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Abstract—The paper presents a work-in-progress project on 
construction of a security facility that protects trusted application 
from malware residing at any privilege level of an OS, including 
OS kernel. The approach is based on the Sevigator project that 
used KVM to protect applications running in QEMU. The 
presented project is a port of Sevigator to much smaller trusted 
computing base of a bare-metal hypervisor. 
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I.  INTRODUCTION 
The purpose of the project is to develop a security facility, 

that protects data confidentiality on a computer connected to 
the Internet and managed by an untrusted operating system. We 
assume that malicious code can get unlimited access to all 
hardware and software system resources through vulnerability 
or backdoors in system software. 

Modern widespread operating systems (such as Linux or 
Windows) are based on monolithic kernel, where all 
components of kernel have equal privileges. When malicious 
code penetrates OS kernel there is a risk of losing control over 
any OS resources including application in-memory data, 
confidential information in file storage, etc. Integrity and 
confidentiality of data transmitted over the network are also 
threatened, even in the case when cryptography is used.  

There are several channels for malicious code to penetrate 
OS kernel. It could be vulnerability of the system applications 
and kernel vulnerabilities, and backdoors in the drivers.  Also 
there is a risk of theft of private keys from companies, 
supplying software or hardware, to sign malicious code; as a 
result OS trusts the signature and installs such code in the 
kernel. 

Multiple approaches to securing workstations were 
proposed, including new more secure operating systems, 
specific hardware extensions, new application architectures. 
Still those approaches require massive investments in new 
products and significant changes in the user experience.  

The question is whether it is possible to protect unmodified 
applications that run under unmodified commodity OS like 
Windows or Linux on a commodity workstation with x86 
CPU. Protection systems located in kernel, such as antivirus, 
firewall, intrusion detection, can themselves be attacked by 

privileged malicious code. Possible way of protection from 
those attacks is the transfer of protection to more privileged 
level. 

The answer is “probably yes”: a prototype called Sevigator 
[3, 4, 5, 6] protects applications in Linux from malware and 
comprised kernel. It uses hardware-assisted virtualization [1] to 
secure operating memory of applications and control access to 
communication hardware (network interface card). It allows to 
launch OS under control of virtual machine monitor (VMM, 
also called hypervisor). Hypervisor is much smaller than OS, 
fully isolated from it, and has higher privilege than OS. 
Hardware virtualization is supported by most modern 
processors, which suggests the possibility of widespread use of 
security systems based on hypervisors 

One of the first examples of the use of virtualization to 
protect against untrusted OS is Overshadow project of memory 
protection developed by researchers in Stanford and Princeton 
Universities, MIT и VMware, Inc [2]. This technology does 
not require modification of the operating system or application. 
All memory of running processes is encrypted when a context 
switches. So, if the operating system or another program tries 
to read data from the memory of the process, they will receive 
only encrypted data, while the trusted process, referring to own 
data, receives it in the original form. However this approach 
limits cases when trusted application needs to pass some data 
to other processes by means, for example, of shared memory. 
Also in this approach all data are encrypted, even those that 
require no protection, and that is overkill. 

Another reliable way to prevent data leakage, under the 
assumption that malicious code in the OS kernel, is the 
physical isolation of the computer from the network 
connection. However in this case all legitimate applications, 
which require access to the network, would suffer. 

Sevigator isolates untrusted OS from network, but keeps 
operability of trusted application. For them, and only for them, 
an access to network resources is granted. An important feature 
of this approach is that there is no need to recompile any 
applications or OS 

Within Sevigator approach OS resides in a virtual machine, 
while protection system is located in type 2 (hosted) 
hypervisor. It provides facilities to isolate untrusted 
applications from network access; to prevent data leaks due to 



code intrusion or memory attacks it controls memory integrity 
of the applications under protection. Description of security 
algorithms can be found in [3, 4, 5, 6]. Sevigator system is 
based on hypervisor KVM (Kernel-based Virtual Machine) 

Hypervisor KVM is type 2 hypervisor. Type 2(hosted) 
hypervisors runs like a module inside the host OS kernel, 
which handles interrupts, provides an abstraction of hardware 
and management of computer resources. Virtual machines with 
guest OS run like application in the host OS. Implementation 
based on this hypervisor is relatively simple, since such 
hypervisor allows you to develop and test on the same machine 
without rebooting, provides an opportunity to use debuggers 
and monitoring tools to find errors. 

