LTL-specification, verification and construction
of PLC programs

Ryabukhin D. A.
Yaroslavl State University
Yaroslavl, Russia
Email: dmitriy_ryabukhin @mail.ru

Abstract—An approach to specification, verification and con-
struction of PLC programs for discrete problems is proposed. For
the specification of the program behavior, we use the linear-time
temporal logic LTL. Programming is carried out in ST, IL and
LD languages according to an LTL-specification. The correctness
analysis of an LTL-specification is carried out by the symbolic
model checking tool Cadence SMV. A new approach to PLC-
programming is shown by an example. For a discrete problem,
we give an ST-program, its LTL-specification and an SMV-model.

I. INTRODUCTION

Application of programmable logic controllers (PLCs) for
systems controling complex industrial processes makes ex-
acting correctness demands to PLC-programs. Any software
error is considered to be inadmissible. However, the exist-
ing development tools for programming PLC, for example
widely known CoDeSys (Controller Development System)
[8], provide only usual debugging facilities through testing
programs (not guaranteeing total absence of errors) by means
of a visualization of PLC-control objects. At the same time
certain theoretical knowledge and experience of applying the
existing developments in the field of formal methods of
modeling and analysis of software systems are accumulated.
The programming of logical controllers is a practical area, in
which existing developments could have successful applica-
tion. Successful application is understood as implementation of
formal methods in the process of program design at the level of
a well-functioning technology which is clear to all specialists
involved in this process — engineers, programmers and testers.
Being as usual of a small size and having a finite state space,
PLC-programs are exceptionally convenient objects for the
formal (including automatic) analysis of correctness.

Programmable Logic Controllers (PLCs) are a special type
of a computer widely used in automation systems [10], [5].
A PLC is a reprogrammable computer, based on sensors and
actors, which is controlled by a user program. They are highly
configurable and thus are applied to various industrial sectors.
A PLC is a reactive system. A PLC repeats the execution of
a user program periodically. There are three main phases for
program execution (working cycle): 1) reading from inputs
(sensors) and latching them in the memory, 2) program exe-
cution (with input variables remaining constant), 3) latching
the values of the output variables to the environment.

Kuzmin E. V.
Yaroslavl State University
Yaroslavl, Russia
Email: kuzmin@uniyar.ac.ru

Programming languages for logic controllers are defined
by the IEC 61131-3 standard. This standard includes the
description of five languages: SFC, IL, ST, LD and FBD.

IL (Instruction List) is an assembly language with an
accumulator and jumps to labels. IL allows to work with any
data types, to call functions and function blocks, written in
IEC 61131-3 standard languages. IL is used to build small
components, when critical control is required. Instructions are
executed with the accumulator content. The IL accumulator is
a universal container, which can keep values of any type.

ST (Structured Text) is high-level programming language.
Its syntax is the adapted Pascal syntax.

LD (Ladder Diagram) represents a program by a graphical
diagram based on circuit diagrams of relay logic hardware. The
language itself can be seen as a set of connections between
logical checkers (contacts) and actuators (coils). If a path can
be traced between the left side of the connection and the
output, through asserted contacts, the output coil storage bit
is asserted true. If no path can be traced, the output is false.

This languages provides a possibility of application of all
existing methods of program correctness analysis — testing,
theorem proving [9] and model checking [7] — for verification
of PLC-programs. Theorem proving is more applicable to
“continuous” stability and regulation problems of the engineer-
ing control theory, since an implementation of these problems
in PLC is associated with programming of an appropriate
system of formulas. Model checking is most suitable for
“discrete” problems of logical control, requiring PLCs with
binary inputs and outputs. This provides a finite space of
possible states of PLC-programs.

The most convenient for programming, specification and
verification of PLC-programs are ST, LD and SFC languages,
since they do not cause difficulties for neither developers
nor engineers and can be easily translated into languages of
software tools of automatic verification.

