
An architecture of effective discrete-event simulation

engine for early validation of avionics systems

Denis Buzdalov

Institute for System Programming
of the Russian Academy of Sciences

Moscow, Russia
Email: buzdalov@ispras.ru

Abstract—Nowadays models which are used in the
avionics (aviation electronics) development are large
and can contain complex behaviour specifications, espe-
cially on early stages. This leads to high requirements
to simulators which are used for such models analyses.
Existing open-source simulators are not applicable or
not effective in application on such models. An archi-
tecture of a discrete-event simulator using continuations
approach for avionics models analysis is suggested.

Keywords—discrete-event simulation, avionics, early
validation

I. Introduction

An area of creation and verification of avionics (avia-
tion electronics) and other responsible systems is consid-
ered.

Nowadays design processes of such systems cannot
be performed without modelling techniques usage. Such
models are used not only for creation of systems but
also for analysis and validation of them (including early
validation). Such analyses are usually performed in an
automated way because of the great size of analyzed
models. That is why we consider only automated ways of
the model analysis.

There are a lot of kinds of analysis. One of division
aspects of functional characteristics analyses is a division
to static and dynamic analyses. Both types are important
but each one has features that doesn’t allow a type to oust
another one.

So, static analyses usually give guaranteed estimation
of model characteristics. Because such estimations are
given for the model in general, they usually are pretty
pessimistic. Also, new type of estimated characteristic
often leads developing of new static analysis method.

Dynamic analyses are used to determine more opti-
mistic estimations. But important feature of such methods
is that such estimations are determined only for particular
cases. This means that estimated characteristics are not
guaranteed to be the same in different environments (input
data and non-determinism resolution). This does not allow
to use dynamic analysis to reason about a model in general.

1This work is licensed under the Creative Commons Attribution
License.

A lot of kinds of dynamic analysis exist. They can
differ in data, prerequisites and aspects that system can
be analyzed with.

Simulation is a widely used type of dynamic analysis.
This approach allows to estimate both timing and func-
tional properties of designed systems in different cases.

One of particular kind of simulation — discrete-event
simulation — is considered in this work. This kind of
simulation is naturally suitable for the computer systems
modelling. In this approach the work of the modelled
system is represented as a sequence of discrete events. Each
discrete event is an atomic action of internal state change
and interaction with outer world and other components.
All actions of a single discrete event are performed in a
single moment of the simulation time.

This paper considers a problem of having or building of
an effective and convenient simulation system for avionics
systems analysis.

II. Simulation system requirements analysis

There are a lot of ways how discrete-event simulation
can be performed. They can differ in both which charac-
teristics are taken into account and which input data is
required for the simulation system.

A. Events source

One of differences between the discrete-event simula-
tion approaches is in the events source. Some of them
consider only periodic events which are caused by the time.
Also sporadic events can be considered. Such events are
caused by some internal or external events which have to
be modelled appropriately. Also, hybrid approaches which
can consider the both event sources types, exist.

B. Model time

Another difference between approaches is in how accu-
rate the time is modelled.

In some approaches time can be only a source of cause-
and-effect relationships between discrete events.

Duration of events and processes have to be taken
into account for more accurate modelling. This allows to
retrieve estimations of timing properties as a result of the
model analysis.



C. How behaviour is modelled

Approaches of the discrete-event simulation can differ
in the ways of how behaviour of model components is
modelled.

Model can, for example, be represented as a randomized
events flow with given probability characteristics and de-
scription of how the component reacts to external events.
Model also can be imperative. For example, it can be rep-
resented as either a finite state machine (FSM), extensions
of FSM which work with extended memory state and time,
or some other transition systems. Also the behaviour can
be modelled as a program model, when model is a code in
some programming language.

Finite state machines (in particular, extended and
timed) and specialized transition systems are usually nat-
urally suit for describing of a behaviour of small compo-
nents. Also, some of such models are studied well and can
be analyzed in some other way except the execution. Such
analyses can be used during the whole system analysis.
But still, usage of such models is a bad idea for modelling
of complicated behaviours (in particular, requiring a lot of
internal states and events).

