
Extended Finite State Machine based Test Derivation
Strategies for Telecommunication Protocols

Natalia Kushik
Tomsk State University

Tomsk, Russia
TELECOM SudParis

Evry, France
Email: ngkushik@gmail.com

Anton Kolomeez
Tomsk State University

Tomsk, Russia
Email: anton.kolomeets@gmail.com

Ana R. Cavalli
TELECOM SudParis

Evry, France
Tomsk State University

Tomsk, Russia
Email: ana.cavalli@it-sudparis.eu

Nina Yevtushenko
Tomsk State University

Tomsk, Russia
Email: yevtushenko@sibmail.com

Abstract—In this paper, we consider the problem of test
derivation based on an Extended Finite State Machine (EFSM)
that is widely used for describing the behavior of telecommunica-
tion protocols and software. An EFSM augments a classical Finite
State Machine (FSM) with context variables, input/output param-
eters and predicates. Tests based on various coverage criteria for
EFSMs do not capture many functional faults and thus, there is
a strong need for tests checking functional properties. Moreover,
since there are no constructive necessary and sufficient conditions
for checking whether two arbitrary EFSMs are equivalent, most
methods are based on some kind of a transition tour, despite
of the fact that such methods do not provide test suites with
the guaranteed fault coverage. Given possibly nondeterministic
and partial EFSM, we consider a transition tour of an FSM
obtained by the simulation of the initial EFSM and provide some
experimental results that such a test suite detects a number of
inconsistencies in available protocol implementations with respect
to protocol specifications. Since a transition tour augmented with
state identifiers is known to have the higher fault coverage, we
also discuss how state identifiers can be generated without facing
the state explosion problem. Correspondingly, we consider FSM
slices that are obtained by deleting from the initial EFSM all
the context variables and possibly, input and output parameters.
As the obtained FSM can be nondeterministic, a state identifier
should contain separating sequences for pairs of states and we
adapt the known techniques for deriving separating sequences
for nonobservable partial FSMs.

I. INTRODUCTION

In this paper, we consider the test derivation based on the
model of an Extended Finite State Machine (EFSM) that is
widely used for describing protocols and software, see, for
example, [1], [2]. We underline that tests based on various
EFSM coverage criteria do not capture many functional faults
[3], [4] and thus, there is a strong need for tests derived against
formal behavioral models.

An EFSM augments a classical Finite State Machine (FSM)
[5] with context variables and input and output parameters.

The work has been supported by the project “Goszadanie MinObrNauki
Rossii” and by the RFBR grant No. 14-08-31640 mol a.

This work is licensed under the Creative Commons Attribution License.

Since there are no constructive necessary and sufficient condi-
tions for checking whether two arbitrary EFSMs are equivalent
(as for instance, the bisimulation for classical FSMs), most test
derivation strategies are based on some kind of a transition
tour, despite of the fact that such methods do not provide test
suites with the guaranteed fault coverage. Moreover, differ-
ently from classical FSMs, there is the well known execution
problem for tests derived against EFSMs, according to the
necessity for providing appropriate values for internal context
variables. In order to avoid this problem, many methods for
deriving functional tests use an appropriate EFSM slice with
the FSM behavior. In this paper, we consider three different
EFSM slices. The first one is an FSM that is derived based
on the simulation of a given EFSM [6], [7]. However, in this
case, we meet the well known state explosion problem and the
FSM is usually generated up to the given number of states or
up to the given length of input sequences. A transition tour is
then derived for the obtained FSM and we illustrate that such
test detects a number of inconsistencies in available protocol
implementations [8], [9].

The quality of a transition tour can be improved using
distinguishing sequences [2] for final states/configurations of
traversed transitions. Moreover, in order to minimize a test
suite, each distinguishing sequence should distinguish as much
states/configurations as possible [10]. One way to derive such
distinguishing sequences is to use a corresponding distinguish-
ing EFSM [2] that in fact, is a product of initial EFSMs with
corresponding initial states. However, this approach is well
elaborated only for two configurations and there still is the ex-
ecution problem for an obtained distinguishing sequence, since
not every parameterized input sequence that takes the product
of two initial EFSMs from the initial state to a fail state is
executable. Another way is to distinguish not configurations
but states of the EFSM using context-free slices of an EFSM
that are very close to classical FSMs and correspondingly, there
is no problem to execute a derived distinguishing sequence
[11]. In this paper, we consider two such slices. However,
in this case, a corresponding FSM can be nondeterministic,
i.e., distinguishing sequences become separating sequences.

