
A generic knowledgebase for test generation

Artem Kotsynyak, Andrei Tatarnikov

Software Engineering Department

Institute for System Programming of the Russian Academy of Sciences (ISPRAS)

Moscow, Russian Federation

Email: {kotsynyak, andrewt}@ispras.ru

Abstract— Nowadays a lot of various test generation tools are

developed and applied to create tests for both software

applications and hardware designs. Taking into account the size

and complexity of modern projects, there is an urgent need for

"smart" tools that would help maximize test coverage and keep

the required effort and time to a minimum. Despite the fact that

each project is unique in some sense, there is a set of common

generation techniques that are applied in a wide range of projects

(random tests, combinatorial tests, tests for corner cases, etc). In

addition, projects belonging to specific domains tend to share

similar test cases or use similar heuristics to generate them. A

natural way to improve the quality of testing is to make the most

of the experience gained working on different projects or

performing testing at different stages of the same project. To

achieve this goal, a knowledgebase holding information relevant

to test generation would be of a great help. This would facilitate

reuse of test cases and generation algorithms and would allow

sharing knowledge of "interesting" situations that can occur in a

system under test. The paper proposes a concept of a

knowledgebase for test generation that can be used in a wide

range of test generation tools. At ISPRAS, it is applied in test

program generation tools that create test programs for

microprocessors. The knowledgebase is designed to store

information on widely used test generation techniques and test

situations that can occur in a microprocessor design under

verification.

Keywords— test generation, testing knowledge, test reuse, test

situations, constraints, knowledgebase.

I. INTRODUCTION

To start with, it should be said that our team works in the
area of hardware verification [1, 2]. Therefore, the main focus
of the research is on generating tests for hardware devices.
However, the concepts described in this paper are not limited
to hardware verification and remain relevant to a wide range of
domains.

Testing accounts for up to 70% of overall project resources.
To reduce the expenses, an effort is made to automate the
testing process. Over the recent couple of decades, approaches
to automated testing have evolved significantly. Still,
increasing complexity of modern projects demands for more
efficient methods. To get the big picture of the state of the art,
let us first consider existing approaches from the most trivial to
the most advanced.

The most straightforward way to automate test generation
for one's project is to write a simple test generator in one of the
popular programming languages. Such generators are usually

targeted at producing random or combinatorial tests. However,
they can also include heuristics that help generate tests for
some "interesting" situations (e.g. boundary conditions). This
approach has the following obvious disadvantages: such tools
are inflexible and the knowledge they include is unsuitable for
reuse as it is usually hardcoded. Moreover, random and
combinatorial tests are not systematic and cannot guarantee a
sufficient level of test coverage.

To cover nontrivial cases that are unreachable by using
random and combinatorial generation, a test generation tool
should be strengthened to be able to create directed tests [3].
Directed tests are usually generated on the basis of test
templates that provide abstract high-level descriptions of
testing problems. Such an approach is called template-based
generation. Test templates use constraints to formulate
conditions of occurrence for situations to be covered. Briefly
speaking, constraints are a set of formulae describing relations
between data (i.e. properties to be held for some events to
fire). One of the advantages of template-based generation is
that it separates test generation logic from the description of
specific test cases, which simplifies test maintenance. More
importantly, this allows constraints to be reused in other tests.
However, the reuse is limited as constraints are described in
terms of the verified system (hardware design or software
application) and are not systematized. The issue is that manual
creation of complex constraints is quite laborious and it might
require a significant effort to adapt them for a different
system. In fact, this could be improved as constraints for
similar verification tasks tend to share common parts.

The next step in the evolution of approaches to test
generation is model-based generation [1, 2, 3]. It implies
separation of knowledge of the verified system's configuration
from knowledge of test generation techniques. The former is
referred to as a model and the latter is often called testing
knowledge [5, 6]. The model can be either created manually or
built automatically on the basis of formal specifications. The
advantage of this approach is that it allows describing test
cases in terms of the model, which results in more abstract
descriptions. In addition, the model often includes coverage
information that can be extracted from formal specifications or
from other sources. In a nutshell, to generate high-quality
tests, two types of knowledge are required: (1) knowledge of
the verified system's configuration to be able to generate valid
tests and (2) knowledge about situations that can occur in the
system to be able to generate tests that would hit all "corners"
of that system. Coverage information can be represented by a
set of constraints describing conditions for various test
situations. In this case, to generate test programs for the target
system, one needs to provide a test template specified in terms

This work is licensed under the Creative Commons Attribution License.

of information exposed by the model and constraints
describing corresponding situations. As it can be noticed, to
provide a good quality of test coverage, it may require creating
a significant amount of test templates describing test cases for
all possible situations. When this job is done manually, it can
be time-consuming and there is a chance to miss some
"interesting" cases especially when the constraints are not
systematized and the coverage model changes as new
knowledge about the system is acquired.

