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Abstract—The paper presents a lightweight approach to static
data race detection. It is based on the Lockset one, but it
implements several simplifications that are aimed to reduce
amount of false alarms. The approach is implemented on top
of CPAchecker tool and its evaluation is in progress. The main
target of our research and evaluation is operating system kernels
but the approach can be applied to analysis of other programs
as well.
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I. INTRODUCTION

Despite a great progress in the field of software verification,
errors associated with multithreading execution remain among
the most difficult to identify. In addition concurrency bugs
are rather noumerous and, for example, make up about 20%
of all bugs on average across file systems [1]. The most
common causes of errors associated with the parallel execution
of system code are data race conditions in which simultaneous
access to shared data from multiple threads takes place. In
particular the analysis of bug fixes for a year of Linux kernel
development has shown that errors associated with data races
are the most numerous class and make up 17% of typical
errors [2].

At the moment there are two ways for finding data races
automatically: dynamic analysis and static analysis. Dynamic
analysis techniques allow to obtain a relatively small percent-
age of false alarms, but they are able to find data races only
at those paths that occurred during the actual execution of a
program. As far as data race recquires two almost simultanious
accesses to the same data, this fact reduces chance of its
detection. Also it is known that a significant number of
execution paths are difficult to reproduce in test environment.
Examples of tools, implemented such method, are Eraser [3],
RaceHound [4] and DataCollider [5].

Methods of static analysis have the other problems. The
lightweight methods, e.g. method, implemented in the tool
Locksmith [6], analyze source code superficially. Such meth-
ods allow to find simple errors and work very fast. But the
number of false alarms is about 90% on device drivers and
about 98% on some POSIX applications [7]. The idea of
such methods can be improved to decrease number of false
alarms. The another way is heavyweight analysis. It is much
more precise, but requires a lot of time. In case of data race
detection total number of places, where data race can occur,
is too large. There are some experiments with verification
of kernel modules source code, for example, DDVerify [8].
But the results showed that the heavyweight multithreaded

analyis does not scale on such code. They got a combinatorial
explosion of states, so, even for small modules the amount of
recuired time and memory was huge.

In operating system kernels parallelism is more complex
and less precise, because many kernel functions can be exe-
cuted in parallel and it is difficult to define when the parallel
execution can start. So finding data races in operating system
kernel is much more difficult than in user-level programs.

So there is a need to create a lightweight method of static
analysis which is easy to scale to large amounts of source code
and allows to find most of error cases while keeps false alarms
rate at reasonable level.

In this paper we suggest a new method of static analysis
for data race detection, implemented on top of CPAchecker
tool [9].

The rest of the paper is organized as follows. In the Section
2 required definitions are given. After that the idea of analysis
is presented. The Section 4 describes the idea of configurable
program analysis. After that implementation of our method is
given. Then a need of annotations of source code is explained.
The Section 7 talks about the solution architecture. After that
the visualization of results is presented. In conclusion we
briefly speak about the results, related work and future plans.

II. DEFINITIONS

In this article term thread is used to represent independent
thread of execution in operating system kernel, for example,
interrupt handlers and system calls executed on behalf of user
space threads.

A lock is an object used for concurrent memory access
exclusion. If lock is acquired from one thread the another
thread trying to acquire the same lock can not continue its
execution before the lock is released. For example, mutexes
and spin locks are typical examples of such locks. We con-
sider the kernel specific syncronization mechanizms such as
disabling of interrupts and scheduling as specific locks as well.
The lock can be linked with an address. For example, function
mutex_lock(&mutex) linked with the address &mutex.

Shared data — an area of memory which is available
from several threads. In C language shared data is presented
by global variables and pointers to memory which is accessible
from several threads via legal C constructions. It is important
to note that sharedness is a characteristic of time. A local data
can become shared at one point and return its local status later.