Program models are vice versa: they can pretty conve-
niently used for modelling of very complicated behaviour
but they usually can be used only for execution.

But program models have an additional advantage: any
simpler model (e. g. FSM and other transition systems)
can be translated automatically to a program model. This
means that if a simulation system supports program mod-
els, simpler model types can be supported automatically.

Randomized events flow is sometimes a really good
behavioural model type for some types of components.
And in most cases this model representation also can be
translated to a program model automatically.

D. Abstractness

Two independent metrics of abstractness of the system
models can be distinguished.

One of them is a structural abstractness. Structurally
abstract models have components which are going to be
refined in the future development but at the moment their
structure, number and properties of its subcomponents are
not known.

Another factor is a behavioural abstractness: the way
how accurate behaviour is modelled. This influences on
how accurate different aspects are reflected:

• internal state of a component;

• influence of a component to the other ones;

• data which components are working with;

• time intervals between events.

Which model characteristics can be retrieved during the
analysis process depend on the behaviour abstractness of
a model.

Relative complexity of behavioural models are more or
less the same in case when model is accurate by both fac-
tors and in case when model is abstract by both factors. If
structurally abstract model is built behaviourally accurate,
behavioural models of each model component can be very
complex (both by internal state and by interaction with
environment).

E. General requirements

Support of working with models represented in different
abstraction levels is essential for the early model analysis
and validation. In particular, it is really important to
analyze structurally abstract and behaviourally accurate
models. This allows to check single structure refinements
and to find out incorrect ones.

To provide this, the way of how behaviour is modelled
have to be convenient for complex behaviours. But still,
simple behaviours in structurally accurate models have to
be able to be defined in a simple way (which is convenient
to be done using some formalisms like transition systems).

That’s why we consider that in a context of early
analysis and validation it is important for a simulation
system to support program models. But still, support of
translation of other representations is really important too.

The very important aspect of usability of such simula-
tion systems is their main users — designing engineers and
integrators — familiarity to program tools and languages
or at least to used paradigms.

Moreover it is important to be able to conveniently
represent an internal state of a component and to work
with it in a behavioural model in a convenient way. Con-
sidering ideas from above the best candidate for that is
some imperative high-level language which has libraries of
collections, basic algorithms and other useful features.

Models of avionics systems can be very big. But nev-
ertheless simulation of such systems have to be performed
relatively fast.

Such models usually can be divided into some parts
that rarely interact with each other. This makes to think
that parallel simulation (with correct distribution of com-
ponents to nodes) can be performed with an acceptable
performance.

Nowadays it is important for a simulation system to
be portable. This is good both for users and for the
organization process of a parallel simulation. But this
requirement can add some restrictions to the way how
behaviour is modelled.

III. Related work

There are some work and open-source instruments
related to the discrete-event simulation.

Some instruments are based on formalisms that require
explicit declaration of all finite states of the modelled
component and all transitions between those states (in-
cluding the timing properties of transitions). For example,
instruments adevs [1], PowerDEVS [2] and DEVSimPy



[3] use pretty popular formalism DEVS (Discrete Event
System Specification) [4]. Galatea [5] is based on a similar
formalism. There are discrete-event simulation systems
based on the Petri net, for example CPN Tools [6]. As
it is said above, such models can be successfully used in
accurate models but do not suit for describing complex
behaviours in structurally abstract models.

There are some instruments that are using seldom used
in avionics area functional languages (for example, Scala
and Haskell used by Facsimile [7] and Aivika [8], [9])
or specific custom languages (for example, jEQN [10] for
SimArch [11]).

Some instruments which are not in classes above (for
example Tortuga [12], MASON [13], DESMO-J [14] and
SimPy [15]) architecturally cannot be parallelized.

JaamSim instrument [16] is aimed only to graphical
simulation and that’s why it hardly can be used in the
automated model analysis.

Thus, for fitting all requirements it is needed to design
an architecture of discrete-event simulation which supports
program models (using imperative high-level language)
with parallel simulation support.