An input sequence is a separating sequence for a given set
of FSM states if for each two different states of the set, the
sets of output responses of the FSM at these states to the input
sequence do not intersect. As an obtained FSM can be partial
and nonobservable, in this paper, methods proposed in [12],
[13] for deriving separating sequences are adapted to partial
and nonobservable FSMs.

Correspondingly, the main contribution of the paper is a
method for deriving a separating sequence for a set of k states,
k > 1, of a nondeterministic FSM that can be partial and
nonobservable. Experimental results are involved when talking
about another contribution. These results clearly show that the
EFSM slices fit very well for deriving high quality tests and
thus, test derivation strategies could be further improved based
on various EFSM slices. One of directions for future work
includes slicing based on time variables when time constraints
are involved in the EFSM description [14].

The rest of the paper is organized as follows. Section 2
contains some preliminaries for EFSMs, while Section 3 de-
scribes how test suites are generated based on three FSM slices
of the initial EFSM. Experimental results on the transition tour
quality are reported for some telecommunication protocols and
methods for deriving distinguishing/separating sequences for
EFSM states based on EFSM slices are discussed. Section 4
concludes the paper.

II. PRELIMINARIES

EFSM Model
A finite state machine (FSM), or simply a machine throughout
this paper is a 5-tuple S = 〈S, I,O, hS , S′〉, where S is a
finite nonempty set of states with a nonempty subset S′ of
initial states; I and O are finite input and output alphabets;
and hS ⊆ S × I × O × S is a behavior (transition) relation.
If |S′| = 1 then the machine is initialized, otherwise it is non-
initialized (weakly initialized). An FSM is nondeterministic
(NFSM), if for some pair (s, i) ∈ S × I there exist several
pairs (o, s′) ∈ O × S such that (s, i, o, s′) ∈ hS , otherwise
S is deterministic. If for each pair (s, i) ∈ S × I there exists
(o, s′) ∈ O × S such that (s, i, o, s′) ∈ hS then the FSM is
complete, otherwise it is partial. If for each triple (s, i, o) ∈
S × I × O there exists at most one state s′ ∈ S such that
(s, i, o, s′) ∈ hS then the FSM is observable, otherwise it is
nonobsevable. In usual way, the FSM behavior is extended to
input sequences.

Given an FSM S = 〈S, I,O, hS , S′〉, two states s1, s2 ∈ S
are compatible if for each input sequence α ∈ I∗ the sets of
output responses at these states to α coincide, i.e. out(s1, α) =
out(s2, α). Two states are distinguishable if there exists an
input sequence α such that α is a defined input sequence at
both states s1 and s2 and out(s1, α) 6= out(s2, α). The FSM
S is reduced if its states are pair-wise distinguishable. States
s1, s2 of S are separable if there exists an input sequence
α ∈ I∗ such that out(s1, α) ∩ out(s2, α) = ∅; in this case,
α is a separating sequence of states s1 and s2. If there exists
an input sequence α that separates every two distinct states of
the set S′, then α is a separating sequence for the set S′.

An extended finite state machine (EFSM) [2], [6] A is a
pair (S, T) of a set S of states and a set T of transitions
between states, such that each transition t ∈ T is a tuple

(s, i, o, P, vp, op, s
′), where s, s′ ∈ S are the starting and final

states of a transition; i ∈ I is an input with the set Dinp−i
of possible vectors of corresponding input parameter values,
o ∈ O is an output with the set Dout−o of possible vectors of
output parameter values; P , vp, and op are functions, defined
over input parameters and context variables. By definition,
P : Dinp−i×DV −→ {True, False} is a predicate where DV

is the set of context vectors; op : Dinp−i×DV −→ Dout−o is
an output parameter update function; vp : Dinp−i×DV −→
DV is a context update function.

According to [2], we use the following definitions. Given
an input i and a vector p ∈ Dinp−i, the pair (i, p) is called
a parameterized input; if there are no parameters for the
input i then i is a non-parameterized input. A sequence
of parameterized inputs (possibly some of them are non-
parameterized) is called a parameterized input sequence.
A context vector v ∈ DV is called a context of A. A
configuration of A is a pair (s, v). Usually, the initial state
and the initial configuration of the EFSM are given; thus, given
a parameterized input sequence of the EFSM, we can calculate
a corresponding parameterized output sequence by simulating
the behavior of the EFSM under the input sequence starting
from the initial configuration.

