
This work is licensed under the Creative Commons Attribution License.

Protecting Applications from Highly Privileged
Malware Using Bare-metal Hypervisor

Kurbanmagomed Mallachiev
Institute for System Programming

of the Russian Academy of Sciences
Moscow, Russian Federation

mallachiev@ispras.ru

Nikolay Pakulin
Institute for System Programming

of the Russian Academy of Sciences
Moscow, Russian Federation

npak@ispras.ru

Abstract—The paper presents a work-in-progress project on
construction of a security facility that protects trusted application
from malware residing at any privilege level of an OS, including
OS kernel. The approach is based on the Sevigator project that
used KVM to protect applications running in QEMU. The
presented project is a port of Sevigator to much smaller trusted
computing base of a bare-metal hypervisor.

Keywords—security, virtualization, confidentiality, hypervisor,
protection, virtual machine monitor, Sevigator

I. INTRODUCTION
The purpose of the project is to develop a security facility,

that protects data confidentiality on a computer connected to
the Internet and managed by an untrusted operating system. We
assume that malicious code can get unlimited access to all
hardware and software system resources through vulnerability
or backdoors in system software.

Modern widespread operating systems (such as Linux or
Windows) are based on monolithic kernel, where all
components of kernel have equal privileges. When malicious
code penetrates OS kernel there is a risk of losing control over
any OS resources including application in-memory data,
confidential information in file storage, etc. Integrity and
confidentiality of data transmitted over the network are also
threatened, even in the case when cryptography is used.

There are several channels for malicious code to penetrate
OS kernel. It could be vulnerability of the system applications
and kernel vulnerabilities, and backdoors in the drivers. Also
there is a risk of theft of private keys from companies,
supplying software or hardware, to sign malicious code; as a
result OS trusts the signature and installs such code in the
kernel.

Multiple approaches to securing workstations were
proposed, including new more secure operating systems,
specific hardware extensions, new application architectures.
Still those approaches require massive investments in new
products and significant changes in the user experience.

The question is whether it is possible to protect unmodified
applications that run under unmodified commodity OS like
Windows or Linux on a commodity workstation with x86
CPU. Protection systems located in kernel, such as antivirus,
firewall, intrusion detection, can themselves be attacked by

privileged malicious code. Possible way of protection from
those attacks is the transfer of protection to more privileged
level.

The answer is “probably yes”: a prototype called Sevigator
[3, 4, 5, 6] protects applications in Linux from malware and
comprised kernel. It uses hardware-assisted virtualization [1] to
secure operating memory of applications and control access to
communication hardware (network interface card). It allows to
launch OS under control of virtual machine monitor (VMM,
also called hypervisor). Hypervisor is much smaller than OS,
fully isolated from it, and has higher privilege than OS.
Hardware virtualization is supported by most modern
processors, which suggests the possibility of widespread use of
security systems based on hypervisors

One of the first examples of the use of virtualization to
protect against untrusted OS is Overshadow project of memory
protection developed by researchers in Stanford and Princeton
Universities, MIT и VMware, Inc [2]. This technology does
not require modification of the operating system or application.
All memory of running processes is encrypted when a context
switches. So, if the operating system or another program tries
to read data from the memory of the process, they will receive
only encrypted data, while the trusted process, referring to own
data, receives it in the original form. However this approach
limits cases when trusted application needs to pass some data
to other processes by means, for example, of shared memory.
Also in this approach all data are encrypted, even those that
require no protection, and that is overkill.

Another reliable way to prevent data leakage, under the
assumption that malicious code in the OS kernel, is the
physical isolation of the computer from the network
connection. However in this case all legitimate applications,
which require access to the network, would suffer.