Earlier in the article [2], a review of methods and ap-
proaches to programming “discrete” PLC problems was car-
ried out on languages LD, SFC and ST. For these approaches
the usability of the model checking method for the analysis of
program correctness with respect to the automatic verification
tool Cadence SMV [13] was evaluated. Some possible PLC-
program vulnerabilities arising at traditional approaches to
programming of PLC was revealed. In particular, existing

This work is licensed under the Creative Commons Attribution License.

articles relating to correctness analysis of PLC programs [3],
[6], [11], [12] is mainly devoted to construction of translators
from IEC 61131 standard languages to interface languages of
verification software. Demonstration of results is carried out
on trivial examples. However, our experience of working with
the practical logic control problems showed that the direct
translation does nothing for analysis of program properties,
since it is often not possible to express desired properties in
temporal logic languages.

In this article, an approach to construction and verification
of PLC-programs for discrete problems is proposed. For the
specification of the program behavior, we use the linear-time
temporal logic LTL. Programming is carried out in ST, IL
and LD languages according to an LTL-specification. The
correctness analysis of an LTL-specification is carried out
by the symbolic model checking tool Cadence SMV. A new
approach to programming and verification of PLC-programs
is shown by an example. For a discrete problem we give
an ST-program, its LTL-specification and an SMV-model.
The purpose of the article is to describe an approach to
programming PLC, which would provide a possibility of PLC-
program correctness analysis by the model checking method.

The further work is to build software tools for modeling,
specification, construction and verification of PLC-programs.

II. MODEL CHECKING. A PLC PROGRAM MODEL

Model checking is the process of checking whether a given
model (a Kripke structure) satisfies a given logical formula.
A Kripke structure represents the behaviour of a program. A
temporal logic formula encodes the property of the program.
We use the linear-time temporal logic (LTL).

A Kripke Structure on a set of atomic propositions P is a
state transition system S = (S, sg, —, L), with a non-empty
set of states S, an initial state sy € S, a transition relation
—C S x S which is defined for all s € S, and a function
L : S — 2P labeling every state by a subset of atomic
propositions.

A Path of the Kripke structure from the state so — is an
infinite consequence of states m = sps152... where V ¢ > 0
Si — Si+1-

The linear-time temporal logic language is considered as a
specification language for behavioural properties of a program-
ming model. PLC is a classic reactive control system, which
once running must always have a correct infinite behavior. LTL
formulas allow to represent this behavior.

The syntax of the LTL formula is given by the following
grammar, p; € P:

o, pu=true|po|pi| ... [pn| @Y AQ]
Xp|vUp | Fo|Ge.

LTL formula describes a property of one path of the Kripke
structure, descendant from an emphasized current state. The
temporal operators X, F', G and U are interpreted as follows:
X ¢ — ¢ must hold at the next state, F'¢o — ¢ must hold at
some future state, Gy — ¢ must hold at the current state and
all future state, ¥ U ¢ — ¢ holds at the current or a future

state, and v must hold up until this point. In addition, classical
logical operators V and = will be used further.

The Kripke structure satisfies an LTL formula (property) ¢,
if ¢ holds true for all paths, starting from the initial state sg.

The Kripke model for a PLC program can be built quite
naturally. For a state of the model we take a vector of values
of all program variables, which can be divided into two parts.
The first part is a value vector of inputs at the moment of the
beginning of a new PLC working cycle. The second part is
a value vector of outputs and internal variables after passing
a complete working cycle (on the inputs from the first part).
In other words, the state of the model is a state of a PLC-
program after the complete passing of a working cycle. Thus,
a transition from one state to another depends on the (previous)
values of the outputs and internal variables of the first state
and the (new) values of the inputs of the second state. For
each state, the degree of the transition relation branching is
determined by the number of all possible combinations of PLC
input signals. Atomic propositions of the model are logical
expressions on PLC program variables with using arithmetic
and relational operators.

III. PROGRAMMING CONCEPT

A purpose of the article is to describe an approach to
programming PLC, which would provide a possibility of PLC-
program correctness analysis by the model checking method.
We will proceed from convenience and simplicity of using the
model checking method. We require holding two following
conditions.

Condition 1. The value of each variable must not change
more than once per one full execution of the program while
passing the PLC working cycle.

Condition 2. The value of each variable must change at only
one place in the program in some operation block without
nestings.

This conditions are reasonable assumption because inputs
are always latched while operating the cycle. We will change
the variable value only when it is really necessary, i.e. we will
forbid an access to the variable by assigning if conditions of
mandatory changing of its value do not hold. In this approach,
the requirements of changing the value of a certain variable
V' after one pass of the PLC working cycle are represented by
the following LTL formulas.