Usage of data — read or write data access.
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Data race condition is a situation when there are two
concurrent access to the same shared data and at least one of
the access events is writing. Data race does not always lead to
an error (for example, access to statistics counter), but it is a
symptom of it.

III. LIGHTWEIGHT METHOD OF DATA RACE DETECTION

Our method is based on algorithm Lockset [3]. This
algorithm considers two usages of the same data as a data race
if these usages occur with disjoint sets of locks. The algorithm
Lockset stores locks for every thread and set C of potential
candidates of locks for every usage of shared data. If a usage
occurs it intersects C and set of acquired locks for current
thread and obtain new set C̃. If the last one is empty this is
potential data race.

As far as our goal is to develop a lightweight static analysis
method to analyze large amount of source code we apply some
simplifications.

Our first heuristics is a definition if shared data is the same.
We do not analyze a memory model but consider memory
locations as the same only by syntax rules. For variables the
equality of memory locations follows only from the equality
of variables. Pointers with equal names are always considered
to be pointed to the same memory area.

The second simplification makes a try to decrease a number
of false alarms. We generate warnings only for usages of data,
protected by locks at least once. If there are two usages without
locks at all we do not generate warning. This is rather strong
limitation because many real errors can occur exactly without
locks.

The last simplification is the model of threads. We consider
that every kernel API function, specified in documentation,
could be executed in parallel with other one, including itself.
The actual interrelation between kernel API functions is more
difficult.

IV. CONFIGURABLE STATIC ANALYSIS

As far as our method implementation is based on Con-
figurable Program Analysis (CPA) [9] let us briefly describe
it.

The main idea of configurable static analysis is to combine
advantages of data flow analysis and model checking methods
and create a way to configure its interrelation. On the one hand,
in data flow analysis algorithm works with control-flow graph
(CFG) of program, disseminating information along the edges,
on the other hand, model checking algorithms of heavyweight
analysis unroll the tree of reachable states until one of the
states will not be covered by another state.

In configurable static analysis proposed in [9] it is allowed
to configure the analysis algorithm CPA choosing the merging
operator and way to check the completion of the analysis.
In addition, configurable static analysis can be configured of
several algorithms CPA offering different types of analysis.

Configurable program analysis (D, transfer,
merge, stop) consists of an abstract domain D, transfer
relation transfer, merge operator merge, the stop operator
stop as described below. These four components configure

analysis algorithm and affect the accuracy and the resources
required for analysis.

Abstract domain D specifies the set of abstract states. Every
abstract state is matched to its abstract value, i.e. set of concrete
states, which it represents. Concrete state of program is a
mapping of program variables set into the values of these
variables.

Transfer relation transfer determines for each abstract
state e potential following abstract states {e’}, where each
transition is marked by an edge of the CFG.

Operator merge allows to combine information from
several paths of analysis. It determines, when two nodes of
the reachability tree are merged into one and when they are
analyzed individually. In the data flow analysis merging always
happens, when nodes refer to the same point in the program. In
classical methods of model checking nodes are never merged.

Operator stop checks whether the current state is covered
by set of given states (already completed state). It determines
when consideration of a path is stoped in current node. In the
data flow analysis stop occurs when there is no abstract state
including new concrete states, i.e. a fixed point is reached. In
the methods of model checking stop occurs when one set of
concrete states corresponding an abstract state is a subset of
states corresponding to some other abstract state.

Let us look at one example of CPAs configuration tree
(Fig. 1).

Fig. 1. Simple CPA configuration tree

We have three CPAs. The main is CompositeCPA. It
includes LocationCPA and CallstackCPA.

State of LocationCPA contains only a line of source code.
Hence its abstract domain is the set of possible line numbers.

Transfer relation changes the line number of cur-
rent state to the line number of the edge successor.

Merge operator never merges states. Stop occures only
if we have already analyzed the current state before.