Sevigator isolates untrusted OS from network, but keeps
operability of trusted application. For them, and only for them,
an access to network resources is granted. An important feature
of this approach is that there is no need to recompile any
applications or OS

Within Sevigator approach OS resides in a virtual machine,
while protection system is located in type 2 (hosted)
hypervisor. It provides facilities to isolate untrusted
applications from network access; to prevent data leaks due to

code intrusion or memory attacks it controls memory integrity
of the applications under protection. Description of security
algorithms can be found in [3, 4, 5, 6]. Sevigator system is
based on hypervisor KVM (Kernel-based Virtual Machine)

Hypervisor KVM is type 2 hypervisor. Type 2(hosted)
hypervisors runs like a module inside the host OS kernel,
which handles interrupts, provides an abstraction of hardware
and management of computer resources. Virtual machines with
guest OS run like application in the host OS. Implementation
based on this hypervisor is relatively simple, since such
hypervisor allows you to develop and test on the same machine
without rebooting, provides an opportunity to use debuggers
and monitoring tools to find errors.

However, in this case, the hypervisor reliability depends on
the operating system, which runs the hypervisor; in the KVM
case it is Linux. The OS architecture is based on the principle
of a monolithic kernel, so the hypervisor is vulnerable to attack
by drivers and models of devices in the OS kernel. These
defects do not exist in the decision based on type 1 hypervisor.

Type 1 hypervisors (native hypervisor, bare-metal
hypervisor) run directly on the host's hardware. This hypervisor
contain microkernel for interrupt processing, memory
management, input-output, etc. Bare-metal hypervisors run at a
higher privilege level than the OS kernel. A guest operating-
system runs on the same privilege level as in the absence of the
hypervisor.

Building protection systems based on type 1 hypervisor
requires considerably less trusted computing base, than in the
case of type 2 hypervisor. In addition, the microkernel allows
you to split device drivers, virtual machines and memory
manager. Thereby compromising individual component will
not lead to compromise the entire system.

In this paper we present adaptation of part of Sevigator’s
protection algorithms, implemented in the type 2 hypervisor
KVM, for type 1 hypervisor. Functionality of isolation OS and
untrusted applications from network was adapted; currently
being adapted security algorithms protecting process address
space from unauthorized modification through the mechanism
of direct memory access

II. CHOISE OF HYPERVISOR
When designing an adaptation to the type 1 hypervisor the

idea to develop a hypervisor from scratch was immediately
rejected: the development of a hypervisor is a very laborious
task. It was necessary to compare existing type 1 hypervisors
for x86 and select one to adapt functionality in it.

There are several requirements to hypervisors:

1. Open source. It is the base requirement to implement
security mechanisms in the hypervisor code.

2. Support AMD x86 architecture, because, when we
start adaptation, Sevigator used AMD virtualization

3. The presence of a virtual machine monitor to create
and manage virtual machines and support of arbitrary
unmodified guest operating systems.

4. Support for multiple virtual machines. Sevigator
architecture assumes that at least two virtual machines run
simultaneously.

5. Virtualization of hardware resources to separate the
hardware between multiple virtual machines.

6. Small source code to allow verification.

 The following hypervisors were considered: BitVisor[7],
NOVA[8], Xen[9], XtratuM[10]. All of them are distributed
under open source licenses and don't require existence of a host
operating system.

BitVisor is hypervisor and virtual machine monitor,
designed to ensure security of computer systems. BitVisor
provides encryption of network connections and data on disk.
Ensuring confidentiality of network and disk data is transparent
to the operating system. BitVisor designed to create minimal
overhead on encryption and decryption of data. BitVisor
distributed under an open source license.

Virtual machine monitor is integrated into the hypervisor
and performed at the same privilege level as the hypervisor.
BitVisor supports exactly one virtual machine - this is done in
order to minimize the overhead on the interaction of the guest
OS with the devices, primarily input and output devices.
BitVisor intercepts access to certain devices (eg, SATA
controller, ie, hard disk), while the rest of the devices OS
accesses directly.

BitVisor was rejected because it does not support multiple
virtual machines.

NOVA is a hypervisor, built on microkernel architecture.
Microkernel is performed at the highest level of privileges, and
the environment, including resource monitor, device drivers
and monitors virtual machines run at lower privilege levels.
Thanks to microkernel architecture NOVA has well isolated
code: components communicate with each other via messages,
and with the kernel through hypercalls, only microkernel is
performed with the highest privilege level, this provides
improved security system as a whole.