An EFSM is consistent if for each transition at state s with
input i, every element in Dinp−i ×DV evaluates exactly one
predicate to true among all predicates guarding the different
transitions with the starting state s and input i; in other words,
the predicates are mutually exclusive and their disjunction
evaluates to true. An EFSM A is completely specified if for
each pair (s, i) ∈ S × I , there exists at least one transition at
state s with the input i. The authors of most papers develop test
derivation strategies for consistent and completely specified
EFSMs. However, such EFSMs are rarely met when building
protocol specifications at high abstraction levels.

The equivalence and distinguishability relations for EFSM
configurations are defined similar to those over FSM states.
Two initialized EFSMs are compatible if their initial config-
urations are compatible. Differently from FSMs, we still lack
necessary and sufficient conditions for establishing whether
even two complete and consistent EFSMs are equivalent. Two
states of an EFSM are separable if there exists a (parame-
terized) input sequence such that at these states the sets of
parameterized output responses of the EFSM to this input
sequence do not intersect (for any values of context variables).
In other words, if two states s and s′ of the EFSM are separable
then each two configurations at these states are separable.

When the specification domain of each context variable and
of each input parameter is finite an EFSM A can be unfolded
to an equivalent FSM, written FSMsim(A), by simulating its
behavior with respect to all possible values of context variables
and input vectors. The equivalence means that the set of traces
of the FSM coincides with the set of parameterized traces of
the EFSM. Given a state s of EFSM A, a context vector v,
an input i and the vector p of input parameters, we derive
the transition from configuration (s, v) under input (i, p)
in the corresponding FSM. We first determine the outgoing
transition (s, i, o, P, vp, op, s

′) from state s where the predicate
P is true for the input vector p and the context vector v,
update the context vector to the vector v′ according to the
assignment vp of this transition, determine the parameterized

output (o, w) and add the transition ((s, v), (i, p), (o, w), (s′,
v′)) to the set of transitions of the FSM FSMsim(A). The
number of states of the obtained FSM equals the number of
different configurations (s, v) of the EFSM that are reachable
from the initial configuration. If an EFSM is consistent and
completely specified, the corresponding FSM is complete and
deterministic. Two EFSMs are equivalent if and only if their
corresponding FSMs are equivalent [7]. When the specification
domain of some context variable and/or some input parameter
is infinite or the number of generated transitions becomes huge,
the EFSM behavior is simulated up to the given number of
transitions or up to the given length of input sequences.

III. DERIVING TEST SUITES FOR DETECTING
FUNCTIONAL FAULTS

A. Transition tour of the slice FSMsim

When a test suite is derived using FSM based methods,
the high quality of the test suite is guaranteed by traversing
each transition of an FSM under test and by distinguishing the
final state of a traversed transition from other states. However,
almost all FSM based methods are developed for complete
deterministic FSMs, while the FSM FSMsim(A) is usually
partial and nondeterministic. Moreover, as discussed above,
sometimes only a part of this FSM can be derived due to the
well known transition explosion problem. In order to avoid this
problem the maximal number of states of the FSMsim(A) is
limited by some integer B or the length of input sequences
used for the simulation is limited by some integer l. In the
former case, all the states corresponding to configurations (s,
v) with the numbers that are greater than B are marked by a
special state DNC (DON ′T CARE state) where the self-
loops labeled with all input/output pairs can be added. Two
ways are then appropriate when deriving a test suite for the
obtained FSMsim(A).

1) Transitions with the DNC state are deleted from the
FSMsim(A) and a test suite is derived for a partial
FSM [15].

2) A test suite is derived for a completely specified FSM
FSMsim(A) and then the test suite is ’refined’ by
deleting all suffixes of test sequences that lead to the
DNC state.

When performing experiments with telecommunication
protocols, we tried the first approach and derived a transition
tour that is known to detect all output faults at all traversed
transition. It is also known that such a test suite does not
detect all transfer, predicate and assignment faults and in order
to report the quality of such test suites we use experimental
results with available implementations of some telecommuni-
cation protocols.

