
Checking Conformance of High-Level Business
Process Models to Event Logs

Antonina K. Begicheva
National Research University

Higher School of Economics (HSE)
33 Kirpichnaya Str., Moscow, Russia

Email: be-ton@yandex.ru

Irina A. Lomazova
National Research University

Higher School of Economics (HSE)
33 Kirpichnaya Str., Moscow, Russia

Email: ilomazova@hse.ru

I. INTRODUCTION

Process mining [1] is a new technology, which provids
variety of methods to discover, monitor and improve real pro-
cesses by extracting knowledge from event logs. The two most
prominent process mining tasks are: (i) process discovery:
constructing a process model from example behavior recorded
in an event log, and (ii) conformance checking: diagnosing
and quantifying discrepancies between observed behavior and
modeled behavior. There are many software products which
allow us to use methods of Process Mining. ProM [4] is
an open-source tool supporting many techniques of Process
Mining, which are represented as plug-ins. Due to a flexibility
of this environment it can be used both for reserch and
applications.

This paper studies conformance checking [1], [3], [6], [7].
Conformance checking uses both an event log and a model,
and compares observed behavior written in the log with the
behavior produced by the model. The general goal is to find
discrepancies between them to improve a model. Conformance
checking techniques can also be used for measuring the
performance of process discovery algorithms (that restores a
model on the basis of a known log) and to repair models that
have not got a well alignment with the real behavior of the
process.

There are four model’s evaluation criteria: fitness, pre-
cision, generalization and simplicity. Fitness measures ”the
proportion of behavior in the event log possible according
to the model”. Among the four quality criteria, fitness is the
most related to the conformance. There are several methods of
conformance checking. We consider methods based on replay
approach [3]. Replaying a log on a model can help to measure
fitness.

An obvious approach to measure fitness is to count the
fraction of cases that can be ”parsed completely” (i.e. the
proportion of cases corresponding to firing sequences leading
from [start] to [end]). Fitness can range from 0 to 1. It is
supposed that fitness is equal to 1, if the log perfectly fits the
model. When measuring fitness by replaying, we could stop
replaying a trace when we face a problem and mark this trace
as unsuitable. We get more information about conformance if
we continue replaying the trace on the model, and record a
count of all missing tokens and all tokens that are pending at
the end.

Let us denote the number of produced tokens by p, the

number of consumed tokens by c, the number of missing
tokens by m and the number of remaining tokens by r. Initially,
when all places are empty, p = c = 0. Then the environment
produces a token for the place [start]. Therefore, the p counter
is incremented: p ← p + 1. A log is replayed by consecutive
firings of transitions, corresponding to activities of the process.
Each transition consumes and produces several tokens and we
increase the corresponding variables. If we need an extra token
in a place to continue replaying (when the next transition is
not enabled), then the m counter must be incremented and the
place, that lacks a token, is marked as a place where a token
was missed. If by the time of consuming a token from the
place [end] there were tokens pending in some other places,
the r counter must be increased by the number of the remained
tokens, and the places with tokens must be tagged.

The fitness of a trace σ of a workflow process model N is
defined as follows:

fitness(σ,N) = 1
2 (1−

m
c) +

1
2 (1−

r
p)

When working with business processes we typically use
detailed logs, which present the full report about sequentially
executed activities. Since in most information systems logs
are generated automatically, keeping detailed records is not a
problem. However, large and detailed models are not good
to deal with. Such models are not clear and readable for
experts. Experts prefer to work with more abstract (high-
level) models. More abstract models are easier to construct,
understand and analyze. Process models developed by people
are, as a rule, not very large and abstract from technical details.
So, checking conformance of an abstract model and a low-level
event log, generated by an information system, is an important
and challenging problem. However, as far as we know, this
problem has not been studied in the literature.

In this paper we consider an abstract model in which each
separate activity represents a subprocess built from a set of
smaller activities. A history of a detailed process behavior
is recorded in low-level logs. Process models are represented
by workflow nets — a special subclass of Petri nets [2]. We
present a method for checking conformance of an abstract
model and a low-level event log.