The next LTL formula is used for describing situations,
leading to an increase of the variable value V'

GX(V>_V=-0ldValCond A FiringCond N V=NewValExpr)(1)

This formula means that whenever a new value of variable V'
is larger than its previous value, recorded in the variable _V/, it
follows that the old value of variable V' satisfies the condition
OldValCond, a condition of the external action FiringCond
is accomplished, and the new value of variable V' is the value
of the expression New ValEzpr.

The leading underscore symbol “_” in the denotation of the
variable _V is taken as a pseudo-operator, allowing to refer to

the previous state value of a variable V. This pseudo-operator
can be used only under the scope of the temporal operator X.

Conditions FiringCond and OldValCond are logical ex-
pressions on program variables and constants, which are
constructed using comparison operators, logical and arith-
metic operators and the pseudo-operator “_”. By definition,
the pseudo-operator can be applied only to variables. The
expression FiringCond describes situations, when changing
the value of the variable V' is needed (if it is allowed by
the condition OldValCond). The expression New ValEzpr is
built using variables and constants, comparison, logical and
arithmetic operators and the pseudo-operator “_”

For descriptions of all possible increasing value situations
the formula (1) may have several sets of considered conjunc-
tive parts OldValCond; A FiringCond, NV = NewValExpr,,
combined in a disjunction, after the operator =-.

Situations that lead to a decrease of V' value are described
similarly:

GX(V<_V=-0ldValCond' AFiringCond’ AV =NewValEzpr')(1")

Temporal formulas of the form (1) and (1’) describe a
desired behavior of some integer variable. A more simple
LTL formula is proposed to use in case of a logical (binary)
data type variable. The following formula describes situations
which increase the value of a binary variable V:

G X(—_V AV = FiringCond). (2)

Situations that lead to a decrease of the variable V' value are
described similarly:
GX(_V A=V = FiringCond’). (2))
Let’s consider a special case of the specification form (1)
and (1’), where for V' we have
FiringCond = FiringCond’ =1,
NewValExpr = NewValEzpr',
OldValCond = (_V < NewValExpr) and
OldValCond' = (_V > NewValExpr):

GX(V>_V = _V < NewValEzpr ANV = NewValEzpr);
GX(V<_V = _V>NewValEzpr ANV = NewValEzxpr).

This specification can be replaced by the following LTL
formula:

G X(V = NewValEzxpr).

3)

The variable V' we will call a register-variable, if it has
specification of forms (1), (1’), (2) and (2’). If V is con-
structed by specification of the form (3), it is called a function-
variable. In the special case of specification (3), where the
expression NewValEzpr does not contain leading underscore
pseudo-operator “_”, variable V is called a substitution-
variable.

It is important to note that each LTL formula template
is constructive, i.e. the program can be easily build from
specification that would correspond to temporal properties
expressed by these formulas. Thus, we can say that PLC
programming is reduced to building a behavior specification
of each program variable, which is output or auxiliary internal

—_

variable. The process of writing a program code is completed,
when specification for each such variable is created. Note, that
quantity and meaning of output variables are defined by a PLC
and a problem formulation.

The program specification is divided into two parts: 1)
specification of a behaviour of all program variables (except
inputs), 2) specification of common program properties. The
second part of specification affects quantity and meaning of
internal auxiliary PLC program variables.

In specification it is important to consider the order of
temporal formulas describing the behavior of the variables.
A variable without the pseudo-operator “_” may be involved
in the specification of another variable behavior only if the
specification of its behavior is completed and is in the text
above.

If necessary, we will use the keyword “Init” for indication
of a variable initial value. For example, Init(V) = 1 means
that the variable V" initially is set to 1. If the initial value of
some variable is not explicitly defined, it is assumed that this
value is zero.