State of CallstackCPA consists of function calls stack. If
we call a new function we push its name at top of the stack.
If we return back we pull its name from the stack. It is the
work of transfer relation. Stop and merge are the same as
previous ones.

The aim of CompositeCPA is to combine CPAs mentioned
above. Its domain is a cartesian product of LocationCPA
domain and CallstackCPA domains. Transfer relation of Call-
stackCPA calls the containing transfer relations. First, it obtains
a new state of LocationCPA, then a new state of CallstackCPA,
and combines them together, thus we get the new state of
CompositeCPA.



Merge and stop operators are also a combination of
containing ones. To merge two states of CompositeCPA, first,
Location states are merged, then Callstack ones are merged
and finally they are combined into a next Composite state.
The stop operator works in the similar way: if any containing
CPA consider to stop analysis the analysis is stoped.

Consider, how the composition of CPAs analyzes the
simple code:

1. int g(int a) {
2. int b = 0;
3. if (a == 0) {
4. b++;
5. }
6. return b;
7. }
8. int f() {
9. return 0;
10. }
11. int main() {
12. int t;
13. t = f();
14. g(t);
15. }

In figure 2 there is a path of an analysis of the program
above.

Fig. 2. Analysis path

First number in the braces is representing the state of
LocationCPA (the line number) and after that follows the call
stack of functions. Analysis starts from the main function, then
it analyses the function f, then goes to g. In this function it
meets if condition at line 3. It analyses two branches and gets
the same resulting states at line 5. It means that one state is
covered by another, so it continues the analysis with the only
state.

V. IMPLEMENTATION

The implementation of the method is proposed to be into
two stages. First of all, the shared data are identified, then for
every usage of shared data the set of acquired locks is obtained.

Figure 3 represents these stages in CPAchecker-Lockator. The

Fig. 3. Stages of analysis in CPAchecker-Lockator

configuration for Shared analysis consists of functions which
introduce local data, for example, calloc(), malloc()
and so on. We are sure that pointer returned by these functions
points to local data and in current point of program it can not
be shared. The configuration for Lock analysis includes locks
descriptions and annotations which are described in section VI.

A. CPA configuration for Shared analysis

Shared analysis is used for collecting the list of shared
variables in every point of a program, see Fig. 4.

Fig. 4. Shared analysis configuration

BAMCPA (Block Abstraction Memorization) [10] — is
responsible for modularity of analysis. If a function has been
already analyzed with some state before the call and a set of
resulting states on return from the function were already stored,
the reanalysis of this function does not occur, the stored states
are used instead.

ARGCPA (Abstract Reachability Graph) — is responsible
for restoration of a path from current state to initial one. It
stores parents and children for every state, so it can traverse
all reached states and reestablish the path.

CompositeCPA — provides the analysis where the state is
a product of the containing CPAs and the transter is performed
for all containg CPAs simultaneously.

LocationCPA — stores current line of source code in its
state and is responsible for traversal of CFG.



CallstackCPA — stores a stack of called functions, so it is
responsible for transfering by function calls and returns.

LocalCPA — is responsible for detecting locality of all
variables accessible in current point of program. The data
status can be local, global or unknown. The task of transfer
operator is to spread the status variables for assignment oper-
ators and function calls. For example, if there is assignment a
= b then status of variable b is transferred to the variable a.
At merge points the analysis joins results on the branches, such
that for each variable the maximal status is taken. Considering
the following example:

if (condition) {
a = b;

} else {
a = c;

}

At the merge point of the two branches of the if statement
the status for a variable is taken as maximal status between
then-branch and else-branch. Therefore, if b is local and c is
global, then the result for a is global.

The result of this stage is a list of shared data. If we do
not exactly know the sharedness we include the data into the
list, thus considering it as shared.

B. CPA configuration for Lock analysis

Lock analysis is used for collecting a set of acquired locks
for every usage of shared data, provided by previous stage of
analysis.