Strictly speaking, the abbreviation NOVA used to refer to
NOVA microkernel. In addition to the kernel running guest
operating systems requires additional components developed in
the project NUL (NOVA UserLand). NUL includes a virtual
machine monitor Vancouver, memory and hardware resources
monitor Sigma, external devices’ drivers. Further in the text of
this paper we will refer to NOVA bundled with NUL
environment as just NOVA.

Originally the microkernel was developed at the Dresden
University of Technology, now the main development of the
kernel is in the research center of Intel.

NOVA is developed in C++, distributed under open source
license. Using of microkernel architecture allows for
simultaneous execution of an arbitrary number of virtual
machines that can run unmodified guest operating systems.
NOVA supports virtualization devices: Vancouver provides to
guest OS virtual devices, which are served in the NUL. NOVA
currently provides limited support for direct access to the

computer hardware, and limited support through separation
devices IOMMU.

Xen is a very popular virtualization platform, which is
widely used to build cloud services.

Xen virtualization platform includes a hypervisor, virtual
machine monitor for guest OS, dedicated virtual machine dom0
to work with devices and specialized drivers to access the
device via the dom0. These drivers are called paravirtualized as
they "know" that the OS is running under Xen and effectively
interact with the hypervisor and dom0.

Xen hypervisor implements the minimum set of operations:
management of RAM, processor status, real time clock,
interrupt processing and control of DMA (IOMMU). All other
functions, such as the implementation of virtual devices, create
and delete virtual machines, moving VMs between servers in
the cloud, etc. is implemented in a dedicated virtual machine
dom0.

All functions related to ensuring network performance, disk
drives, video cards emulation and other devices placed outside
the hypervisor. Typically, the request handling devices consist
of two parts. Driver in the guest operating system translates
requests from the OS to program handler in dom0. To increase
the security of the system servers, virtualize devices run as
separate processes in OS dom0. Failure in such a program
leads to a denial of only one virtual device in one VM and does
not affect the work of other copies of the server.

Xen hypervisor supports virtualization even on platforms
where there is no hardware virtualization. As a result, the
hypervisor code is quite large - on the order more microkernel
NOVA - and convoluted. In addition, Xen does not support
running unmodified guest OS: it requires specialized drivers to
run the OS under Xen supervision.

XtratuM is hypervisor to separate computer resources into
multiple virtual real time machines. XtratuM hypervisor
provides real-time guarantees for the service interruptions
hypercall, memory operations. XtratuM provides mechanisms
isolation of virtual machines, the minimum software interface
to run real-time applications without the guest OS, the means
of communication between VMs. Developers claim support of
x86 architecture, but the official website of the project
distributes documentation for LEON processor family only –
specialized clones if SPARC architecture.

XtratuM hypervisor is supported by several real time
operating systems. Guest OS requires paravirtualized drivers,
XtratuM does not support execution of arbitrary unmodified
guest OS.

On the basis of requirements to the hypervisor we selected
NOVA as the platform for bare metal hypervisor with security
functions ported from Sevigator hypervisor.

III. SEVIGATOR ARCHITECTURE
Among the applications running in the operating system,

the protection system identifies several applications that are
considered trusted. The specific mode of functioning is
provided to these applications. All other applications are
considered as untrusted, the security problem is to prevent the

leakage or compromising of confidential data of trusted
applications. In particular, trusted applications for the normal
functioning may require access to the public network. This
network connection in the absence of external control can be
used by malicious code in the kernel of the operating system
for the leakage of sensitive data. The task of the security is to
prevent data leakage.

The solution is based on use of hardware virtualization
technology, execution of an operating system and all software
in the virtual machine, and implementation protection system
in the body of a virtual machine monitor (hypervisor) [3]. The
hypervisor provides simultaneous execution of two completely
isolated from each other virtual machines (fig. 1). Both are
running the same untrusted operating system. The first virtual
machine, we will call it private, is the primary one. It is there
where critical data resides, applications are executed (both
trusted and untrusted), processing those data. When the private
virtual machine starts hypervisor blocks access to the network
interface. The operating system, which runs in the VM,
believes that the network adapter is physically absent.
Therefore, any attempt to establish a network connection from
within the virtual machine and transmit the data to a remote
computer will inevitably lead to error. Thus, the malicious code
running on any hardware privileges inside the private virtual
machine, even if it managed to gain access to critical data, will
not be able to transfer them to the outer world.