IV. PROGRAMMING BY SPECIFICATION

In this section, we consider a way of constructing a program
code by constructive LTL-specification of the program variable
behavior. In general, a translation process from LTL-formulas
to program code is the following. Two temporal formulas of
variable V', marked V+ (value increase, (1)) and V — (value
decrease, (1)), are set in conformity to the text block in the
ST language:

IF OldValCond AND FiringCond THEN

V .= NewValEzpr ; (* V4 *)
ELSIF OldValCond' AND FiringCond’ THEN
V := NewValEzpr', V= %)

END_IF;
in the IL language:

calculation of OldValCond AND FiringCond
JMPCN VL1
calculation of New ValExpr
ST \'%
IMP VLEND
VLI1:
calculation of OldValCond’ AND FiringCond’
JMPCN VL2
calculation of New ValExpr’
ST \'%
JMP VLEND
VL2:
VLEND:

If the number of conjunctive blocks
OldValCond; N FiringCond; NV = NewValExpr,

in LTL formulas will be more than two, the number of
alternative branches “ELSIF” or labels will grow (by one
branch or label for each new block).

Note, that the behavior of the obtained program will com-
pletely satisfy LTL formulas of specifications.

For LTL formula of a boolean variable V behavior in the
forms V+ (2) and V— (2'), we have the following ST-block:

IF NOT _V AND FiringCond THEN V :=1; (* V+ *)
ELSIF _V AND FiringCond’ THEN V :=0; (* V— *)
END_IF;

IL-block:
calculation of NOT _V AND FiringCond
JMPCN VL1
S \"
JMP VLEND
VLI:
calculation of _V AND FiringCond’
JMPCN VL2
R \'%
JMP VLEND

VL2:

VLEND:

LD-block (in LD only boolean variable are used):
_V \%
-1/ FiringCond (S)
_V \%
- FiringCond’ (R)

Each program variable must be defined in the description
section (local or global) and initialized in conformity with
the specification. Note that, for example, in CoDeSys [8] all
variables are initialized to zero by default.

In addition, we must implement the idea of the pseudo-
operator “_”. To do this, in the end of the program an area
for a pseudo-operator section is allocated. In this area an
assignment _V :=V is added after description of the behavior
of all specification variables. In IL this assignment is:

LD v
ST A"

An assignment in LD:
14 \%4
||)

The assignment is added for each variable V, to the last
value of which is addressed as _V. The variable _V is also
necessary to define in the description section with the same
initialization as for the variable V.

Note, that the approach to programming by specification,
which describes the reason of changing each program variable
value, looks very natural and reasonable, because a PLC
output signal is the control signal, and changing the value of
this control signal usually carries an additional meaning. For
example, it is important to understand why an engine or some
lamp must be turned on/off. Therefore, it seems quite obvious
that every variable must be accompanied by two properties,
one for each direction changing. It is assumed that if change
conditions are not made, the variable remains at its previous
state.

1

V. BUILDING SMV-MODEL BY SPECIFICATION

We consider the verifier Cadence SMV [13] as a software
tool of correctness analysis by model checking method. It is

proposed to build a Kripke structure model in the SMV lan-
guage with further verification of common program properties
satisfiability for this model after creating the specification. If
some common program property is not hold for the model,
the verifier builds an example of incorrect path in a Kripke
structure model, by which corrections in the specification are
produced. And only after all the program properties have been
verified with positive results, ST-progam of PLC is built by
specification.

The SMV language allows to define a variable value in the
next state of a model by using the “next” operator. Branching
of the transition relation is provided by the “nondeterministic”
assignment. For example, assignment next(V") := {0, 1} means
that states and transitions to them will be generated both with
a value of V =0, and with a value of V =1. In the SMV
language the symbols “&”, “|”, “~” and “—>" denote logical
“and”, “or”, “not” and implication, respectively.

The SMV language is oriented on creating the next states
of Kripke models from the current state. The initial current
state of the model is the state of program after initialization.
Therefore, specification of the behavior of a variable V' (1)
and (1’) will be easier (clearer) to rewrite in the following
equivalent form

V+ GX(V>_V)=>
X (0ldValCond) A X(FiringCond) A X(V = NewValEzpr)),
Vo GX(V<_ V)=
X (0ldValCond") A X(FiringCond’') A X(V = NewValEzpr')).
And then we get an SMV-model of a variable V' behavior
quite naturally, putting the “next” operator in conformity to
the temporal operator X:
case{ next(OldValCond) & next(FiringCond) :
next(V') := next(New ValExpr);
next(OldValCond’) & next(FiringCond’) :
next(V') := next(New ValEzpr');
next(V):= V; }.

Keyword “default” means what must happen by default, i.e.
if conditions of first two branches in the “case” block don’t
hold.