Fig. 5. Lock analysis configuration

ABMCPA, ARGCPA, LocationCPA and CallstackCPA are
the same.

UsageCPA collects statistics of data usage. Transfer rela-
tion of UsageCPA identifies variables used in the expressions
for read/write access and keeps the call stack for the usage, as
well as a set of acquired locks.

At the end of analysis we obtain statistics about all usages
for every shared data. The usage consists of:

• Set of acquired locks;

• Stack of function calls;

• The line number;

• CFG edge type (a function call expression, etc.);

• The type of access (READ, WRITE).

The UsageCPA is also used to establishing equality of vari-
ables, so they can be regarded as the same data for the analysis.
This is required, for example, for lists, where the elements of
the list usually have equal variable names like next given by
the field name of the list structure. If we do not distinguish
elements of different lists we get many false alarms, because
the usages of different lists may be pretected by different lock
sets. That is why we want to bind the variable representing
the elements to the list variable name to distinguish between
the other lists. For this purpose the configurations contains
functions which are used to work with the list. For example,
the expression e = getElement(list) binds the variable
e to the variable list passed as a parameter. In transfer relation
upon detection of an annotated function the binding relation
is changed accordingly.

LockCPA analyzes the set of acquired locks. Its state holds
a set of locks acquired during the program execution. Each
lock contains information about:

• Name of the lock;

• Recursive counter of acquires;

• Stack of function calls for every acquire.

Transfer relation changes the state of a plurality of acquired
locks. When a lock acquisition function is called, the cor-
responding lock is added to the lock set or the counter is
incremented. When a releasing function is called, the the
counter is decremented and if it becomes zero the lock is
removed from the set.

States of all CPAs are never merged. Analysis stops if a
state has been already analyzed.

VI. ANNOTATIONS

Let us consider the following chunk of code:

if (!isLOCKED) {
lock();

}
global_var++;
if (!isLOCKED) {

unlock();
}

In this example the increase of the global counter always
occurs under the lock. Either someone acquires it earlier, or
this function acquires it and releases it after increasing counter.
But the analysis considers four paths because it can take if
or else branch in both if statements. Two of these paths are
infeasible, because the conditions in the if statements are the
same. So at the end the analysis has two states of acquired lock
sets: {lock} and {∅}, where the first one is is not reachable
in the real execution.

Such situations do not often occur, but each of them offers
a significant number of false alarms, since the output of the
function under lock affects all further paths of analysis. The
annotation of functions are used to deal with such cases. It
is a way to tell analysis that a function is always releases or
acquires the lock.



Annotation describes function in terms of LockCPA states.
After the function has been analyzed, the state is adjusted in
accordance with the annotation.

Currently 4 types of specifications are supported:

• Acquiring a lock — function always acquires a lock.

• Releasing lock — function always releases a lock.

• Reseting a lock — if the lock can be acquired several
times recursively, the function totally releases it.

• Restoring a lock — function does not modify set of
locks, all changes should be forgotten.

VII. SOLUTION ARCHITECTURE

For race detection we reuse the Linux Driver Verification
(LDV [11]) architecture developed within ISPRAS project for
the verification of Linux operating system device drivers (see
Fig. 6).

Fig. 6. Solution architecture

First kernel of operating system is prepared. During this
stage compiler calls are replaced by our command extractor
calls. Also other modules are prepared for building at this
stage. Then build command stream is extracted by special
scripts. Obtained command stream is transmitted to Domain-
Specific C Verifier component. It instruments source code, us-
ing locks description. For example, it replaces macros used for
acquisition and releasing locks by model functions, annotated
in the configuration, because macros can be expanded to very
difficult command sequence, while model function is easier to
analyze.

Then model of environment is included. It is presented by
main function containing system calls which can be executed
in parallel according to documentation and interrupt handlers
calls. So we consider that all functions called from main are
executed simultaneously.

After all preparations the source code is analyzed by
CPAchecker-Lockator. It generates report containing a list of
unsafe cases with detail information about each of them.