The protocol IRC [8], [16] we have experimented with is
used for organizing the real time message exchange between
internet nodes. The EFSM specification is partial and non-
deterministic according to several reply options to the same
query.

The behavior of the FSM FSMsim(A) is included into
the behavior of the initial EFSM that is derived using the
RFC specification. For this protocol, an FSM that covers all
configurations cannot be derived, since specification domains

of the context variables are infinite. When completing the
connection a client sends the message QUIT , i.e., the message
QUIT takes any IRC implementation to the initial state. The
EFSM A that has been extracted from the RFC specification
[16] is an initialized EFSM that has four states, 47 transitions,
12 inputs, 25 outputs, 6 context variables and 17 input and
output parameters. After limiting the number of states by
B = 9 and deriving the FSM FSMsim(IRC) with 34 inputs,
a test suite has been derived as a transition tour of the obtained
FSM [8]. This test contains 265 input sequences with the total
length of 1164 inputs counting QUIT input as the reset. The
test was downloaded into the data base of the software Tester
[17] for testing a free available implementation ngIRCd (ver-
sion 16) that is widely used as a server IRC implementation.
The software ngIRCd was downloaded from the developer
web site and was compiled by A. Shabaldin using the utility
− − strict − rfc. Three inconsistencies have been detected
by the test. First, there was a wrong reply code to the NICK
command with the empty parameter. Another inconsistency
occurred due to the incorrect server use of the Nickname
that is already occupied, while the third inconsistency was
related to the wrong reply to the MODE command that is
used without the Nickname but with the parameter for setting
a communicating mode.

TFTP [9] is a simple file transfer protocol that is used for
reading and writing files from/to a remote server. It is generally
used to move files between machines of different networks
implementing User Datagram protocol and the simplicity of
the protocol makes it very popular. Following the RFC spec-
ification [18] a special EFSM with four states, 11 transitions
and a single context variable that represents a timer, i.e., a
clock variable [9], has been derived. Since a context variable
is a clock variable, a method presented in [19] has been used
for simulating such extended machine in order to obtain an
equivalent FSM where for the sake of simplicity, only the
part that is responsible for getting files from the server has
been modelled. A test suite was derived as a transition tour
of the obtained FSM. Experiments with two implementations
supporting TFTP, namely, class TFTPServer defined in the
commons − net − 2.0.0 library developed by Apache and
atftpd Linux server developed by Jean-Pierre Lefebvre are
reported in [9]. Some mismatching has been detected between
these implementations and the protocol specification. In the
TFTPServer an acknowledgement with the unsent packet
number has been ignored while the atfdp inplementation
replies to acknowledgements incrementing their numbers that
does not match the protocol specification.

POP3 [20] is the Post Office Protocol of the third version
that is used at the application-layer by local e-mail clients to
retrieve messages from the server. Different webmail service
providers like Gmail or Y ahoo support this protocol and thus,
corresponding implementations should be thoroughly tested.
Following the RFC1939 specification an EFSM E describing
the behavior of the POP3 protocol [21] with four states
and two context variables has been derived. The EFSM was
then unfolded to an equivalent FSM with six states and 106
transitions [22]. Similar to previous cases, a test suite has
been derived as a transition tour. The test suite has detected
an inconsistency in the POP3 implementation tpop3d− 1.5.5
that is related to the incorrect processing of the double use of
DELE command for the same message.

Some experiments were performed with other protocols
described as EFSMs where a test suite has been derived as a
transition tour of a corresponding unfolded FSM. Experimental
results show that the fault coverage for such test suites is
around 100% for output faults and approximately 60% for
other faults such as transfer, predicate and/or assignment faults
as they are defined in [6]. In order to enhance the fault coverage
the authors of different papers (see, for example [2]) propose
to add distinguishing sequences for the final configurations
of each traversed transition and according to the results on
FSM based test derivation [10], in order to minimize the length
of a resulting test suite, each distinguishing sequence should
distinguish as much states as possible. However, in order to
escape the state explosion and the execution problems we
propose to distinguish not configurations but states of the initial
EFSM using corresponding context-free slices. Since such
slices usually have the nondeterministic behavior, distinguish-
ing sequences become separating sequences and as obtained
nondeterministic slices can be partial and nonobservable, the
existing methods for deriving separating sequences [13], [12]
have to be adapted to this class of nondeterministic FSMs.