To further automate the process of test program
generation, constraints need to be stored in a systematized
way. In other words, knowledge of "interesting" situations and
knowledge of how to obtain data causing these situations to
fire should be accumulated in a knowledgebase for further use
in the test generation process. Also, it would be highly
desirable to have this information stored in a human-readable
form to simplify its reuse and the maintenance of the
knowledgebase. This leads to an idea of a knowledgebase that
would store testing knowledge including commonly used
constrains, algorithms for solving them, algorithms of random
and combinatorial test data and test sequence generation,
methods of exploring properties of the verified system's
model, etc. Having this knowledge stored in a systematized
way will allow making more intelligent decisions during test
generation. One of the main goals is to reduce the number of
test templates. The use of the knowledgebase would allow
creating some of them in an automated way, therefore
reducing the effort and increasing the coverage quality. Also,
having a centralized store of testing knowledge gives a great
advantage in terms of reuse and sharing experience between
test engineers.

As the project the verification team is working on moves
from the requirement elicitation to the release, more and more
testing knowledge is accumulated. It may come from different
sources such as requirements, specification, expertise, failed
tests, automated analysis, etc. Some of this knowledge can be
presented in an abstract way so that common test cases like
overflows and other could be reused in projects with similar
components. A centralized store helps ensure that each test
engineer has this knowledge in hand and no "interesting"
situation is ignored.

The present paper describes concepts of a knowledgebase
for test generation. The knowledgebase is being developed at
ISPRAS to be used in projects dedicated to hardware
verification [1, 2].

The rest of the paper is organized as follows. Section II
gives an overview of existing works related to testing
knowledge. Section III provides a list of core requirements for
the knowledgebase. Section IV describes the architecture of the
knowledgebase and explains how it can be integrated with test
generation tools. Finally, Section V concludes the paper.

II. RELATED WORK AND MOTIVATION

Methods of efficient test generation have always been a
major subject of research. One of the most important
applications is functional verification of microprocessors where
test program generation and simulation is the most common
approach applied at the system level. Due to enormous
complexity of modern microprocessors and severe time-to-

market pressures, it is quite a challenging task. For this reason
a lot of effort has been invested to maximize automation of this
activity. This resulted in the emergence of a great number of
test generation techniques. Also, a significant amount of
knowledge about bug-prone areas in hardware designs has been
accumulated. An important direction is to systematize the
accumulated knowledge to further automate the test generation
process and reduce its cost by facilitating knowledge reuse.

IBM Research [3, 5, 6] has been one of the main
contributors in the field of test program generation for
microprocessors during the last decades. The first test
generation tools were developed in the middle of 1980s. Test
program generators by IBM Research have evolved over time
from random to directed model-based generation schemes.
Genesys-Pro, one of the most recent tools, uses test templates
that describe test generation problems as constraint satisfaction
problems and uses a generic constraint solver customized for
pseudorandom generation to increase the coverage quality.
Constraints are based on the architectural description captured
by the model and on the testing knowledge representing a set
of methods that help increase the quality of generated test
cases. There are two types of constraints: (1) mandatory
("hard") and (2) non-mandatory ("soft"). Constraints that
originate from architectural description are typically marked as
mandatory. "Soft" constraints help shift the bias of the
generated stimulus to make test cases more "interesting" and
can be ignored if the solver fails to find a solution. Testing
knowledge, as it is described in papers by IBM Research,
represents a collection of architecture-independent constraints
and constraints specific to a given design. Also, it includes a set
of heuristics that use accumulated knowledge of the semantics
of the verified design to shift bias towards specific constraints
to maximize coverage. IBM Research does not reveal details
on how exactly the storage of testing knowledge is organized
and integrated with their tools. However, their testing
knowledge is obviously oriented only towards test program
generation for microprocessors and is likely to be tightly
coupled with their test generation tools. Two important aspects
that were not covered in their papers are: (1) systematization of
constraints and (2) means of combining constraints to describe
complex problems (this particularly applies to constraints of
different types). It is possible to specify probability
distributions between "soft" constraints in a test template.
However, there are reasons to think that no facilities are
provided to do this at the level of testing knowledge.

Another company that has made a significant contribution
in development of test generation tools is Obsidian Software
(now acquired by ARM) [4]. The company specializes in
development of verification and validation software used in the
design of microprocessors. Their test program generation tool
RAVEN (Random Architecture Verification Engine) is able to
generate random and directed tests based on test templates. To
achieve a better coverage, it makes use of coverage grids and
accumulates verification knowledge in a database. Test
templates are focused on the coverage grid and use constraints
that allow RAVEN to intelligently choose random values to
reach specific coverage goals. Unfortunately, documentation
available on the tool does not provide detailed information on
how the mechanism of knowledge accumulation is organized.