Fig. 1. Sevigator architecture

Network access for trusted applications is supplied by the
second virtual machine. From here on we will refer to it as
public. Public virtual machine has free access to the network
interface, and any program in this virtual machine can interact
with remote computers on the network. However, due to virtual
machines isolation provided by the hypervisor the software in
the public virtual machine (including Linux kernel) cannot gain
access to data residing within the private virtual machine.

Network support for trusted processes is implemented
through remote execution of required (limited) set of system
calls to the public virtual machine. The hypervisor intercepts
system calls invoked by a trusted process, analyzes the data
and, when necessary, transmits them to the public virtual.
System calls of other processes as well as the rest of the system
calls of trusted processes are serviced locally in the private
virtual machine.

The only information transmitted outside the private virtual
machine is explicitly specified by a trusted process as
parameters of system calls, and besides transfer the information
outside of the virtual machine is serviced by trusted code

(hypervisor). Note that the remote execution of the system call
is made transparent for a trusted process and an operating
system for a virtual computing machine.

Trusted processes are executing under the control of an
untrusted operating system. In-memory data of trusted
applications are not encrypted, stored in clear (unencrypted)
form, and protection system does not restrict the access (both
system and user) to these data. Since untrusted components,
including the kernel, do not have access to the network, they
are not able to disclose sensitive information.

However, in untrusted OS environment it is necessary to
take into account the risk of injecting code into trusted
applications: malicious code in the operating system kernel can
load into the address space of a trusted process necessary code,
then pass control to it, and trusted process on its behalf will
take all necessary actions for the delivery critical information
to a remote computer, which is controlled by the attacker. To
prevent these harmful effects security system protects context
of a trusted process against unauthorized modification by any
program in private virtual machine, including privileged.

IV. ADDAPTATION FROM KVM TO NOVA
So, as mentioned above, open source NOVA hypervisor

has been selected as the hypervisor. At the moment it is being
actively developed in the Intel Research laboratory.

By the arguments in favor of NOVA, above, may be added
that the hypervisor much less than all popular hypervisors
therefore potentially more secure. Also its kernel code has been
verified [11]. On the Fig. 2 you can see a comparison of the
sizes of popular hypervisors and NOVA.

Fig. 2. comparison of the sizes of popular hypervisors

 NOVA is built on microkernel architecture. Microkernel,
which size is less than 10,000 lines of C ++, launches virtual
machines and routes interrupts and system calls. In addition to
the core NOVA includes the “Nova UserLand” NUL, which
includes a virtual machine monitor (Vancouver), memory and
hardware resources monitor (Sigma0) and drivers of external
devices. The total size of NOVA and NUL is less than 50
thousand lines.

Sevigator was built on top of KVM kernel module that
provides hardware virtualization in QEMU environment.
Intercepting calls of the virtual machines, it entrusts to
processing of many functions host OS kernel, under which it is
launched. Moreover KVM is included as a module in the host
OS kernel, and therefore has the highest level of privilege.
There is no division of privilege levels in KVM. The size of
KVM is over 300 thousand lines of code. In the prototype
Sevigator based on KVM interaction was through the address
space and virtual interrupt of pci device, which emulated by
qemu.

During transferring Sevigator to NOVA platform most of
Sevigator’s algorithms have been implemented in components
of NUL.

This section briefly describes the changes made to the
NOVA and NUL, to implement algorithms from Sevigator.

After transfer Sevigator to NOVA a remote service system
call will appear as diagram in Fig. 3

Fig. 3. Architecture of Sevigator in NOVA.

At system start the virtual machine monitor, controlling
user (private) VM, is configured so that it does not have a
network card emulator. That is, when the OS at boot
enumerates PCI bus, it lacks the class of device "network
device". So, operating system has no access to the network, and
all untrusted components, including the kernel, cannot transmit
and receive data from the outside.