B. Context-free EFSM slice

Here we consider a slice Slicecontext−free(A) of an EFSM
A that does not have context variables. We follow the approach
in [11], but a proposed technique allows to derive such a
slice preserving more transitions of the initial EFSM [3]. The
idea behind the approach is to delete transitions from the
initial EFSM which have predicates that significanty depend on
values of context variables. However, some of such transitions
can be preserved using the following property. For example, if
P is the disjunction of predicates P1 and P2, and P1 does not
significantly depend on the values of context variables then a
transition with the predicate P will be fired for appropriate
values of input parameters where P1 is true, i.e., a transition
with the predicate P can be replaced by the same transition
with the predicate P1. In general case, such replacing is valid
if the predicate P can be represented as a function of P1 and
P2, P = f(P1, P2), where P1 does not significantly depend
on context variables, and f(1, 0) = f(1, 1) = 1. At the next
step, all the context variables and functions for updating these
variables are deleted from the obtained EFSM.

As an example, consider P = a1a2 ∨ v1v2, P1 = a1a2,
P2 = v1v2, where a1 and a2 are Boolean input parameters
while v1 and v2 are Boolean context variables. In this case,
in the FSM slice a transition (s, i, o, P , vp, op, s′) can be
replaced by a transition (s, i, o, P1, s′) and correspondingly,
only input (external) parameters have to be set for traversing
the transition.

By construction, the Slicecontext−free(A) has no context
variables, i.e., has an FSM behavior. Nevertheless, this slice
has input parameters, i.e., parameterized inputs should be
considered when deriving a test suite. Correspondingly, using
a context-free slice two configurations (s, v) and (s′, v′) of the
initial EFSM can be distinguished using FSM based methods if
states s and s′ are distinguishable in the Slicecontext−free(A).
The Slicecontext−free(A) can have predicates which depend
on input parameters and this should be taken into account when
deriving a distinguishing sequence. As usual, for deriving a

distinguishing sequence for two states we consider a corre-
sponding successor tree (or a product) [5] but this construction
is augmented with checking conditions for predicate satisfia-
bility and determining a corresponding satisfying assignment
[3]. To the best of our knowledge, there is no general method
how to solve the problem for an arbitrary predicate but for
most protocols such predicates are described using Boolean
functions or systems of linear comparisons over integers or
rational numbers. If all the predicates are Boolean functions
then the satisfiability problem is reduced to the well known
SAT problem and there are efficient algorithms for its solving,
see, for example [23], [24]. If predicates are represented as
linear expressions then there are methods how to solve a
corresponding system of linear comparisons [25]. According
to performed experiments with some protocols [3], a test
suite augmented with distinguishing sequences derived using
Slicecontext−free(A) additionally detects a number of single
and double transfer, predicate and assigment faults in protocol
implementations.

C. Using separating sequences of the underlying FSM slice

Similar to the context-free slice, another FSM slice of the
initial EFSM can be derived. Given an EFSM A, we derive
an FSM FSM(A) by deleting all context variables, input
and output parameters, predicates, and update functions, i.e.,
each transition becomes a classical FSM transition containing
starting and final states and an input/output pair i/o. By con-
struction, the FSM(A) can be nondeterministic, partial and
nonobservable. Similar to the previous cases, a test suite can
be derived based on a transition tour of FSMsim(A) (Section
3.1) augmented with separating sequences for each pair of
different states of the FSM(A) for which such a separating
sequence exists. In order to minimize a test suite separating
sequences which distinguish subsets of states of FSM(A) are
used. For this purpose, we adapt the algorithm proposed in
[12] for separating two complete observable initialized FSMs
for separating a subset S′ of states of a possibly nonobservable
FSM. We first propose a corresponding procedure for complete
nonobservable machines and then discuss how it can be used
when deriving separating sequences for partial nonobservable
FSMs.

When deriving a separating sequence for FSMs we are
interested in pairs of FSM states. A pair of states is an
unordered state pattern of length two denoted as sp, sq with
sq, sq ∈ S; if sp = sq then the pair is a singleton
sp, sp. Given an input/output pair i/o and a state sp, the set
next state(sp) = {s ∈ S|(sp, i, o, s) ∈ hS} is called an i/o-
successor of state sp. Given an input/output pair i/o and a pair
sp, sq , the i/o-successor of sp, sq is the set of different pairs of
i/o-successors of states sp and sq (if such successors exist for
both states sp and sq). In other words, the pair s′p, s′q belongs
to the i/o-successor of the pair sp, sq if (sp, i, o, s′p) ∈ hS and
(sq, i, o, s

′
q) ∈ hS . The i/o-successor of the pair can contain a

singleton sk, sk if sk is included into the i/o-successor of both
states sp and sq . Given an input i, the i-successor of sp, sq is
the union of the i/o-successors of sp, sq for all possible outputs
o ∈ O. The i-successor is empty if for each o ∈ O the pair
sp, sq has no i/o-successor.

