

 

Fig. 5 Dependence of WP(Q) from compilation module size (d = 1) 
For d = 1 (Fig. 5) we virtually prefer neither size of the 

program nor amount of instruction bytes being overlapped. Fig. 
5 demonstrates with such choice of value d, that the quality of 
the code produced  by the proposed code generator gradually 
increase with the increase of the amount of  the code being 
compiled. This is the expected result because the more LLVM 
instruction the proposed code generator has the more probable  
is to discover gadget in the code already compiled and more 
versatile gadgets discovered are. However the aggressiveness 
of gadgets usage is limited by the size of output data 
considerations.  The exact data is shown in table 1. 

Table 1. Dependence of WP(Q) from the compilation module size.  

Size Avg. WP(Q) σ Max. WP(Q) Min. WP(Q) 

500 1.428 0.0858 2.862 1.214 

1000 1.608 0.0317 2.106 1.387 

1500 1.735 0.0292 2.247 1.514 

2000 1.850 0.0485 2.406 1.610 

 

According to Callberg [6] it is important to mention to 

have performance of the obfuscated code measured compared 

to clear machine text versions. 

To perform such tests each function has been called 

100 000 times on Intel Core i7 2600K with thread and process 

affinity set and with power management disabled to minimize 

measurements fluctuations. Three different algorithms were 

tested: sine calculations using Tylor series, iterative factorial 

calculation and Fibonacci series (Fig.5). 

 
Fig. 6 Compiled program size reduction 

The following marker values were calculated to estimate 

performance impact of overlapped code:  

       
         

    
, where       CPU cycles 

required to execute program P and 
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, where       time is seconds 

required to execute program P. 

The full results are provided in Table 2: 
 

Table 2. Performance of  the overlapped code.  

Test T(P),sec T(Q),sec      
      

     
      

Sine 36.149 36.044 -0.29 +0.07 

Factorial 3.334 4.477 +4.2 +4.5 

Fibonacci 3.211 3.301 +2.8 +2.7 

Table 2 demonstrates the obfuscated code sometimes 

executes faster, rather than original code, however such effect 

is unreliable. Anyway proposed approach does not impose 

large performance drawback. The “optimization” can be 

explained through overall program size reduction  and 

therefore better CPU cache performance. 

It is noteworthy to tell that in some cases proposed 

approach was able to produce code (Q) better than normal 

code produce by compiler (P) not only in terms of criterion (1) 

but in terms of the size in bytes too. This result was not 

intentionally pursued and appeared as a positive side effect 

demonstrated on Fig. 7. Fig. 7 shows the  average reduction of 

the compiled program size for about 4% is unrelated to the 

size of the program being compiled. While the whole 

reduction is not large and depends on the actual code, it still 

worth to save about 700 bytes for 19Kbytes (roughly 

corresponds 1000 LLVM instruction program) of the compiled 

code. 

 
Fig. 7 Compiled program size reduction 

Unfortunately current algorithm cannot guarantee a 

specific instruction to be overlapped, only some probability of 

such overlap. Tables 3 and 4 demonstrates the more code we 

have in compilation module the more gadgets we would find 

and better result we able to produce: 

 
Table 3. Average overlap of the  program Q.  

Size Avg. A(Q) Max. A(Q) Min. A(Q) 

500 1.24 1.31 1.18 

1000 1.28 1.41 1.21 

1500 1.30 1.41 1.24 

2000 1.33 1.49 1.25 

 

VI. FUTURE WORK 

The approach proposed by Joshua Mason [7] look like the 
most prominent way to improve criterion (1) and make the 
better overlapped code. Since we are interested in increase of 

criterion (1) we can use Viterbi algorithm [8] to traverse our 
collection of gadgets in conjunction with hidden Markov model 
to reconstruct most probable sequence of states used in HMM. 
Where each function being encoded in Markov model, whose 
states consist of unknown parameters (most suitable gadgets or 
ordinary glue instructions in our case) and known parameters 
(list of gadgets we are already have). 

Such approach would allow us to avoid using greedy 
approach and has prominent potential to increase quality of 
overlapped code.  

Usage of proposed approach for compilation of size critical 
code for SOCs and microcontrollers is a one of further research 
goals and can be further improved. 
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