However, when a trusted application performs a system call
related to network access, the system call is intercepted by the
hypervisor. System call parameters are copied into an internal
ring buffer, which is not accessible by guest OS in virtual
machines. VM monitor service receives notification of a new
data, reads data from the ring buffer and transmits to the public
VM for handling. Transferring the data from the public VM to
the private VM is implemented similarly.

System calls are intercepted by the hypervisor, but the
processing parameters of the call, the data transmission
between the VM, return control to the VM implemented in
virtual machine monitor. This is done to improve the security
of the system: if the query processing network has vulnerability
then only one VM has been compromised, all other processes

are executed as a microkernel’s process and isolated from each
other.

Functions that implement algorithms of Sevigator were
added to the virtual machine manager Vancouver, which runs
as an application process in NOVA. This protects hypervisor
itself from compromising by the security system. Even if
malicious code can take control over Sevigator, in a single VM,
it will not be able to subdue other virtual machines.

V. MODIFICATION OF NOVA AND NUL
А number of changes to the core components of NOVA

and NUL was required to properly implement the Sevigator.

1. Sevigator’s components, working in the OS kernel and
user space (trusted applications launcher), interact with the
hypervisor through the vmmcall instruction. It was necessary to
implement handlers of vmmcall in NUL. For this, interception
vmmcall instruction has been activated in the NOVA’s kernel
and implemented handler for instruction in virtual machines
manager Vancouver. On AMD platform instructions
interception implemented by setting to 1 the bit, responsible for
this instruction in a control block of the virtual machine
(VMCB). The analysis showed that by the default NOVA set to
1 bits responsible for intercept vmload, vmsave, clgi, skinit. In
order not to break code integrity the special flag has been
added and the specific mask has been changed.

2. To trace action of the operating system, primarily context
switching, Sevigator intercepts specific x86 instructions. These
are system calls, software interrupts, returns from the interrupt,
and others. To support it special handlers, embedded in KVM
code, are implemented in the prototype. When moved to
NOVA it is necessary to implement these instructions
interception means of Sevigator. While intercepting instruction,
you must be able to emulate, as the interception occurs before
running the instruction [12]. Currently Vancouver does not
have complete emulation necessary instructions (iret, int n,
syscall, sysexit), but the implementation of the emulation is
planned by the developers. Since emulation instructions was
not included in the plan of this work, we decided to temporarily
inserted into the core of the guest virtual machine vmmcall
calls immediately after a system call and before returning from
the system call. This decision violates the initial concept of
protection without making changes to the OS, but it is
temporary and it will be replaced as soon as Vancouver
developers implement a full emulation of instructions.

3. To implement memory protection, we need to be able to
access to the virtual machine memory. In Vancouver there is a
subsystem, responsible for emulation instructions that work
with memory. It has no external interfaces through which the
other subsystem (in particular Sevigator) can work with
memory. To access the virtual machine's memory by virtual
address have been added a special message for reading and
writing to the memory of virtual machines. Recall that the
interaction between the components of NUL is given by
messaging. Accordingly, new types of message for reading and
writing were added, as well as handlers of these messages to
the subsystem operating with the memory.

4. To implement the algorithms of the Sevigator‘s network
subsystem should be developed mechanism and implemented

software interface of communication subsystem between
virtual machines NUL. We implemented a ring buffer between
managers of virtual machines, and notification of arrival a new
data signaled through interruption to the virtual machine. In
order to do this, special messages (OP_SVG_WRITE,
OP_SVG_READ) handlers were added to operation memory
monitor. And for notification, during initialization both
Vancouvers initialize its own portals, and send its addresses to
the NOVA kernel; NOVA has handler of the specific system
call, which sends a signal to the desired portal. After storing
data to ring buffer Vancouver needs to send a special system
call to the kernel NOVA, which will notify the other
Vancouver about recording.

5. Sevigator assumes access to the network card. In NUL
possibility of direct access to the pci-devices are implemented
only partially. NOVA has a feature to be the network provider
for the virtual machine, but to use it you need to write a driver
for the network card. We based our driver on the driver, which
was included to the NUL to work with a network card family
ne2000 that emulated by qemu. This driver has been slightly
modified to work with a specific physical card of the ne2000
family. The changes are minimal – we added a missing flag
and reduced the size of the buffer.