IV. Architecture

A. Interaction with simulation environment

The first question was how to organize interaction be-
tween a behaviour model and its environment: simulation
time and other model components.

We will call a basis a set of action types in a code
of a program model which can be used to describe a
behavior. A basis has a part intended for an interaction
with environment.

Two fundamentally different approaches were consid-
ered.

1) Synchronous interaction: Originally a synchronous
basis was chosen. This approach is used in a number of
discrete-event simulation libraries.

The main idea of the approach is that the code of
a behaviour model determines moments of time when it
is ready in get information from outside. In that case
behaviour model can contain the following types of actions
(besides actions on the internal state):

• non-blocking data sending to some other model
component;

• notification a simulator about the end of the cur-
rent discrete event with the next event starting at:

◦ given moment of the simulation time;
◦ external event receiving (with ability to set

a timeout).

Program models designed for this approach are linear.
Such program model can be defined as a description of
an internal state and a single function containing all
behaviour. Such way of modelling seems to be natural

because a component life-cycle exists explicitly in a model
as a single entity (function mentioned above).

Moreover, simulator providing such basis can be imple-
mented to be very effective. In particular, such modelling
approach allows to simulate independently rarely interact-
ing parts of a model: until some parts do not send some
data to each other they can be simulated in their own
simulation time without violation of consistency and with
no need of saving and storing of internal states.

But this approach has some problems.

Lets consider a situation when basis of interaction
allows ending of a discrete event for receiving external
data with a zero timeout. This is used, in particular, to
implement a logical expression of kind "if at the current
moment there was an external event X we should do one
thing else another one". Such kind of expressions are widely
used in behaviour modelling when using synchronous basis.

In the considered case results of a simulation really
depends on the order of execution of discrete events which
are scheduled to the same simulation time. In other words,
some messages from one to another model component can
be non-deterministically delayed. Obviously, simulation
that allows such case cannot be used for accurate analysis
of latency and other timing characteristics of models.

Basis can be changed in the following way to not
to allow this. Behaviour model have to set a delta —
positive time which is the minimal time to wait before the
next event can arise — each time the external events are
processed. The problem of using of such basis can raise
when such delta have to be null or depends on external
data. In that case delta cannot be given correctly.

One more problem of this basis was discovered. The
problem is that the code of behaviour model have to
manage external data in the order of their coming. This
is not always possible (or, at least, convenient) because
sometimes component have to manage some concrete data
to make a decision. This leads a basis to have methods for
incoming data filtering.

2) Asynchronous interaction: An asynchronous basis is
an alternative to a synchronous one. The behaviour model
have to react somehow to an external data in the very
moment it comes. But still, one of the variant of such
reaction is ignoring.

It is important that a model represented in such basis is
not linear. This leads a rethinking of what the component
behaviour model is. Also it influences on an internal state
of a component.

It is stated that any model represented in a synchronous
basis can be represented in an asynchronous one. This
means that the class of possible behaviours described in
an asynchronous basic is not smaller (and, in fact, bigger)
that class of synchronous ones.

Such basis allows to consider all incoming data and to
interrogate other components each moment of time. This
makes behaviour modelling much easier comparing to the
synchronous approach.



Fig. 1. Threaded approach on a single node

Ability of interrogation allows to model a continuous
process initiation in an easy way. One component can
initiate a continuous process in another component and
is able to retrieve a result of this process as soon as it
finishes.

Thus, asynchronous basis contains the following actions
list:

• non-blocking data sending to some other model
component;

• notification a simulator about the end of the cur-
rent discrete event with beginning of the next event
starting not later than the given moment of time;

• interrogation of the internal state of other compo-
nent or initiation of a continuous process in it (in
that case the current discrete event ending is also
performed).

Simulator providing such basis is harder to implement
in an effective way (comparing to the synchronous one).
Nevertheless, the class of behaviours that can be modelled
becomes adequate to requirements. That’s why is was
decided to use the asynchronous basis.