In the case of a boolean variable V' specification (2) and
(2") is converted to the following SMV-model

case{ ~V & next(FiringCond) : next(V):=1,

V & next(FiringCond’) : next(V) :=0;
default s next(V):=V;}.

A model of a function-variable behavior is defined as

next(V) :=next(New ValEzpr).

Let’s now consider a specification of the behavior of a
substitution-variable V. In this case NewValEzpr does not
contain pseudo-operator “_". This allows to rewrite the spec-
ification in the following equivalent form:

V: X G(V = NewValEzpr).

default :

In fact, this formula means that if the initial state of the model
does not considered, then an equality V' = New ValEzpr must
hold in all other states of the model. Fairness of formula
X G(V = NewValEzpr) follows from the fairness of more

general formula G(V = NewValExzpr). Therefore, more gen-
eral formula can be used as the constructive specification for
building SMV-model of a substitution-variable V. SMV-model
is built by this specification in the form of assignment

V := NewValExpr.

The Cadence SMV verifier allows to check program models,
containing up to 59 binary variables (all variables in SMV
are represented by sets of binary variables). The substitution-
variables are not included in this number, i.e. only register-
variables and function-variables are considered.

VI. CONCLUSION

The approach has been successfully approved on some
(about a dozen) “discrete” logical control problems of different
types with the average number of binary PLC inputs and out-
puts about 30 and the total number of binary program variables
up to 59. For example, properties, relating to maintenance of
the technological process (to exclude the possibility of noncon-
forming product outflow), were verified for a PLC program,
controlling a mixture preparation device. Properties relating to
connection standby pumps in time were tested for problem of
hydraulic pump system control. And properties of mandatory
execution of received commands of cabin lift calling were
tested for library lift control problem. The verification work
was carried out on PC with processor Intel Core 17 2600K 3.40
GHz. Time spent by verifier Cadence SMV to check specified
properties is limited to a few seconds.

The further work is to build software tools for modeling,
specification, construction and verification of PLC-programs,
according to the results of the work on this topic.

ACKNOWLEDGEMENTS

This work was financially supported by the Russian Foun-
dation for Basic Research (project no. 12-01-00281-a).

REFERENCES

[11 Kuzmin E. V., Sokolov V. A. Modeling, Specification and Construction of
PLC-programs // Modeling and analysis of information systems. 2013.
V. 20, No. 2. P. 104-120 [in Russian].

[2] Kuzmin E. V., Sokolov V.A. On Construction and Verification of PLC-
programs // Modeling and analysis of information systems. 2012. V. 19,
No. 4. P. 25-36. [In Russian].

[3] Kuzmin E. V., Sokolov V.A. On Verification of PLC-programs Written
in the LD-Language // Modeling and analysis of information systems.
2012. V. 19, No. 2. P. 138-144. [In Russian]

[4] Kuzmin E. V., Sokolov V. A., Ryabukhin D. A. Construction and Verifica-
tion of PLC LD-programs by LTL-specification // Modeling and analysis
of information systems. 2013. V. 20, No. 6. P. 78-94 [in Russian].

[5] Petrov I V. Programmiruemye kontrollery. Standartnye jazyki i
priemy prikladnogo proektirovanija. M.: SOLON-Press, 2004. 256 p.
[In Russian].

[6] Canet G., Couffin S., Lesage J.-J., Petit A., Schnoebelen Ph. Towards
the Automatic Verification of PLC Programs Written in Instruction List
/I Proc. of the IEEE International Conference on Systems, Man and
Cybernetics. Argos Press, 2000. P. 2449-2454.

[71 Clark E. M., Grumberg O., Peled D. A. Model Checking. The MIT Press,
2001.

[8] CoDeSys. Controller Development System.
http://www.3s-software.com/

[9]1 Gries D. The Science of Programming. Springer-Verlag, 1981.

[10] Parr E.A. Programmable Controllers. An engineer’s guide. Newnes,
2003. 442 p.

[11] Paviovic O., Pinger R., Kollman M. Automation of Formal Verification
of PLC Programs Written in IL // Proc. of 4th International Verification
Workshop (VERIFY ‘07). Bremen, Germany, 2007. P. 152-163.