The paper is organized as follows. Section II contains some
basic definitions and notions, including Petri nets, event log,
perfect fits and refinement. In Section III we give a motivating
example of handling a request for a compensation within
airline in terms of Petri nets. In Section IV we present a

This work is licensed under the Creative Commons Attribution License.

method for checking conformance between an abstract model
and a low-level log. We also give a justification of this method
by proving its correctness in the case of perfect fitness. An
implementation of our algorithm is described in Section V.
Section VI contains some conclusions.

II. PRELIMINARIES

We start with recalling some basic notions from the set
theory. Let S be a set. By S∗ we denote the set of all finite
sequences (words) over S.

S = S1∪S2∪ . . .∪Sn is a partition of S iff ∀i, j ∈ [1, n] :
Si ⊆ S and Si ∩ Sj = ∅.

A multiset m over a set S is a mapping m : S → Nat,
where Nat is the set of natural numbers (including zero), i.e.
a multiset may contain several copies of the same element.

For two multisets m,m′ we write m ⊆ m′ iff ∀s ∈ S :
m(s) ≤ m′(s) (the inclusion relation). The sum of two mul-
tisets m and m′ is defined as usual: ∀s ∈ S : (m+m′)(s) =
m(s)+m′(s), the difference is a partial function: ∀s ∈ S such
that m(s) ≥ m(s′) : (m−m′)(s) = m(s)−m′(s). By M(S)
we denote the set of all finite multisets over S. Non-negative
integer vectors are often used to encode finite multisets.

Definition 1 (Petri net). Let P and T be disjoint finite sets
of places and transitions and F : (P × T) ∪ (T × P)→ Nat.
Then N = (P, T, F) is a Petri net. Let A be a finite set of
activities. A labeled Petri net is a Petri net with a labeling
function λ : T → A ∪ {ε} which maps every transition to
an activity (a transition label) from A, or a special label ε,
corresponding to an invisible action.

A marking in a Petri net is a function m : P → Nat,
mapping each place to some natural number (possibly zero).
Thus a marking may be considered as a multiset over the set of
places. Pictorially, P -elements are represented by circles, T -
elements by boxes, and the flow relation F by directed arcs.
Places may carry tokens represented by filled circles. A current
marking m is designated by putting m(p) tokens into each
place p ∈ P .

For a transition t ∈ T an arc (x, t) is called an input arc,
and an arc (t, x) — an output arc; the preset •t and the postset
t• are defined as the multisets over P such that •t(p) = F (p, t)
and t•(p) = F (t, p) for each p ∈ P .

A transition t ∈ T is enabled in a marking m iff ∀p ∈
P m(p) ≥ F (p, t). An enabled transition t may fire yielding
a new marking m′ =def m − •t + t•, i. e. m′(p) = m(p) −
F (p, t)+F (t, p) for each p ∈ P (denoted m t→ m′, m

λ(t)→ m′,
or just m→ m′).

A Workflow-net is a (labeled) Petri net with two special
places: i and f . These places are used to mark the beginning
and the ending of a workflow process.

Definition 2 (Workflow net). A (labeled) Petri net N =
(P, T, F, λ) is called a workflow net (WF-net) iff

1) There is one source place i ∈ P and one sink place
f ∈ P s. t. •i = f• = ∅;

2) Every node from P ∪ T is on a path from i to f .

nn nn
i if f

Extended WF-net t+(N)WF-net N

- -

ti tf

s

Fig. 1. Extending a WF net with initial and final transitions

3) The initial marking in N contains the only token in
its source place.

By abuse of notation we denote by i both the source place
and the initial marking in a WF-net. Similarly, we use f to
denote the final marking in a WF-net N , defined as a marking
containing the only token in the sink place f .

Let N = (P, T, F, λ) be a WF-net. The extended WF
net (EWF-net) N ′ = (P ′, T ′, F ′, λ′) is defined as follows:
P ′ = P, T ′ = T ∪ {ti, tf}, and F ′ = F ∪ {〈ti, i〉, 〈f, tf 〉},
where ti, tf are new (not occurring in P, T) nodes. The new
transitions ti, tf are labeled with invisible activity ε in N ′, all
other transitions in N ′ have the same labels as in N . In the
remainder we will denote such an extended WF net of N as
t+(N). The initial marking in an extended WF net contains
no tokens. Thus an extended WF net may start a new case at
any moment (cf. Fig.1).

Event logs keep a history of process executions.