However, in this case, the hypervisor reliability depends on 
the operating system, which runs the hypervisor; in the KVM 
case it is Linux. The OS architecture is based on the principle 
of a monolithic kernel, so the hypervisor is vulnerable to attack 
by drivers and models of devices in the OS kernel. These 
defects do not exist in the decision based on type 1 hypervisor. 

Type 1 hypervisors (native hypervisor, bare-metal 
hypervisor) run directly on the host's hardware. This hypervisor 
contain microkernel for interrupt processing, memory 
management, input-output, etc. Bare-metal hypervisors run at a 
higher privilege level than the OS kernel. A guest operating-
system runs on the same privilege level as in the absence of the 
hypervisor.  

Building protection systems based on type 1 hypervisor 
requires considerably less trusted computing base, than in the 
case of type 2 hypervisor. In addition, the microkernel allows 
you to split device drivers, virtual machines and memory 
manager. Thereby compromising individual component will 
not lead to compromise the entire system.  

In this paper we present adaptation of part of Sevigator’s 
protection algorithms, implemented in the type 2 hypervisor 
KVM, for type 1 hypervisor. Functionality of isolation OS and 
untrusted applications from network was adapted; currently 
being adapted security algorithms protecting process address 
space from unauthorized modification through the mechanism 
of direct memory access 

II. CHOISE OF HYPERVISOR 
When designing an adaptation to the type 1 hypervisor the 

idea to develop a hypervisor from scratch was immediately 
rejected: the development of a hypervisor is a very laborious 
task. It was necessary to compare existing type 1 hypervisors 
for x86 and select one to adapt functionality in it. 

There are several requirements to hypervisors: 

1. Open source. It is the base requirement to implement 
security mechanisms in the hypervisor code. 

2. Support AMD x86 architecture, because, when we 
start adaptation, Sevigator used AMD virtualization   

3. The presence of a virtual machine monitor to create 
and manage virtual machines and support of arbitrary 
unmodified guest operating systems. 

4. Support for multiple virtual machines. Sevigator 
architecture assumes that at least two virtual machines run 
simultaneously. 

5. Virtualization of hardware resources to separate the 
hardware between multiple virtual machines. 

6. Small source code to allow verification. 

 The following hypervisors were considered: BitVisor[7], 
NOVA[8], Xen[9], XtratuM[10]. All of them are distributed 
under open source licenses and don't require existence of a host 
operating system. 

BitVisor is hypervisor and virtual machine monitor, 
designed to ensure security of computer systems. BitVisor 
provides encryption of network connections and data on disk. 
Ensuring confidentiality of network and disk data is transparent 
to the operating system. BitVisor designed to create minimal 
overhead on encryption and decryption of data. BitVisor 
distributed under an open source license. 

Virtual machine monitor is integrated into the hypervisor 
and performed at the same privilege level as the hypervisor. 
BitVisor supports exactly one virtual machine - this is done in 
order to minimize the overhead on the interaction of the guest 
OS with the devices, primarily input and output devices. 
BitVisor intercepts access to certain devices (eg, SATA 
controller, ie, hard disk), while the rest of the devices OS 
accesses directly. 

BitVisor was rejected because it does not support multiple 
virtual machines. 

NOVA is a hypervisor, built on microkernel architecture. 
Microkernel is performed at the highest level of privileges, and 
the environment, including resource monitor, device drivers 
and monitors virtual machines run at lower privilege levels. 
Thanks to microkernel architecture NOVA has well isolated 
code: components communicate with each other via messages, 
and with the kernel through hypercalls, only microkernel is 
performed with the highest privilege level, this provides 
improved security system as a whole. 

Strictly speaking, the abbreviation NOVA used to refer to 
NOVA microkernel. In addition to the kernel running guest 
operating systems requires additional components developed in 
the project NUL (NOVA UserLand). NUL includes a virtual 
machine monitor Vancouver, memory and hardware resources 
monitor Sigma, external devices’ drivers. Further in the text of 
this paper we will refer to NOVA bundled with NUL 
environment as just NOVA. 

Originally the microkernel was developed at the Dresden 
University of Technology, now the main development of the 
kernel is in the research center of Intel. 

NOVA is developed in C++, distributed under open source 
license. Using of microkernel architecture allows for 
simultaneous execution of an arbitrary number of virtual 
machines that can run unmodified guest operating systems. 
NOVA supports virtualization devices: Vancouver provides to 
guest OS virtual devices, which are served in the NUL. NOVA 
currently provides limited support for direct access to the 



computer hardware, and limited support through separation 
devices IOMMU. 