The motivation of the present research is to work out the
concepts and to design the architecture of a knowledgebase for
test generation that could be used in a wide range of test
generation tools. It should help systematize various types of
testing knowledge and facilitate its accumulation and reuse.
The paper aims to contribute to the research in the field as the
lack of information on competitors’ solutions makes it difficult
to apply their ideas. The paper summarizes the ideas from
different sources [4, 5, 6], proposes some important
improvements and expresses our vision for organization of a
knowledgebase for test generation.

III. REQUIREMENTS FOR THE KNOWLEDGEBASE

The knowledgebase should maximize the quality of test
coverage and minimize the effort required to create tests. For
this purpose it accumulates knowledge about different test
situations (conditions that make them fire, probabilities of their
occurrence, methods of producing corresponding stimuli, etc.)
This creates a possibility to easily create complex test cases by
combining the accumulated knowledge. If this job is
automated, it will help reduce the number of test cases
described manually, therefore increasing the productivity of the
verification team. Here is the list of the main requirements a
generic knowledgebase for test generation should satisfy to
achieve its goals:

1) The knowledgebase should be able to store and
accumulate testing knowledge of a wide range of types
coming from various sources and having different formats.
This includes sets of test values, commonly used generation
algorithms, constraints, methods of combining them, heuristics
for shifting biases, etc.

2) The stored knowledge should be systematized and
organized into a hierarchy. This will simplify its maintenance
and reuse and will allow extracting common components.

3) It should be possible to easily integrate the
knowledgebase into test generation environments of different
kinds. The client environment should be provided with full
access to the accumulated knowledge. To facilitate it, the
knowledgebase should be implemented as an open-source
project.

4) The knowledgebase should facilitate the transfer of
project-independent knowledge between projects in a similar
domain. This applies to test situations, constraints, data
generators, etc.

IV. ARCHITECTURE

The most important components of the knowledgebase
architecture are the storage engine, selector and resolution
module as shown in Figure 1. Further in this section, they will
be discussed in more detail.

The job of the storage engine is to provide a persistent
storage for any kind of knowledge allowed. The storage engine
can be powered by any database technology. To add new
knowledge or alter existing, users should interact with the
engine via the control interface built on top of it. The interface
provides access to logical representation of the stored

knowledge hiding any details about the underlying database
and data organization along with normalization logic specific
to the knowledgebase implementation.

Knowledgebase

Test Situation Hierarchies

 Data
* Constraints
* Data sets
* Data generators

 Test
* Tests
* Test generators
* Templates

Storage Engine

Selector

Resolution
module

Statistics

Solver Engine

User System

C
o

n
tr

o
l
In

te
rf

a
c
e

Figure 1. Architecture scheme

The main responsibility of the knowledgebase is to store
hierarchies of test situations along with associated knowledge.
Hierarchies of test situations being part of testing knowledge
themselves are used as a tool for organizing the acquired
knowledge. Therefore, it is up to the storage engine to store,
manage and provide access to these structures to the rest of the
knowledgebase modules. Nevertheless, the storage engine
treats knowledge as data and does not implement any
additional logic beyond what is encapsulated in the control
interface.

Basically, a test situation in a hierarchy is a symbolic
representation of an event (or a group of events) that can occur
in the system under test, but the hierarchy itself does not
provide any information about what kind of event it is.
Hierarchies are represented by directed acyclic graphs (DAG)
where nodes specify test situations while arcs denote
refinement relation, i.e. if there is a path from node u to node v
then node v represents a situation that is a special case of the
situation of node u.

There are two types of situation hierarchies: abstract and
concrete. Abstract hierarchies are used to describe
commonalities between projects belonging to the same domain,
while concrete hierarchies specify relations between particular
test cases. Representations of abstract and concrete hierarchies
have several important differences. First, abstract hierarchies
are represented by unweighted DAGs, while weighted DAGs
are used for concrete hierarchies where arc weights denote the
desired probabilities of corresponding events. Second, nodes in
a concrete hierarchy can be associated with additional
knowledge about situations represented by these nodes (e.g.
constraints describing the conditions for corresponding events
to fire).

Figure 2 shows an example of a simple situation hierarchy
that specifies situations from the microprocessor verification
domain. The “add” node denotes situations possible in the

execution flow of an addition instruction and the “overflow”
node denotes any kind of an overflow situation. Also, there is a
refinement for an integer overflow called “int_overflow” and
two explicit terminal situations called “corner” and “zero_sum”
(the former describes a corner case for the integer overflow
situation and the latter specifies the zero-sum situation). It is
shown that the “int_overflow”, “corner” and “zero_sum”
situations are associated with constraints describing data
resulting in corresponding events. Implicit situations for the
normal flow and random values are omitted along with the
probabilities of their occurrence.

add

int_overflow:
(and (x > 0) (y > 0)

 ((int (+ x y)) < 0))

overflow

corner: (x = 1)

zero_sum: (= (+ x y) 0)

Figure 2. Example of a situation hierarchy

Arc weights in a concrete hierarchy describe relative rates
at which specific test situations are to be obtained during test
generation. Therefore, this can be used to control the
generation process since it is allowed to bias probabilities in
order to get behavior varying from fully random to fully
deterministic. Moreover, zero probability effectively removes
test situations from being exploited in test generation and can
be used to disable unimplemented or irrelevant features of the
current system under test.