Definition 3 (Event log). Let A be a finite set of activities.
A trace σ is a finite sequence of activities, i.e., σ ∈ A∗. An
event log L is a finite multiset of traces, i.e., L ∈M(A∗).

In this paper we study conformance checking. Given a
model and an event log we would like to compare the process
model behavior and the behavior recorded in the event log.
Several metrics for conformance checking were defined in the
literature [1]. Among the most important metrics is fitness. In-
formally speaking, fitness measures the proportion of behavior
in the event log possible according to the model.

Definition 4 (Perfect fit). Let N be a WF-net with transition
labels from A, an initial marking i, and a final marking f . Let
σ be a trace over A. We say that a trace σ = a1, . . . , ak
perfectly fits N iff there exists a sequence of firings i =

m0
t1→ . . .

tk→ mk+1 = f in N , s.t. the sequence of activities
λ(t1), λ(t2), . . . , λ(tk) after deleting all invisible activities ε
coincides with σ. A log L perfectly fits N iff every trace from
L perfectly fits N .

Petri nets can be extended with hierarchy and it is done
e.g. in Colored Petri nets (CPN) [8]. Hierarchy allows to
develop more compact models with a compositional network
structure. In the case of two-level hierarchy there are two
models of one process: a high-level (abstract) model and a
low-level (refined) model. The high-level model is a model
with abstract transitions. An abstract transition refers to a
Petri net subprocess model refining the activity represented by
this transition. The low-level model can be obtained from an
abstract model by substituting subprocess models for abstract
transitions.

p0

p1 p2

p3 p4

p5 p6

register
request

examine
thoroughly

examine
casually

check ticket

decide

pay
compensation

reject
request

reinitiate
request

Fig. 2. An abstract model for handling compensation requests

t0

t1

t2

t3

t13 t14 t15 t16

t17 t18

t25 t26 t27

t24 t23

t21t19 t20

t22

t10t11t12

t4t5
t6

t7
t8t9

p0

p1

p2

p3

p4

p5
p6

register request
check ticket

decide

reject request

reinitiate request

pay compensation

examine thoroughly

examine casually

Fig. 3. A refined model for handling compensation requests, which refines the model in Fig. 2

Definition 5 (Substitution). Let N1 = (P1, T1, F1, λ1) be
a WF-net, t ∈ T be a transition in N1. Let also N2 =
(P2, T2, F2, λ2) be an EWF-net with the initial and final
transitions ti, tf correspondingly. We say that a WF-net N3 =
(P3, T3, F3, λ) is obtained by a substitution [t → N2] of
N2 for t in N1 iff P3 = P1 ∪ P2, T3 = T1 ∪ T2 \ {t},
F3 = F1 ∪ F2 \ {(p, t) | p ∈ •t} \ {(t, p) | p ∈ t•} ∪ {(p, ti) |
p ∈ •t} ∪ {(tf , p) | p ∈ t•},
Definition 6 (Refinement). Let Na, Nr be two WF-nets
with sets of activities Aa, Ar correspondingly. Let Aa =
a1, a2, . . . , an, and Ar = A1

r ∪ A2
r ∪ . . . ∪ Anr be a partition

of Ar into n subsets, and N1, N2, . . . Nn be EWF-nets with
sets of activities A1

r, . . . , A
n
r correspondingly. We say that Nr

is a refinement of Na via substitutions [a1 → N1
r , a2 →

N2
r , . . . an → Nn

r] iff Nr can be obtained from Na by
simultaneous substitutions of N i

r for all t s.t. λ(t) = ai.

III. MOTIVATING EXAMPLE

Let us consider a toy model from [1], which describes
handling a request for a compensation within airline. Here
customers may request compensations for various reasons. An
abstract model of this process (expressed in terms of a Petri
net) is presented in Fig.2. Fig.3 presents a refined model of
the same process. To avoid congestion of activities’ names in
the low-level model in Fig.3 only places inherited from the
abstract model are labeled in the picture.