Xen is a very popular virtualization platform, which is 
widely used to build cloud services. 

Xen virtualization platform includes a hypervisor, virtual 
machine monitor for guest OS, dedicated virtual machine dom0 
to work with devices and specialized drivers to access the 
device via the dom0. These drivers are called paravirtualized as 
they "know" that the OS is running under Xen and effectively 
interact with the hypervisor and dom0. 

Xen hypervisor implements the minimum set of operations: 
management of RAM, processor status, real time clock, 
interrupt processing and control of DMA (IOMMU). All other 
functions, such as the implementation of virtual devices, create 
and delete virtual machines, moving VMs between servers in 
the cloud, etc. is implemented in a dedicated virtual machine 
dom0. 

All functions related to ensuring network performance, disk 
drives, video cards emulation and other devices placed outside 
the hypervisor. Typically, the request handling devices consist 
of two parts. Driver in the guest operating system translates 
requests from the OS to program handler in dom0. To increase 
the security of the system servers, virtualize devices run as 
separate processes in OS dom0. Failure in such a program 
leads to a denial of only one virtual device in one VM and does 
not affect the work of other copies of the server. 

Xen hypervisor supports virtualization even on platforms 
where there is no hardware virtualization. As a result, the 
hypervisor code is quite large - on the order more microkernel 
NOVA - and convoluted. In addition, Xen does not support 
running unmodified guest OS: it requires specialized drivers to 
run the OS under Xen supervision. 

XtratuM is hypervisor to separate computer resources into 
multiple virtual real time machines. XtratuM hypervisor 
provides real-time guarantees for the service interruptions 
hypercall, memory operations. XtratuM provides mechanisms 
isolation of virtual machines, the minimum software interface 
to run real-time applications without the guest OS, the means 
of communication between VMs. Developers claim support of 
x86 architecture, but the official website of the project 
distributes documentation for LEON processor family only – 
specialized clones if SPARC architecture. 

XtratuM hypervisor is supported by several real time 
operating systems. Guest OS requires paravirtualized drivers, 
XtratuM does not support execution of arbitrary unmodified 
guest OS. 

On the basis of requirements to the hypervisor we selected 
NOVA as the platform for bare metal hypervisor with security 
functions ported from Sevigator hypervisor. 

III. SEVIGATOR ARCHITECTURE 
Among the applications running in the operating system, 

the protection system identifies several applications that are 
considered trusted. The specific mode of functioning is 
provided to these applications. All other applications are 
considered as untrusted, the security problem is to prevent the 

leakage or compromising of confidential data of trusted 
applications. In particular, trusted applications for the normal 
functioning may require access to the public network. This 
network connection in the absence of external control can be 
used by malicious code in the kernel of the operating system 
for the leakage of sensitive data. The task of the security is to 
prevent data leakage. 

The solution is based on use of hardware virtualization 
technology, execution of an operating system and all software 
in the virtual machine, and implementation protection system 
in the body of a virtual machine monitor (hypervisor) [3]. The 
hypervisor provides simultaneous execution of two completely 
isolated from each other virtual machines (fig. 1). Both are 
running the same untrusted operating system. The first virtual 
machine, we will call it private, is the primary one. It is there 
where critical data resides, applications are executed (both 
trusted and untrusted), processing those data. When the private 
virtual machine starts hypervisor blocks access to the network 
interface. The operating system, which runs in the VM, 
believes that the network adapter is physically absent. 
Therefore, any attempt to establish a network connection from 
within the virtual machine and transmit the data to a remote 
computer will inevitably lead to error. Thus, the malicious code 
running on any hardware privileges inside the private virtual 
machine, even if it managed to gain access to critical data, will 
not be able to transfer them to the outer world. 

 
Fig. 1. Sevigator architecture 

Network access for trusted applications is supplied by the 
second virtual machine. From here on we will refer to it as 
public. Public virtual machine has free access to the network 
interface, and any program in this virtual machine can interact 
with remote computers on the network. However, due to virtual 
machines isolation provided by the hypervisor the software in 
the public virtual machine (including Linux kernel) cannot gain 
access to data residing within the private virtual machine. 

Network support for trusted processes is implemented 
through remote execution of required (limited) set of system 
calls to the public virtual machine. The hypervisor intercepts 
system calls invoked by a trusted process, analyzes the data 
and, when necessary, transmits them to the public virtual. 
System calls of other processes as well as the rest of the system 
calls of trusted processes are serviced locally in the private 
virtual machine. 