Procedure 1 for deriving a shortest separating sequence
for a subset S′, |S′| ≥ 2, of a possibly nonobservable FSM

Input: FSM S that can be nonobservable and a subset S′ ⊆
S, |S′| ≥2

Output: A shortest separating sequence for S or the
message “There is no separating sequence for the subset S′”

Derive a truncated successor tree for the FSM S. The root
of the tree is labeled with the set of the pairs sp, sq , sp, sq ∈ S′,
p < q; the nodes of the tree are labeled by sets of pairs of the
set S. Edges of the tree are labeled by inputs and there exists
an edge labeled by i from a node P at level j, j ≥ 0, to a node
Q if Q is the union of the i-successors over all pairs of P .
The set Q contains a singleton if i/o-successors of some pair
of P coincide for some o ∈ O. If the union of i-successors of
pairs from P is empty then the set Q is empty.

Given a node P at the level k, k > 0, the node is terminal
if one of the following conditions holds.
Rule-1: P is the empty set.
Rule-2: P contains a set R that labels a node at a level j,
j < k.
Rule-3: P contains a singleton.

If the successor tree has no nodes labeled with the empty
set, i.e., is not truncated using Rule-1 then
Return the message ”There is no separating sequence for a
subset S′”.
Otherwise,

Determine a path with minimal length to a node labeled
with the empty set;

Return separating sequence as the input sequence α that
labels the selected path.
End

Theorem 1. Given a subset S′ of states of an FSM S, the
set S′ has a separating sequence if and only if a truncated
successor tree returned by Procedure 1 contains a node labeled
by the empty set. Moreover, if all the branches of the tree
are truncated by applying Rules 2 and/or 3 then a separating
sequence for the set S′ does not exist.

Proof: Let an input sequence α = i1i2 . . . in label a path
to a node with a set P 6= ∅ of pairs of states. If |α| = n
then α traverses non-terminal nodes labeled with the sets P1,
P2, . . . , Pn−1. The set P0 = S′ and the set Pn = P . By
construction, the set Pl+1 contains pairs of states for which
∃ol ∈ O such that all pairs from Pl+1 are il/ol-successors of
pairs of Pl, l ∈ {1, . . . , n − 1}. Therefore, a pair sp, sq ∈ P
if and only if there exists an output sequence β = o1o2 . . . on
such that sp and sq are α/β-successors of two different states
of S′. Correspondingly, a singleton sp, sp ∈ P if and only if
sp is the α/β-successor of two different states in S′.

The set P has all pairs that are α-successors of two
different initial states and α is a separating sequence when
P = ∅. Thus, a sequence α that labels a path of the truncated
successor tree is a separating sequence for the set S′ if and
only if this path is terminated by the node labeled by the
empty set. On the other hand, by definition, a sequence α
that labels a path to a node truncated by Rule-3 cannot be a
prefix of a separating sequence of the set S′. Moreover, Rule-
2 allows to truncate unpromising tree branches. In fact, let α
be a separating sequence for S′ that traverses a k-level node

labeled by a set P , and the successor tree has a j-level node
labeled by a set R, such that R ⊆ P and j < k. In this case,
there exists a separating sequence for the set S′ with the length
less than |α|. Thus, if there exists a separating sequence for
the set S′ then each shortest separating sequence labels a path
in the truncated successor tree returned by Procedure 1.

Proposition 2. Given a subset S′, |S′| = m, of states of
the FSM S with n states, the length of a shortest separating
sequence for S′ is at most 2(

n
2) − 2(

n
2)−(

m
2).

Proof: Similar to [26], the length of a separating sequence
for an FSM with n states and m initial states is bounded by
the number of sets of state pairs that do not include pairs of
initial states (Rule-2). The number of all sets of state pairs
which are not singletons equals 2(

n
2) while the number of sets

of state pairs including pairs of initial states equals 2(
n
2)−(

m
2).