B. Execution architecture

It is important to consider that program model code
execution have to be suspended at the end of discrete
events to make other components to able to execute their
own events at the same moment of the model time.

One of the simplest and obvious ways of organization
of such alternating execution is the usage of a multiple
threads. One thread is created for each component and
they are suspended by a simulation system when a function
of the end of discrete event is called. Thread is suspended
until new event is raised for the corresponding component.

This approach is practical and pretty easy to imple-
ment. But it has some remarkable drawbacks.

One of them is that a behaviour model writer can easily
create a deadlock. This situation can be preserved by using
of some conventions for the behaviour model code but
these conventions cannot be checked automatically by a
simulation system.

But the main drawback, as it is seen from practise, is
a high load to the threading subsystem of an operating
system: models can have tens of thousands of active com-
ponents so there are the same count of threads (fig. 1). This

worked well for Linux-based operating systems. But some
operating systems cannot manage with such load which
leads to inability of simulation using them. This approach
made the portability to be a problem.

One way of how this problem can be solved is a parallel
simulation. This means that if we have enough count of
nodes each of them would have small enough count of
threads to be managed by any multithreaded operating
system (fig. 2).

But having the size of a model as tens of thousands of
components and limitation of operating systems to about
a hundred of threads we have to use hundreds of nodes.
Sometimes it is not really possible to have such count of
nodes. Nevertheless usually models cannot be divided to
hundreds of parts which rarely interact. This means that
overhead of such simulation will be very big.

However, another way of such models execution organi-
zation execution exists. This way does not have drawbacks
mentioned above but still requires some effort to apply it.
This approach is called continuations or coroutines in the
computer science [17], [18].

The continuations approach allows to execute several
different program models in a single system thread. This
means that program model code can be suspended and
after that it can be resumed from the very point is was
suspended. In other words, the program model code can be
run at the beginning of the current discrete event handling
point.

This approach runs into a problem of correct error
tracing because control flow changes vastly and some effort
is needed to make error traces (including stack traces) to
look as if control flow was unchanged. Storing of additional
information for that leads having some overheads.

Some modern and progressive programming languages
which are using virtual machines for program execution,
have the continuations approach built in. Classic languages
have libraries implementing this approach but these li-
braries require an after-compilation program instrumen-
tation.

Instrumentation of library program models is not a
hard problem. But instrumentation of user program mod-
els can be a problem and require additional organization
of the simulation process start.

Nevertheless, applying this approach (fig. 3) allows to
increase maximal count of model components running a
single node. This count becomes operating system inde-
pendent. This means that more optimal division of a model
to simulation nodes can be achieved. Thereby simulation
effectiveness increases.

V. Integration

Simulator having architecture described above has been
implemented and integrated as a part of an instrument
MASIW [19], [20]. This instrument is dedicated to de-
veloping and analysis of avionics models using AADL
[21] (architecture analysis and design language), which is



Fig. 2. Threaded approach on multiple nodes

Fig. 3. Continuations approach on multiple nodes

widely used in creation of different responsible systems
including avionics systems.

MASIW is a platform of developing of AADL-based
models. It supports different representations and analysis
of developed systems. The framework of this instrument is
an open source.

This instrument has several static and dynamic model
analysers. One of its analyzers is a discrete-event simula-
tor. It is based on an architecture above and is used for a
general dynamic analysis of AADL-models’ behaviour.

VI. Conclusion

The main contribution is the architecture of the
discrete-event simulation system that allows to simulate
large systems (containing tens of thousands of compo-
nents) using program behaviour models.

Also interaction of a program model with a simulation
environment was investigated. It was shown that some
approaches of interaction used in simulation libraries are
inapplicable in some cases. An alternative way was sug-
gested.

These architecture solutions were applied in a powerful
avionics model design and analysis tool. This allowed
to perform pretty fast and accurate analysis of avionics
models (including models for the early validation). The
architecture allowed to not to require a lot of simulation
nodes for such analysis.

References

[1] Adevs library, http://web.ornl.gov/~1qn/adevs/.