Rossi O., Schnoebelen Ph. Formal Modeling of Timed Function Blocks
for the Automatic Verification of Ladder Diagram Programs // Proc. of
the 4th International Conference on Automation of Mixed Processes:
Hybrid Dynamic Systems, Shaker Verlag, 2000. P. 177-182.

SMV (Symbolic Model Verifier). The Cadence SMV Model Checker.
http://www.kenmcmil.com/smv.html

[12]

[13]

APPENDIX A
Library lift

A library lift scheme is represented in Fig. 1. The purpose
of the lift is to lift up books on request from the basement to
the first and second floors of the library and to return them to
the basement.

The elevator cabin is called from the base floor by pressing
buttons “Up 2” and “Up 1”. If the corresponding command
was accepted, this button lamp turns on. It turns off when the
command is done. When the cabin is on some floor, the lamps
“Floor 2, “Floor 1 or “Floor 0” are on. There are shaft doors,
which are opened and closed manually. The sensors “DS2”,
“DS1” and “DS0” are needed to determine the position of
doors. The door sensor is on if door is closed. The signal from
the door sensor is determined using a lamp of the sensor.

The floor sensor “FS” in the elevator cabin is used for
finding the position of the cabin in the shaft. The floor sensor
is on, if the cabin is entirely on a particular floor. Otherwise,
the signal is removed.

The library lift control is carried out using a PLC receiving
input signals from sensors and buttons and sending output
signals to the lift motor and lamps. The task is to construct
a PLC program with 10 binary inputs and 14 binary outputs
for controling the lift. PLC interface is shown in Fig. 2. More
detailed requirements for the library lift program are given in
the article [4]. The constructive specification of the library lift
control program was built according to these requirements and
the programming concept by LTL-specification.

CtrO+: GX(~_Ctr0 & Ctr0 — FS & "_FS &
_Ctrl & ~“_Dir);

Ctr0 —: GX(_Ctr0 & “Ctr0 — FS & ~“_FS);

Ctrl+: GX(*_Ctrl & Ctrl —> FS & "_FS &

(_Ctr2 & "_Dir | _Ctr0 & _Dir));

Ctrl —: GX(_Ctrl & "Ctrl —> FS & "_FS);
init (Ctrl)=1;
Ctr2+: GX(~_Ctr2 & Ctr2 —> FS & "_FS &

_Ctrl & _Dir);

Ctr2 —: GX(_Ctr2 & "Ctr2 —> FS & "_FS);

UpOl+: GX("_Up0Ol & UpOl — FS & Ctr0 & PBUpO1);

UpOl—: GX(_Up0Ol & ~“Up0l — FS & Ctrl & “_Mtr);

Up02+: GX(~_Up02 & Up02 —> FS & Ctr0 & PBUp02);

Up02—: GX(_Up02 & ~“Up02 —> FS & Ctr2 & “_Mtr);

Dwn2+: GX("_Dwn2 & Dwn2 — FS & Ctr2 & ~“_Mtr &
(PBDwn2 | _Tmr.Q));

Dwn2—: GX(_Dwn2 & "Dwn2 — FS & Ctr0 & ~_Mtr);

Dwnl+: GX("_Dwnl & Dwnl — FS & Ctrl & “_Mtr &
(PBDwnl | _Tmr.Q));

Dwnl—: GX(_Dwnl & "Dwnl — FS & Ctr0 & ~“_Mtr);

Init (Dwnl)=1;

Flr2+: GX(" _Flr2 & FIlr2 —> PBFIr2);

Flrl+: GX("_FIrl & FIrl — PBFIrl);

Flr2 —: GX(_FIr2 & “FIr2 — FS & Ctr2 & “_Mtr);

U

—
g |
2]
N

[¢]

Gy o

B

—
2|
2

|O|o
@ o

[=]

DO

DSO
O
) 0

Fig. 1. A scheme of a library lift

Flrl —: GX(_FIrl & “Flrl — FS & Ctrl & ~“_Mtr);
Dir+: GX(~_Dir & Dir —> FS & Ctr0 & ~_Mtr);
Dir—: GX(_Dir & “Dir — (Ctr2 | Ctrl & Dwnl &
“Up02 & ("Flr2 | Dwn2)) & FS & “_Mtr);
DS: GX(DS = DSO & DS1 & DS2);
Mtr+: GX("_Mtr & Mtr — DS &
“"FS & (Dwnl | Dwn2 | UpOl1 | Up02 | FIrl | Flr2) |
FS & Ctr0 & (UpO1 ‘ Up02 | _Tmr.Q & (FlIrl |Flr2))|
FS & Ctrl & Dwnl | FS & Ctr2 & Dwn2));
Mtr—: GX(_Mtr & "Mtr —> (DS |
FS & Ctr0 & ~_Dir |