Associated knowledge in concrete hierarchies may vary
from complete tests to abstract templates. It can be stored in a
database or in plain files. One of our goals is to reuse existing
test generators so it is allowed to use them as associated
knowledge via appropriate adaptors. This knowledge is
primarily used in the test generation process and the querying
system should be able to handle it by itself.

The control interface of the storage engine provides mostly
database editor functionality. Therefore, to handle queries to
the knowledgebase with respect to knowledge semantics, a
specific module called selector has been introduced. The
module “knows” about knowledge organization and uses
probabilities stored within concrete hierarchies to select
specific knowledge. Since every query to the knowledgebase is
passed through the selector, it can trace test situations queried
and produce a statistical report that can be used to adjust
situation probabilities or to perform coverage analysis.

In the simplest cases, the selector just fetches the stored
data and passes it to the querying system. This works for flat
data and tests, but not for generators and constraints. To handle
these correctly, an additional component called the resolution
module has been included. Its initial purpose is to run
generators stored as knowledge or to pass constraints to some
external solver to produce data. The resolution module is
designed to be an extension mechanism that has access to all
internals of the knowledgebase and is allowed to run external

applications. It is used whenever the selector decides that
knowledge requires additional treatment before being sent to
the querying system. Therefore, it can be adjusted in a domain-
specific way to handle much more sophisticated scenarios, e.g.
generate tests on the fly if a test template has been queried.

It should be noted that despite the fact that the
knowledgebase considers test generators and tests as
knowledge it is not a test generation system. Generating tests
using the knowledgebase is straightforward and can be done at
different levels depending on the contained knowledge and its
organization, e.g. in microprocessor verification we can
potentially generate test data for a single instruction, for a
complex test template or generate a final test program using
stored tests and generators. The test generation system queries
the knowledgebase for test situations that correspond to
terminal or non-terminal nodes in the hierarchy. In the latter
case, the selector will use some refinement of the situation
given with respect to probabilities stored within the hierarchy.
Either the selector is able to fetch knowledge by itself, or it
delegates the task to the resolution module, or both of them fail
because the storage engine does not contain knowledge
required or resolution marks the query unsatisfiable. In a
successful scenario, the output is a test or test data and it is up
to the querying system to distinguish between them.

V. CONCLUSION

We have proposed the concept and the architecture of a
generic knowledgebase for test generation. The knowledgebase
can be used in a wide range of test generation tools to
accumulate knowledge related to the system under test. At
ISPRAS, it will be integrated with tools responsible for test
program generation for microprocessors. It facilitates
knowledge reuse and allows making "smart" decisions during
the process of test generation based on the accumulated
knowledge. This helps improve test coverage and simplify test
development.

REFERENCES

[1] A. Kamkin and A. Tatarnikov, MicroTESK: An ADL-Based
Reconfigurable Test Program Generator for Microprocessors,
proceedings of the 6th Spring/Summer Young Researchers’ Colloquium
on Software Engineering (SYRCoSE 2012), 2012, pp. 64-69.

[2] A. Kamkin, T. Sergeeva, A. Tatarnikov and A. Utekhin, MicroTESK:
An Extendable Framework for Test Program Generation, proceedings of
the 7th Spring/Summer Young Researchers’ Colloquium on Software
Engineering (SYRCoSE 2013), 2013, pp. 51-57.

[3] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov and A.
Ziv, Genesys-Pro: Innovations in Test Program Generation for
Functional Processor Verification, IEEE Design & Test of Computers,
2004, pp. 84-93.

[4] http://www.obsidiansoft.com/pdf/Datasheet.pdf

[5] L. Fournier, Y. Arbetman, and M. Levinger, “Functional Verification
Methodology for Microprocessors Using the Genesys Test Program
Generator: Application to the x86 Microprocessors Family,” Proc.
Design Automation and Test in Europe (DATE 99), IEEE CS Press,
1999, pp. 434-441.

[6] R. Emek, I. Jaeger, Y. Katz and Y. Naveh, "Quality Improvement
Methods for System-level Stimuli Generation", Proc. Computer Design:
VLSI in Computers and Processors (ICCD 2004), IEEE CS Press, 2004,
pp. 204-206.