[2] PowerDEVS, http://sourceforge.net/projects/powerdevs/.

[3] DEVSimPy, https://code.google.com/p/devsimpy/.

[4] B. Zeigler, Theory of modeling and simulation: integrating
discrete event and continuous complex dynamic systems. San
Diego: Academic Press, 2000.

[5] Galatea, http://galatea.sourceforge.net/.

[6] CPN Tools, http://cpntools.org/.

[7] Facsimile, http://facsim.org/.

[8] D. Sorokin, An Introduction to Aivika Simulation Library, 2013,
https://github.com/dsorokin/aivika.

[9] A scala port of the Aivika simulation library,
https://github.com/dsorokin/scala-aivika.

[10] A. D’Ambrogio, D. Gianni, and G. Iazeolla, “jEQN a java-
based language for the distributed simulation of queueing
networks,” in Computer and Information Sciences — ISCIS
2006, ser. Lecture Notes in Computer Science, A. Levi,
E. Savaş, H. Yenigün, S. Balcısoy, and Y. Saygın, Eds.
Springer Berlin Heidelberg, 2006, vol. 4263, pp. 854–865.
[Online]. Available: http://dx.doi.org/10.1007/11902140_89

[11] D. Gianni, A. D’Ambrogio, and G. Iazeolla, “SimArch: A
layered architectural approach to reduce the development effort
of distributed simulation systems,” in Proceedings of the 11th
International Workshop on Simulation & EGSE Facilities for
Space Programmes (SESP10), Noordwijk, The Netherlands,
sep 2010.

[12] Tortuga, https://code.google.com/p/tortugades/.

[13] MASON Multiagent Simulation Tool,
http://cs.gmu.edu/~eclab/projects/mason/.

[14] DESMO-J, http://desmoj.sourceforge.net/home.html.

[15] SimPy, http://simpy.readthedocs.org/en/latest/.

http://web.ornl.gov/~1qn/adevs/
http://sourceforge.net/projects/powerdevs/
https://code.google.com/p/devsimpy/
http://galatea.sourceforge.net/
http://cpntools.org/
http://facsim.org/
https://github.com/dsorokin/aivika
https://github.com/dsorokin/scala-aivika
http://dx.doi.org/10.1007/11902140_89
https://code.google.com/p/tortugades/
http://cs.gmu.edu/~eclab/projects/mason/
http://desmoj.sourceforge.net/home.html
http://simpy.readthedocs.org/en/latest/


[16] JaamSim, http://jaamsim.com/.

[17] D. E. Knuth, The Art of Computer Programming vol. 1: Fun-
damental Algorithms, 3rd ed. Addison-Wesley, 1997, pp. 193–
200.

[18] J. C. Reynolds, “The discoveries of continuations,” Lisp and
Symbolic Computation, vol. 6, no. 3-4, pp. 233–248, 1993.

[19] A. Khoroshilov, D. Albitskiy, I. Koverninskiy, M. Olshanskiy,
A. Petrenko, and A. Ugnenko, “AADL-based toolset for IMA
system design and integration,” in SAE 2012 Aerospace Elec-
tronics and Avionics Systems Conference, vol. 5, no. 2. SAE

Int., 2012, pp. 294–299.

[20] D. Buzdalov, S. Zelenov, E. Kornykhin, A. Petrenko, A. Strakh,
A. Ugnenko, and A. Khoroshilov, “Tools for system design of
integrated modular avionics,” in Proceedings of the Institute for
System Programming of RAS, vol. 26, no. 1, 2014, pp. 201–230.

[21] Architecture Analysis & Design Language (AADL), SAE
International standard AS5506B, SAE International, 2012,
http://standards.sae.org/as5506b/.

http://jaamsim.com/
http://standards.sae.org/as5506b/

	Introduction
	Simulation system requirements analysis
	Events source
	Model time
	How behaviour is modelled
	Abstractness
	General requirements

	Related work
	Architecture
	Interaction with simulation environment
	Synchronous interaction
	Asynchronous interaction

	Execution architecture

	Integration
	Conclusion
	References

