
This work is licensed under the Creative Commons Attribution License.

Keyword-Driven Testing

with Message Sequence Charts

Boris Tyutin, Alexey Veselov, Vsevolod Kotlyarov

Saint Petersburg State Polytechnical University, Saint Petersburg, Russia

b.tyutin@ics2.ecd.spbstu.ru, veselov.alexey@gmail.com, vpk@ics2.ecd.spbstu.ru

Abstract — This paper overviews an approach to keyword-driven

testing based on test cases created in Message Sequence Charts

format. Main features and advantages of this idea are discussed.

Last two chapters provide brief overview of current

implementation of testing automation framework based on the

presented approach.

I. INTRODUCTION

Nowadays software development includes a wide range of
techniques and strategies. During the past years they evolved
from heavy and strict methodologies like waterfall life cycle to
agile techniques and iterative approaches. All of them are now
more or less standardized and are used in different areas of
software engineering. The choice of the development model is
driven by the characteristics of the particular projects.

In all kind of development processes we can find phases
that have some particular goal and go one after another. In
iterative approaches it is possible to get back to some of the
previous step if something goes wrong. And testing is a
reasonable approach for checking whether the whole work is
done well.

It is obvious that different types of workflow activities
require different types of testing. Being in a stage of
requirement clarifying we can operate only a model of future
software. At that moment it is impossible to do performance
testing. Moreover, it is not required as the main goal of that
stage is to reveal contradictions and gaps in the specification.
But it is extremely expensive to maintain different testing
processes for one product. It is required not only to integrate
different technologies but also to maintain multiple test suites
and keep them coherent with the requirements. To reduce costs
testing should be scalable and allow applying the same
approach on different life cycle stages.

Another problem of testing is that traditionally it is directed
towards the engineers. Being unavailable for business people,
information about performed checks and probations of
software product becomes less useful for planning or
marketing. And, vice versa, making test results more obvious
for most of the stakeholders of developing process increases
benefits of testing. So it can be used not only for finding bugs
but also to collect and maintain that database of knowledge
about the product. Test-driven development [1] is a good
example of an attempt to achieve this goal.

Among the variety of existing testing approaches keyword-
driven testing (KDT) is one of the most advanced [2]. It aims at
simplifying the test suite development and maintenance and
separates the logic of test procedures from the implementation.
This paper describes an approach for automated testing based
on Message Sequence Charts (MSC) [3] which implements
KDT approach. Main concepts of the latter one are briefly
overviewed and compared with the capabilities of MSC format.
Basing on both concepts a testing approach is developed, and
two main ways of its implementation are described. The article
is concluded with the overview of current results and future
plans.

II. KEYWORD-DRIVEN APPROACH

KDT is a third-generation approach for automated testing
framework design. This means that it allows creating and
executing structured scenarios with data being separated from
control flow. Keyword-driven tests consist of a list of
keywords and their parameters. Each keyword represents a
predefined set of actions performed against the system under
test (SUT). The scenario itself has tabular format, and can be
edited as plain text or with special tools. Fig. 1 represents the
high-level concepts of KDT approach.

Figure 1. Keyword-driven testing.

Test scenario

Testing libraries

Driver A Driver N

SUT

…

Test adaptor

Keyword Test data

Each keyword has clear and unambiguous definition. It can
be implemented in code or written in document. Thereby KDT
can be applied both for automated and manual testing. It is
possible to develop keyword definitions separately from the
tests, and, thus, testing can be divided into two independent
flows – test design and test action specification. The former
one can be done by someone without programming skills.

With KDT test suite becomes more stable. The cost of its
maintenance is reduced because it is not necessary to fix test
scenarios according to the changes in SUT, only keyword
definitions. Test execution is more scalable [4]. Test cases
themselves become easy to modify as they operate high-level
abstractions and can reuse existing keywords. Due to the
absence of low-level details test suite is readable by all
stakeholders.

III. MESSAGE SEQUENCE CHARTS BENEFITS

Message Sequence Charts are quite similar to UML
Sequence Diagrams. Roughly speaking, they represent the
interaction between a set of agents called instances by means of
sending and receiving signals. More information about MSC
can be found in ITU-T specifications [3]. Fig. 2 demonstrates
an MSC for a part of SIP protocol.

Figure 2. MSC for a part of SIP protocol

It is very native to use sequence diagrams to illustrate use-
cases or even provide concrete specification for
communication protocols or data exchange between software
components. Phrase representation of MSC can be
automatically parsed and analyzed. It means that diagrams may
be used as test scenarios. In this context, the idea of signal in
MSC is very close to the concept of keyword.

MSC as a format for keyword-driven tests has particular
advantages. It is human-oriented and can be presented in
graphical view [5]. Due to standardization it is possible to
develop formal algorithms for MSC processing. Their
implementation can rely on third-party tools and libraries.
Some of the existing modeling and developer tools provide
MSC data, which can be used both for documenting and testing
the product.