Let us explain the correspondence between the two
models. Let N0, N1, N2, N3, N4, N5, N6, N7 be EWF-
nets with sets of activities A0 = {t0, t1, t2, t3}, A1 =
{t4, t5, t6, t7, t8, t9}, A2 = {t10, t11, t12}, A3 =
{t13, t14, t15}, A4 = {t16, t17, t18, }, A5 =
{t19, t20, t21}, A6 = {t22, t23, t24}, A7 = {t25, t26, t27}
correspondingly. The refined model in Fig. 3 is the refinement
of the abstract model in Fig. 2 via the substitutions
[register request → N1, examine thoroughly →
N2, examine casually → N3, check ticket →
N3, decide → N4, reinitiate request →
N5, pay compensation → N6, reject request → N7]. A
sample of an event log obtained for the refined model Lr
is shown in Fig.4. Note that for the log Lr (Fig.4) and the
refined model (Fig.3) we have fitness = 1, since the log Lr
is generated by the model.

So, we have an abstract model (as a more simple to
understand and analyse) and we want to check conformance
of this model to a low-level log. It is obvious that we cannot
do it straightforward, since the model is defined in terms of
abstract activities, and the log contains low-level activities.

IV. CHECKING CONFORMANCE BETWEEN AN ABSTRACT
MODEL AND A REFINED EVENT LOG

To check conformance between an abstract model and a
low-level log, we first transform the given log into a log over

L = { < t0, t1, t3, t4, t5, t6, t13, t14, t7, t8, t15, t9, t16, t17, t18, t25, t26, t27 >,

< t0, t1, t3, t4, t13, t14, t5, t7, t15, t6, t8, t9, t16, t17, t18, t24, t23, t22 >,

< t0, t1, t3, t13, t10, t11, t14, t15, t12, t16, t17, t18, t24, t23, t22 >,

< t0, t2, t3, t13, t4, t14, t15, t5, t6, t7, t8, t9, t16, t17, t18, t25, t26, t27 >,

< t0, t2, t3, t4, t13, t14, t15, t5, t7, t6, t8, t9, t16, t17, t18, t24, t23, t22 >,

< t0, t1, t3, t10, t11, t13, t12, t14, t15, t16, t17, t18, t19, t20, t21, t10, t11, t13, t14, t15, t12, t16, t17, t18, t25, t26, t27 >,

< t0, t2, t3, t13, t10, t14, t15, t11, t12, t16, t17, t18, t24, t23, t22 >,

< t0, t2, t3, t13, t10, t11, t12, t14, t15, t16, t17, t18, t19, t20, t21, t10, t13, t14, t11, t15, t12, t16, t17, t18, t24, t23, t22 >,

< t0, t2, t3, t13, t14, t10, t11, t15, t12, t16, t17, t18, t25, t26, t27 >}.

Fig. 4. An event log for the refined model in Fig. 3

abstract activities. For this purpose, each low-level activity in
the log is replaced by a name of the subprocess (an abstract
activity) it belongs to. Hence we get a log with ”stuttering”
abstract activities. This transformation is implemented by the
method toHighLevel(), schematically presented in Algorithm 1.

Data: lowlevellog — a list of low-level activities,
hlaction — a set of high-level activities, where
for each high-level activity is stored information
about its partition into subsets of low-level
activities.

Result: highlevellog — a high-level event log.
i←− 0;
highlevellog ←− ∅;
currentLowAction←− lowlevellog[i] while i <
lowlevellog.size do

// search of high-level activity,
// subsets of which contains this
// low-level activity
currentHighAction←−
search(hlaction, currentLowAction);
if currentHighAction 6= ∅ then

// check of condition that
// low-level activity is included
// to partition of the current
// high-level action
while i < lowlevellog.size and
currentHighAction.contains(currentLowAction)
do

i←− i+ 1;
end
highlevellog.add(currentHighAction);

end
end
return highlevellog;

Algorithm 1: Method toHighLevel(), transforming a low-
level log into a log over abstract activities

After converting the refined log into notations of the
abstract model we get a new log, which is a multiset of
sequences of abstract activities. But this still can not be used
for the conformance checking because of stuttering actions.
Moreover, when we have two concurrent subprocesses, rep-
resented by two concurrent abstract activities in an abstract
model, stuttering sequences may interleave. To overcome this

ai
...

...
p

transition a in PN

... ai
...

...

transition a after
adding loop

1

ai

i

i

pp 2

...
1p

...

2

...

Fig. 5. Extending a transition by adding loop.

problem we transform an abstract model into a model allowing
stuttering of each abstract activity. For this purpose we add
loops to transitions in the abstract model.