Despite of the fact, that the above upper bound is reachable
[12], the performed experiments with ranfomly generated
FSMs show that usually the length of a separating sequence
for two states of an FSM (if such a sequence exists) is
much shorter. Thus, the above approach might be useful when
enhancing the fault coverage of an EFSM based test suite.

Deriving separating sequences for partial FSMs. Given
an EFSM, the underlying FSM usually is not only nondeter-
ministic and nonobservable but also partial. In order to adapt
the above procedure to partial FSMs, the interpretation of the
undefined transitions should be considered [27]. One of the
widely used interpretations of an undefined transition is the
augmentation of this transition by a loop labeled with a special
output IGNORE or NULL. In this case, it is assumed that
all undefined transitions will be augmented in the same way
in any protocol implementation. In the second interpretation
of an undefined transition, the transition is considered as a
DON ′T CARE transition, i.e., this transition can be imple-
mented as a transition to every state with every output. In this
case, the transition can be implemented in an arbitrary way
and at the first step of Procedure 1 (truncated tree derivation)
given a pair sp, sq such that a transition under input i is defined
only at state sp as a transition to state s′p, it is taken into
account by adding all possible pairs s′p, s′q, s

′
p, s
′
q ∈ S as i/o-

successors of the pair sp, sq . However, it can happen that the
input i cannot be applied at state sq and correspondingly,
the DON ′T CARE interpretation of this transition is not
possible. For example, this can happen when considering a
partial or a modular design when inputs of a given EFSM are
outputs of another machine [28], [29]. In this case, the only
solution is to consider inputs which are defined at each state of
each pair of the set that labels a current node of the successor
tree derived by Procedure 1.

As an example, consider an FSM represented in Fig. 1
where the set S′ = {1, 2, 3}.

In the case, when undefined transitions are interpreted
as forbidden actions, the FSM in Fig. 1 has no separating
sequence. In fact, at state 3, a transition under input i1 is not
defined while at state 2 there are no transitions under input
i2. On the other hand, when interpreting undefined transitions
as loops with the NULL output Procedure 1 can be applied.

Fig. 1. A nonobservable partial FSM

By direct inspection, one can assure that for this NFSM the
Procedure returns the shortest separating sequence of length
two and this sequence is α = i1i2.

Therefore, separating sequences returned by Procedure 1
can be used for increasing the fault coverage of a transition tour
of different EFSM slices. Additional experimental research is
needed in order to estimate the fault coverage of transition
tours appended with corresponding separating sequences.

IV. CONCLUSION

In this paper, we have focused on some techniques for
deriving functional tests based on the EFSM model. The
main idea behind the described techniques is to traverse an
appropriate set of transitions; this set can be derived as a
set of transitions of an FSM obtained by the simulation
the EFSM behavior. Experimental results of testing protocol
implementations clearly show that the fault coverage of such
tests is rather high. In order to enhance the fault coverage,
an initial test suite traversing an appropriate set of transitions
can be augmented with distinguishing sequences for final
states of traversed transitions and we have proposed how such
distinguishing sequences can be derived using two FSM slices
of the initial EFSM. When deriving distinguishing sequences
for FSM slices, we have adapted the known methods for
separating states of an observable nondeterministic FSM to
FSMs which can be partial and nonobservable.

REFERENCES

[1] H. Konig, Protocol Engineering. Springer, 2012.
[2] A. Petrenko, S. Boroday, and R. Groz, “Confirming configurations in

EFSM testing,” IEEE Trans. Software Eng., vol. 30, no. 1, 2004.
[3] A. Kolomeez, “Algoritmy sinteza proveryayushhikh testov dlya

upravlyayushhikh sistem na osnove rasshirennykh avtomatov (in
Russian),” Ph.D. dissertation, 2010.

[4] S. Nica, “On the use of constraints in program mutations and its
applicability to testing,” Ph.D. dissertation, 2013.

[5] A. Gill, “State-identification experiments in finite automata,” Informa-
tion and Control, pp. 132–154, 1961.

[6] K. El-Fakih, S. Prokopenko, N. Yevtushenko, and G. von Bochmann,
“Fault diagnosis in extended finite state machines,” in Proceedings of
the TestCom, 2003, pp. 197–210.