IV. TECHNOLOGY CONCEPT

Main elements of MSC diagrams are signals, actions and
inline expressions. All of them can be used to implement
keyword-driven testing concepts.

Signal exchange can be interpreted as a series of keywords,
executed one after another. Testing data can be defined in
signal parameters. In context of testing all instances present in
sequence diagram refer to environment or SUT. Thus, signals
sent from environment to SUT describe testing actions, while
signals coming from SUT instances specify the reaction to the
stimulus. In keyword-driven testing there is no difference
between executed commands in scenario. The concept of
sending and receiving signals has to be adopted in a way that
makes tests more readable whilst clear and unambiguous.

Taking this into account we can consider signals sent from
the environment as a pure keyword execution. Signals sent
from SUT also have this meaning but should imply additional
checks that affect the result of the test. In can be the
interpretation of return code, for example. Another approach is
to detect special states and events during testing and store them
somewhere for future processing by means of signals sent from
SUT. For automated keyword testing let’s call it “passive
driver”.

Actions in MSC are used to describe internal events in
instances such as data evaluation, or comments. As an element
of testing scenario action can be used to increase readability of
the test commenting what is happening inside the “black box”.
In manual testing it can give additional instructions of provide
external references to documents. In automated testing actions
can serve as a placeholder for executable code for test
customization. In both cases actions can contain keywords.

Summing up what has been said it is possible to use MSC
for keyword-driven testing and use diagram components to
make tests more readable and vivid. But the role of each
element must be clearly defined to keep scenarios easy to
understand and provide unambiguous way of their creation.

MSC inline expressions allow specifying non-linear control
flow. They describe repetitive actions (loops), optional or
alternative behavior (opt and alt expression). Combined with
condition events (as in Fig. 3), inline expressions can be used
to represent if-else and loop statements in their traditional
meaning. To enhance the conditions and data manipulations,
variables can be declared using MSC text elements and then
used in control flow management and testing data.

Figure 3. Conditional inline expression

Current research concentrates on automated testing rather
than manual. It was mentioned earlier that MSC is standardized
notation so it is possible to automatically produce human-
readable tests based on it. Testing system can automatically run
those tests by leveraging different underlying technologies with
driver libraries. During the current research a testing
automation framework was created according to the ideas
presented above. Main concepts of the framework
implementation are presented below with the information about
current status of the research and plans for future development.

V. AUTOMATED TESTING FRAMEWORK IMPLEMENTATION

Main idea of the architecture corresponds to the concept of
KDT approach. Keywords are extracted from MSC and
processed using driver libraries. But instead of direct
interpretation of commands tests are first translated to the
program in target code. This approach is commonly used in
testing with MSC [6]. Then it is build into executable called
test unit. Its implementation is based on state machine
approach which allows non-linear behavior and automatic
analysis of execution trace. Main components of created
framework are present in Fig. 4.

Figure 4. MSC-based testing automation framework

Each MSC environment instance is executed in separate
thread. This requires introducing two types of variables – local
and shared. Local variables may have different values in
different instance treads. To provide thread-safe access to the
set of shared variables called test context each test unit has
special control module [7]. The latter one is also responsible
for processing conditions for inline expressions with multiple
instances involved. It tells which branch of alt should be used
or whether instances need to execute another iteration of loop.

VI. CONCLUSION

This research is still in progress. Current implementation of
framework include translator from MSC to C, core and driver
libraries, test report generator. Proposed testing approach is
now being approbated in testing of telecommunication
software. Future plans include design and implementation of
passive driver approach and integration with Robot framework
testing libraries.

REFERENCES

[1] K. Beck, Test-Driven Development by Example, Saint Petersburg: Piter,

2003.

[2] Faught, Danny R. Keyword-Driven Testing. Sticky Minds. Software
Quality Engineering. http://www.stickyminds.com/article/keyword-
driven-testing, 2004.

[3] ITU-T Recommendation Z.120: Message sequence chart (MSC).
Geneva, Switzerland, October 1996, https://www.itu.int/rec/T-REC-
Z.120-201102-I/en.

[4] Tiutin B., Veselov A., Kotlyarov V. Scaling of automated test execution
// St. Petersburg State Polytechnical University Journal. № 3 (174).
2013. P. 118-122.

[5] W. Damm, D. Harel. LSCs: Breathing life into message sequence charts.
Formal Methods in System Design, 19(1), 2001.

[6] Hu W., Sun X. Test Case Generation Based on MSC TTCN-3 //
Proceedings of the International Conference on Information Engineering
and Applications (IEA). London: Springer-Verlag, 2013. 888 p.

[7] Kaner C., Bach J., Pettichord B. Lessons Learned in Software Testing: A
Context-Driven Approach. NY: John Wiley & Sons, Inc., 2001. 320 p.

Instance state machines

…

MSC

Testing libraries

Driver A Driver N

SUT

…

Code generator

Core libraries

#1 #N Dispatcher

signal data