Algorithm 2 schematically describes the method
addLoops() for transforming an abstract model by adding
loops to abstract transitions (cf . Fig.5).

Now we describe the general algorithm of conformance
checking between and abstract model and a low-level log in
more details.

Main Algorithm (Converting a refined log to an abstract
one and transforming the high-level model for working with
result of this conversion).
Let Na = (P, T, F, λ) be a Petri-net corresponding to an
abstract model of a process over a set of activities Aa. Let
also Lr be a low-level event log (a finite multiset of traces)
over a set Ar of low-level activities.

Let Aa, Ar be the set of activities in the abstract model and
a set of activities in a refined model correspondingly. Denote
by and denote trace from it by σjr ∈ Lr where j is a number
of trace.

1) Convert Lr to a high-level event log (denote it La)
using data about the partition of Ar. Replace each
ak ∈ σjr (where k is a number of activities in the
trace) to the corresponding activity from Aa for all j
and k.

2) Use a rule introduced by us about repetitive activities
in La. Replace every sequences of identical activities

Data: Petri net as petrinet, trace from event log as trace
Result: modified Petri net
trace←− sort(trace);
// index of current activity
index←− 0;
currentActivity ←− trace[index];
while index < trace.size - 1 do

indexOfNext←− index+ 1;
nextActivity ←− trace[indexOfNext];
if currentActivity==nextActivity then

// check count of transition
// with this name in Petri net
if countInNet(petrinet, currentActivity) == 1
then

// add loop to Petri net
// for current activity
addLoop(petrinet, currentActivity);

end
indexOfNext←− indexOfNext+ 1;
while indexOfNextActivity < trace.size and
currentActivity=nextActivity do

indexOfNext←− indexOfNext+ 1;
end
index←− indexOfNext− 1;
currentActivity ←− trace[index] ;

end
return petrinet;

end
Algorithm 2: Method addLoops() for model’s transforma-
tion by adding loops

in σjr (for all j) to one instance of this activity, i.e.
[{aka . . . aka} → aka].

3) If the result obtained in the previous steps (La)
does not contain traces with repetitive activities (un-
like the previous step, they are non-consecutive like
{a1r, . . . , aka, ak+1

a , . . . , aka, . . . , a
n
a}), then stop, other-

wise proceed to the next step.
4) Working with each trace individually find all aa,

which have repeats in the same trace (see the previous
step) and transitions in Na, which correspond to these
actions.

5) Add a loop to Na for all transitions from the previous
step (denote the current transition by t):

a) Choose one place among pi ∈ P and pi ∈ t•
(denote it by p′).

b) Choose one place among pi ∈ P and pi ∈ •t
(denote it by p′′).

c) Add to Na a new transition (denote it by t′).
d) Add to Na a new arcs: {(p′, t′); (t′, p′′)}
e) If a number of repeats for aa is even, we

have to add one repeat for last instance of it,
i. e. aa → a2a.

6) Apply any known algorithm for conformance check-
ing of La to Na.

We illustrate the algorithm by applying it to the example
that was presented above in Fig. 2 and 4.

First, we convert the event log Lr to a high-level log by
applying Algorithm 1. The log obtained as the result of this

is denoted by La and is shown in Fig. 6. Then we apply
Algorithm 2 to the abstract model Na and obtain the new
model N ′a, shown in Fig. 7. The model N ′a is a stuttering model
over abstract activities. And finally we check conformance
between the model N ′a and the log La by replaying traces
from La in N ′a. It turns out, that all traces from La can be
replayed in N ′a, i.e. the log La perfectly fits N ′a. This is not
by chance. The following theorem states, that the proposed
conformance checking method is stable under perfect fitness.
Theorem 1. Let Nr be a refinement of Na and Lr be an event
log over the set of activities Ar, i.e. Lr ∈ M(A∗r). If Lr
perfectly fits Nr, then the main algorithm return 1, which is
interpreted as Lr perfectly fits Na.

We omit the proof of the theorem, since it is rather
technical and straightforward.

V. IMPLEMENTATION

The proposed method for checking conformance of high-
level business model to low-level event log is implemented as
a plug-in for ProM.

Our tool consists of six main classes:

1) TransformerForConformanceChecking class is re-
sponsible for interaction with framework and GUI.