The only information transmitted outside the private virtual 
machine is explicitly specified by a trusted process as 
parameters of system calls, and besides transfer the information 
outside of the virtual machine is serviced by trusted code 



(hypervisor). Note that the remote execution of the system call 
is made transparent for a trusted process and an operating 
system for a virtual computing machine. 

Trusted processes are executing under the control of an 
untrusted operating system. In-memory data of trusted 
applications are not encrypted, stored in clear (unencrypted) 
form, and protection system does not restrict the access (both 
system and user) to these data. Since untrusted components, 
including the kernel, do not have access to the network, they 
are not able to disclose sensitive information.  

However, in untrusted OS environment it is necessary to 
take into account the risk of injecting code into trusted 
applications: malicious code in the operating system kernel can 
load into the address space of a trusted process necessary code, 
then pass control to it, and trusted process on its behalf will 
take all necessary actions for the delivery critical information 
to a remote computer, which is controlled by the attacker. To 
prevent these harmful effects security system protects context 
of a trusted process against unauthorized modification by any 
program in private virtual machine, including privileged. 

IV. ADDAPTATION FROM KVM TO NOVA 
So, as mentioned above, open source NOVA hypervisor 

has been selected as the hypervisor. At the moment it is being 
actively developed in the Intel Research laboratory.  

By the arguments in favor of NOVA, above, may be added 
that the hypervisor much less than all popular hypervisors 
therefore potentially more secure. Also its kernel code has been 
verified [11]. On the Fig. 2 you can see a comparison of the 
sizes of popular hypervisors and NOVA. 

 
Fig. 2. comparison of the sizes of popular hypervisors 

 NOVA is built on microkernel architecture. Microkernel, 
which size is less than 10,000 lines of C ++, launches virtual 
machines and routes interrupts and system calls. In addition to 
the core NOVA includes the “Nova UserLand” NUL, which 
includes a virtual machine monitor (Vancouver), memory and 
hardware resources monitor (Sigma0) and drivers of external 
devices. The total size of NOVA and NUL is less than 50 
thousand lines. 

Sevigator was built on top of KVM kernel module that 
provides hardware virtualization in QEMU environment. 
Intercepting calls of the virtual machines, it entrusts to 
processing of many functions host OS kernel, under which it is 
launched. Moreover KVM is included as a module in the host 
OS kernel, and therefore has the highest level of privilege. 
There is no division of privilege levels in KVM. The size of 
KVM is over 300 thousand lines of code. In the prototype 
Sevigator based on KVM interaction was through the address 
space and virtual interrupt of pci device, which emulated by 
qemu. 

During transferring Sevigator to NOVA platform most of 
Sevigator’s algorithms have been implemented in components 
of NUL.  

This section briefly describes the changes made to the 
NOVA and NUL, to implement algorithms from Sevigator.  

After transfer Sevigator to NOVA a remote service system 
call will appear as diagram in Fig. 3 

 
Fig. 3. Architecture of Sevigator in NOVA. 

At system start the virtual machine monitor, controlling 
user (private) VM, is configured so that it does not have a 
network card emulator. That is, when the OS at boot 
enumerates PCI bus, it lacks the class of device "network 
device". So, operating system has no access to the network, and 
all untrusted components, including the kernel, cannot transmit 
and receive data from the outside. 

However, when a trusted application performs a system call 
related to network access, the system call is intercepted by the 
hypervisor. System call parameters are copied into an internal 
ring buffer, which is not accessible by guest OS in virtual 
machines. VM monitor service receives notification of a new 
data, reads data from the ring buffer and transmits to the public 
VM for handling. Transferring the data from the public VM to 
the private VM is implemented similarly. 

System calls are intercepted by the hypervisor, but the 
processing parameters of the call, the data transmission 
between the VM, return control to the VM implemented in 
virtual machine monitor. This is done to improve the security 
of the system: if the query processing network has vulnerability 
then only one VM has been compromised, all other processes 



are executed as a microkernel’s process and isolated from each 
other. 

Functions that implement algorithms of Sevigator were 
added to the virtual machine manager Vancouver, which runs 
as an application process in NOVA. This protects hypervisor 
itself from compromising by the security system. Even if 
malicious code can take control over Sevigator, in a single VM, 
it will not be able to subdue other virtual machines. 

V. MODIFICATION OF NOVA AND NUL 
А number of changes to the core components of NOVA 

and NUL was required to properly implement the Sevigator. 