[7] A. Faro and A. Petrenko, “Sequence generation from EFSMs for
protocol testing,” in Proceedings of the COMNET, Budapest, 1990, pp.
17–26.

[8] M. Zhigulin, A. Kolomeets, N. Kushik, and A. Shabaldin, “Testirovanie
programmnoj realizatsii protokola irc na osnove modeli rasshirennogo
avtomata (in Russian),” Vestnik Tomskogo politekhnicheskogo univer-
siteta. Upravlenie, vychislitel’naya tekhnika i informatika, pp. 81–84,
2011.

[9] M. Zhigulin, S. Prokopenko, and M. Forostyanova, “Detecting faults
in TFTP implementations using finite state machines with timeouts,” in
Proceedings of the SYRCoSE, 2012, pp. 115–118.

[10] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yevtushenko,
“FSM-based conformance testing methods: A survey annotated with
experimental evaluation,” Information & Software Technology, vol. 52,
no. 12, pp. 1286–1297, 2010.

[11] K. El-Fakih, A. Kolomeez, S. Prokopenko, and N. Yevtushenko, “Ex-
tended finite state machine based test derivation driving by user defined
faults,” in Proceedings of the ICST, 2008, pp. 308–317.

[12] N. Spitsyna, K. El-Fakih, and N. Yevtushenko, “Studying the separabil-
ity relation between finite state machines,” Softw. Test., Verif. Reliab.,
vol. 17, no. 4, pp. 227–241, 2007.

[13] M. Gromov, N. Kushik, and N. Yevtushenko, “Razlichayushhie
ehksperimenty s neinitsial’nymi nedeterminirovannymi avtomatami (in
Russian),” Vestnik Tomskogo gosudarstvennogo universiteta. Upravle-
nie, vychislitel’naya tekhnika i informatika, no. 4, pp. 93–101, 2011.

[14] M. G. Merayo, M. Nunez, and I. Rodrguez, “Formal testing from timed
finite state machines,” Computer Networks, vol. 52, no. 2, 2008.

[15] A. Petrenko and N. Yevtushenko, “Testing from partial deterministic
FSM specifications,” IEEE Trans. on Computers, vol. 54, no. 9, pp.
1154–1165, 2005.

[16] RFC2812, “Internet relay chat: Client protocol,” 2000.
[17] A. Shabaldin, “Constructing a tester for checking student protocol

implementations,” in Proceedings of the SYRCoSE, 2007, pp. 23–29.
[18] RFC1350, “The TFTP protocol,” 1992.
[19] M. Zhigulin, N. Yevtushenko, S. Maag, and A. R. Cavalli, “FSM-based

test derivation strategies for systems with time-outs,” 2011, pp. 141–
149.

[20] RFC1939, “Post office protocol - version 3,” 1996.
[21] U. Mihailov, “Razrabotka metoda sinteza proveryayushhikh testov dlya

rasshirennykh avtomatov na osnove srezov (in Russian),” Master’s
thesis, 2008.

[22] A. Nikitin and N. Kushik, “On EFSM-based test derivation strategies,”
2010, pp. 116–119.

[23] J.-H. R. Jiang, C.-C. Lee, A. Mishchenko, and C.-Y. R. Huang, “To
SAT or not to SAT: Scalable exploration of functional dependency,”
IEEE Trans. Computers, vol. 54, no. 9, pp. 457–467, 2010.

[24] K. L. McMillan, “Interpolation and SAT-based model checking,” in
Proceedings of the CAV, 2003, pp. 1–13.

[25] A. Solodovnikov, Systems of Linear Inequalities. Popular Lectures in
Mathematics, 1980.

[26] N. Kushik and N. Yevtushenko, “On the length of homing sequences
for nondeterministic finite state machines,” in Proceedings of the CIAA,
2013, pp. 220–231.

[27] D. Lee and M. Yannakakis, “Testing finite-state machines: State iden-
tification and verification,” IEEE Transactions on Computers, vol. 43,
no. 3, 1994.

[28] J. Kim and M. Newborn, “The simplification of sequential machines
with input restrictions,” IEEE Transactions on Computers, vol. 21,
no. 12, 1972.

[29] A. Petrenko, N. Yevtushenko, and R. Dssouli, “Testing strategies for
communicating FSMs,” in Proceedings of the IFIP Seventh Interna-
tional Workshop on Protocol Test Systems, 1994, pp. 193–208.