2) HighLevelTransition class represents a high-level
transition. Each object of this type have a name of
appropriate abstract activity and an array of low-level
activities, corresponding to this object.

3) Activity class represents an activity and implements
forming of activity with data from event log.

4) ConvertorForLowLevelLog class is responsible for
implementation of Algorithm 1, i.e. it transforms a
low-level event log to an abstract event log.

5) ConvertorForModel class is responsible for imple-
mentation of Algorithm 2, i.e. it transforms an ab-
stract model by adding the requisite loops.

VI. CONCLUSION

Abstract models are much more clear and more under-
standable than low-level models. But in practice we have only
low-level logs, which cannot be used for direct conformance
checking. Hence checking conformance of a high-level busi-
ness model to a low-level event log is an important task to
facilitate the expert’s work. In this paper we have presented
a method for solving this problem. Also we had developed a
ProM plug-in which implements the proposed algorithm.

We have proved, that our method recognizes perfect fitness
between an abstract model and a low-level log correctly. This
can be considered as a justification of the proposed approach.
However, this is not enough. It is very important to check the
method on logs with deviations. In the further research we plan
experiments with different logs (logs with noise and different
kinds of deviations), as well as real application logs, and we
shall work on improving the algorithms through the use of
found heuristics.

ACKNOWLEDGMENT

This study was carried out within the National Research
University Higher School of Economics’ Academic Fund.

L = { < register request, examine thoroughly, check ticket, examine thoroughly, check ticket2,

examine thoroughly, decide, reject request >,

< register request, examine thoroughly, check ticket, examine thoroughly, check ticket2,

examine thoroughly, decide, pay compensation >,

< register request, check ticket, examine casually, check ticket2, examine casually2, decide, pay compensation >,

< register request, check ticket, examine thoroughly, check ticket2, examine thoroughly2,

decide, reject request >,

< register request, examine thoroughly, check ticket, examine thoroughly2, decide, pay compensation >,

< register request, examine casually, check ticket, examine casually2, check ticket2,

decide, reinitiate request, examine casually, check ticket, examine casually2, decide,

reject request >,

< register request, check ticket, examine casually, check ticket2, examine casually2,

decide, pay compensation >,

< register request, check ticket, examine casually, check ticket2, decide, reinitiate request,

examine casually, check ticket, examine casually, check ticket2, examine casually, decide, pay compensation >,

< register request, check ticket, examine casually, check ticket2, examine casually2,

decide, reject request >}.

Fig. 6. The abstract event log obtained by applying Algorithm 1 to the initial event log in Fig. 4

p0

p1
p2

p3 p4
p5

p6

register
request

examine
thoroughly

examine
casually

check ticket

decide

pay
compensation

reject
request

renitiate
request

examine
thoroughly

examine
casually

check ticket

Fig. 7. The abstract model after adding loops (by applying Algorithm 2 to the model in Fig. 2)

REFERENCES

[1] W.M.P. van der Aalst. Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Berlin: Springer-Verlag, 2011.

[2] W.M.P. van der Aalst, K.M. van Hee. Workflow Management: Models,
Methods and Systems. Cambridge, MA: MIT Press, 2002.

[3] A. Rozinat, W.M.P. van der Aalst. Conformance Testing: Measuring
the Alignment Between Event Logs and Process Models. BETA Working
Paper Series, Eindhoven University of Technology, 2005, vol.144, pp
203-210.

[4] B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M.
Weijters, W.M.P. van der Aalst. The ProM framework: A New Era in

Process Mining Tool Support. Lecture Notes in Computer Science, Berlin:
Springer Verlag, 2005, vol. 3536, pp. 444-454.

[5] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, W. M. P. van der
Aalst. Prom 6: The process mining toolkit. Proc. of BPM Demonstration,
2010. vol. 615. pp. 3439.

[6] A. Rozinat. Process mining: conformance and extension. Technische
Universiteit, Eindhoven, 2010.

[7] A. Adriansyah, B. F. van Dongen, W. M. P. van der Aalst. Conformance
Checking Using Cost-Based Fitness Analysis. IEEE 15th International
Enterprise Distributed Object Computing Conference, 2011, pp. 55-64.

[8] K. Jensen, and L. M. Kristensen. Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Berlin: Springer-Verlag, 2009.