VI. CONCLUSION
In this paper we presented an implementation of privacy

protection of network connection of trusted Linux processes in
bare-metal hypervisor. We have conducted a study of open
source bare-metal hypervisors: we have formulated certain
requirements to the type 1 hypervisor, analyzed the available
open hypervisors and by comparing have selected hypervisor
NOVA.

Porting Sevigator from KVM to NOVA is in progress, we
have partly ported confidentiality protecting mechanisms. We
have conducted a study of architecture and mechanisms of
components interaction within NOVA. We have identified and
implemented changes in NOVA, necessary for the functioning
of Sevigator. This allowed:

● to port mechanisms of remote service of system calls;

● to port mechanisms to control trusted application
context;

● to port mechanisms to control memory integrity of
trusted applications;

● implement a prototype of network boot mechanism.

Thus, the outcome of the project is a prototype of security
system that protects the integrity and confidentiality of
information stored and processed on a computer connected to
the network and controlled by potentially malicious operating
system.

Developed prototype provides protection of information
systems from the injection of malicious code by modifying the
memory, images of executable files or script files, protect the
integrity and confidentiality of data while transiting over the
network.

[1] Intel® 64 and IA-32 Architectures Software Developer's Manual
Combined Volumes 3A, 3B, and 3C: System Programming Guide
 [Online]. Available:
http://www.intel.com/content/dam/www/public/us/en/documents/manual
s/64-ia-32-architectures-software-developer-system-programming-
manual-325384.pdf)

[2] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C.
A.Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow:a
virtualization-based approach to retrofitting protection in
commodityoperating systems,” SIGOPS Oper. Syst. Rev., vol. 42, pp. 2–
13, March 2008. [Online]. Available:
http://doi.acm.org/10.1145/1353535.1346284

[3] Burdonov I., Kosachev A., Iakovenko P. Virtualization-based separation
of privilege: working with sensitive data in untrusted environment. //1st
Eurosys Workshop on Virtualization Technology for Dependable
Systems, New York, NY, USA, ACM. 2009. P. 1-6.

[4] D.V. Silakov. Using Hardware-assisted Virtualization in the Information
Security Area. pp. 25-36. Proceedings of the Institute for System
Programming of RAS, volume 20, 2011. ISSN 2220-6426 (Online),
ISSN 2079-8156 (Print)

[5] P. Iakovenko. Transparent mechanism for remote system call execution.
pp. 221-242. Proceedings of the Institute for System Programming of
RAS, volume 18, 2010. ISSN 2220-6426 (Online), ISSN 2079-8156
(Print)

[6] P. Iakovenko. Ensuring confidentiality of information processed on a
computer with a network connection. Information security problems.
Computer Systems. №4. 2009. pp. 23-41. (In russian)

[7] Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa
Omote, Shoichi Hasegawa, Takashi Horie, Manabu Hirano, Kenichi
Kourai, Yoshihiro Oyama, Eiji Kawai, Kenji Kono, Shigeru Chiba,
Yasushi Shinjo, and Kazuhiko Kato. 2009. BitVisor: a thin hypervisor
for enforcing i/o device security. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution
environments (VEE '09). ACM, New York, NY, USA, 121-130.

[8] Udo Steinberg and Bernhard Kauer. 2010. NOVA: a microhypervisor-
based secure virtualization architecture. In Proceedings of the 5th
European conference on Computer systems (EuroSys '10). ACM, New
York, NY, USA, 209-222.

[9] Chris Takemura and Luke S. Crawford. The Book of Xen. No Starch
Press. October 2009, 312 pp. ISBN-13 978-1-59327-186-2,

[10] A. Crespo, I. Ripoll, and M. Masmano. 2010. Partitioned Embedded
Architecture Based on Hypervisor: The XtratuM Approach. In
Proceedings of the 2010 European Dependable Computing Conference
(EDCC '10). IEEE Computer Society, Washington, DC, USA

[11] Nova Micro-Hypervisor Verification http://os.inf.tu-
dresden.de/papers_ps/tr-tews-vnova-2008.pdf

[12] AMD64 Architecture Programmer’s Manual Volume 2: System
Programming
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.p
df