Statistics General Unsafe
Global variables: 195 29

Simple: 122 23
Pointer: 73 6

Local variables: 3 0
Simple: 0 0
Pointer: 3 0

Structure fields: 118 24
Simple: 105 24
Pointer: 13 0

Total: 316 53

TABLE I. Example of general report for launch on Linux driver
floppy.ko

VIII. VISUALIZATION OF RESULTS

To visualize the potential cases of data races another
component of LDV Tools called Error Trace Visualizer is
reused. When the tool generates a warning about the data
race, it must be shown to the user. Moreover, the user should
check if it is a false alarm or true error. Therefore it is
necessary to present visualization of the unsafe error trace and
its association with the context - source code under analysis.
Error Trace Visualizer interprets the data received from the
verifier, converts them and associates it with the source code.
To represent the results the HTML-report is generated. The
main page of a report contains general statistics (Tab. I). There
are total numbers of variables of each of three categories:
global, local and structure fields and number of variables,
producing unsafes. The pointer variable means the access by
pointer and simple one — the access to varible itself. Also
the report lists all found locks. After that there is a list of all
unsafes, that could potentially be a data race. For each unsafe
the report contains a pair of usages with disjoint sets of locks.

Also there is an option to generate source code coverage.
It shows the code which has been analyzed by the verifier and
its relation to the whole kernel code.

An example of source code presentation is shown in Fig. 7.

Here we can see two functions called from the entry
point (main function). The function print prints information
about global variable, and increase increments its value
with lock protection. There is a data race, because function
increase can write to the variable simulteneously with the
check in the function print. So, as a consequence of the race
the printed output message may be wrong.

Our tool generates a warning for variable global with
error trace shown in Fig. 8.

On the left side we can see the error call stack with points
of acquiring locks and points of calling functions. Every point
links to corresponding line on source code (see Fig. 7).

IX. RESULTS

The method was applied to a real time operating system
kernel. It has been already tested and was worked several years
in production. The amount of analyzed code was about 50 000
lines. We found about 20 new data races, acknowledged by
developers. Total amount of warnings was 139. It takes about
3 minutes and 6 Gb of RAM for the analysis. Also there was a
test launch of the tool on the Linux kernel 3.8, on drivers/
directory. The amount of analyzed modules was about 3500.



Fig. 7. Example of source code

Fig. 8. Example of unsafe

The tool generated about 900 unsafe cases. Several of them
were analyzed and one actual bug was found, but it had been
already fixed in the newest version of Linux kernel.

X. RELATED WORK

In our method we are performing static analysis in con-
trast to dynamic analysis which has its own benefits. We
are considering only methods for the analysis of C code,
excluding for example Java analyzers, like [12]. The method of
Locksmith [6] is the most similar. It is also based on Lockset
algorithm, but has differrent approaches for the analysis of
locks and shared data. Basically it performs intra-procedural
analysis with propagation of constraints which gives it context-
sensitivity, but it does not take into account path conditions.
Our method is inter-procedural and explores each path sepa-
rately as long as they result in different states. As far as it
is based on CPAchecker it allows to extend the method with
existing analysis, like explicit or predicate.

XI. FUTURE WORK

The main problem of all methods of static analysis is a
great amount of false alarms. Some of them can be discarded
with help of shared analysis. But at the moment the large
part of false alarms are caused by inaccuracies in analysis
of expressions. For instance, now the analysis does not prop-
erly consider conditions in if statements.There is an existing
method, called CEGAR (Counterexample Guided Abstraction
Refinement) [14], which takes into account conditions by
means of predicated abstraction, but it is used for checking
reachability properties. In case of data races CEGAR algorithm
should be modified to take into account that two threads should
be considered instead of one. In particular, it means that it
should be able to refine many error paths together.

Another issue is a full launch on Linux kernel with analysis
of results.
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