1. Sevigator’s components, working in the OS kernel and 
user space (trusted applications launcher), interact with the 
hypervisor through the vmmcall instruction. It was necessary to 
implement handlers of vmmcall in NUL. For this, interception 
vmmcall instruction has been activated in the NOVA’s kernel 
and implemented handler for instruction in virtual machines 
manager Vancouver. On AMD platform instructions 
interception implemented by setting to 1 the bit, responsible for 
this instruction in a control block of the virtual machine 
(VMCB). The analysis showed that by the default NOVA set to 
1 bits responsible for intercept vmload, vmsave, clgi, skinit. In 
order not to break code integrity the special flag has been 
added and the specific mask has been changed.  

2. To trace action of the operating system, primarily context 
switching, Sevigator intercepts specific x86 instructions. These 
are system calls, software interrupts, returns from the interrupt, 
and others. To support it special handlers, embedded in KVM 
code, are implemented in the prototype. When moved to 
NOVA it is necessary to implement these instructions 
interception means of Sevigator. While intercepting instruction, 
you must be able to emulate, as the interception occurs before 
running the instruction [12]. Currently Vancouver does not 
have complete emulation necessary instructions (iret, int n, 
syscall, sysexit), but the implementation of the emulation is 
planned by the developers. Since emulation instructions was 
not included in the plan of this work, we decided to temporarily 
inserted into the core of the guest virtual machine vmmcall 
calls immediately after a system call and before returning from 
the system call. This decision violates the initial concept of 
protection without making changes to the OS, but it is 
temporary and it will be replaced as soon as Vancouver 
developers implement a full emulation of instructions. 

3. To implement memory protection, we need to be able to 
access to the virtual machine memory. In Vancouver there is a 
subsystem, responsible for emulation instructions that work 
with memory. It has no external interfaces through which the 
other subsystem (in particular Sevigator) can work with 
memory. To access the virtual machine's memory by virtual 
address have been added a special message for reading and 
writing to the memory of virtual machines. Recall that the 
interaction between the components of NUL is given by 
messaging. Accordingly, new types of message for reading and 
writing were added, as well as handlers of these messages to 
the subsystem operating with the memory. 

4. To implement the algorithms of the Sevigator‘s network 
subsystem should be developed mechanism and implemented 

software interface of communication subsystem between 
virtual machines NUL. We implemented a ring buffer between 
managers of virtual machines, and notification of arrival a new 
data signaled through interruption to the virtual machine. In 
order to do this, special messages (OP_SVG_WRITE, 
OP_SVG_READ) handlers were added to operation memory 
monitor. And for notification, during initialization both 
Vancouvers initialize its own portals, and send its addresses to 
the NOVA kernel; NOVA has handler of the specific system 
call, which sends a signal to the desired portal. After storing 
data to ring buffer Vancouver needs to send a special system 
call to the kernel NOVA, which will notify the other 
Vancouver about recording. 

5. Sevigator assumes access to the network card. In NUL 
possibility of direct access to the pci-devices are implemented 
only partially. NOVA has a feature to be the network provider 
for the virtual machine, but to use it you need to write a driver 
for the network card. We based our driver on the driver, which 
was included to the NUL to work with a network card family 
ne2000 that emulated by qemu. This driver has been slightly 
modified to work with a specific physical card of the ne2000 
family. The changes are minimal – we added a missing flag 
and reduced the size of the buffer. 

VI. CONCLUSION 
In this paper we presented an implementation of privacy 

protection of network connection of trusted Linux processes in 
bare-metal hypervisor. We have conducted a study of open 
source bare-metal hypervisors: we have formulated certain 
requirements to the type 1 hypervisor, analyzed the available 
open hypervisors and by comparing have selected hypervisor 
NOVA. 

Porting Sevigator from KVM to NOVA is in progress, we 
have partly ported confidentiality protecting mechanisms. We 
have conducted a study of architecture and mechanisms of 
components interaction within NOVA. We have identified and 
implemented changes in NOVA, necessary for the functioning 
of Sevigator. This allowed: 

●  to port mechanisms of remote service of system calls;  

●  to port mechanisms to control trusted application 
context;  

●  to port mechanisms to control memory integrity of 
trusted applications;  

●  implement a prototype of network boot mechanism. 

Thus, the outcome of the project is a prototype of security 
system that protects the integrity and confidentiality of 
information stored and processed on a computer connected to 
the network and controlled by potentially malicious operating 
system. 

Developed prototype provides protection of information 
systems from the injection of malicious code by modifying the 
memory, images of executable files or script files, protect the 
integrity and confidentiality of data while transiting over the 
network. 
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