FS & Ctr2 & _Dir |
FS & Ctrl & (FlIrl & "Dwnl | Up01)));
Tmr.In: GX(Tmr.In = "Mtr & FS &
(Ctr0 & DSO | Ctrl & DS1 | Ctr2 & DS2));

FIrOLmp: GX(FIrOLmp = "Mtr & FS & Ctr0);
DSOLmp: GX(DSOLmp = DSO0);
FlrlLmp: GX(FlrlLmp = "Mtr & FS & Ctrl);
DSILmp: GX(DS1Lmp = DS1);
Flr2Lmp: GX(FIr2Lmp = "Mtr & FS & Ctr2);
DS2Lmp: GX(DS2Lmp = DS2).

This specification allows to check the following common
program properties of the library lift control program.

1. G(Ctr0 4+ Ctr1 + Ctr2 = 1) means that at any moment
the elevator cabin is only on one floor.

2. There are no situations, when the elevator cabin
is on the basement and the motor is in descent mode:
G—(FS A Ctr0 N Dir=0 A Mir). There are no situations,
when the elevator cabin is on the second floor and the motor
is in ascent mode: G—(FS A Ctr2 A Dir=1 A Mtr).

3. Always, when the motor is on, the shaft doors are closed:
G(Mtr = DS). And if the shaft doors are closed and the
cabin is not entirely on a particular floor, the motor is on:

Inputs PLC Outputs
Buttons Motor / Lamps
PBFIF Call on floor 1 1 1 Run the motor Mtr
Move up mode Dir
PBFIr2 Call on floor 2 2
Move down mode Dir
2
PBDwWn1 Down from fl. 1 to fl. 0
b ¢ f 21010 Commands / Lamps
own from fl. 2 to fl.
PBDwn2 i
3 Door 0 is closed DSOLmp
PBURO1 Up from floor O to floor 1 4 Cabin on floor 0 FIrOLmp
Up to floor 1
PBUP02 Up from floor 0O to floor 2 5 p fo Toor Up01
6 Up to floor 2 Up02
Sensors Door 1 is closed
DSO Door 0 is closed 7 oor 11s close DS1Lmp
Door 1 is dosed 8 Cabin on floor 1 FiriLmp
Ds1 oor 1 1s cose Call on floor 1 Fir1
9
DS2 Door 2 is closed 10 Down to floor 0 Dwn1
FS Floor sensor 0 11 Door 2 is closed DS2Lmp
12 Cabin on floor 2 Flr2Lmp
13 Call on floor 2 Fir2
14 Down to floor 0 Dwn2

Fig. 2. PLC control interface of a library lift

G(DS A —FS = Mtr). There are no situations when the motor
is off, the doors are closed and the cabin is not entirely on a
particular floor: G—(=Mtr A DS A =FS).

4. Every moment when motor turns on, it shall be turned
off in future: G(Miér = F(—Mir)).

5. If these program executions are considered, when after
receipt of a call/send to a floor command Cmd and before
its execution, the shaft door will be opened or closed only a
finite number of times. Always in this case Cmd sooner or
later will be executed, where Cmd — is Fliri, Fir2, Up01,
Up02, Dunl or Dun2: G(Cmd = ~G(Cmd U -DS)) =
G(Cmd = F(-Cmd)).

For the variable Up0I we give an example of its IL and
LD code blocks built by the LTL specification. LD-block:

_Up01 FS Ctr0 PBUp0O1 Up01
A 1] | (8)
_Up0l FS Ctrl _Mtr Up01
— =1 = /1 (R)
IL-block:

LDN _Up01 (* UpOl1+ *)

AND FS

AND Cu0

AND PBUpOI

JMPCN UpOILI

S Upo1

JMP UpO1LEND

UpO1L1: LD _Up01 (* UpO1- *)

AND FS

AND Ctrl

ANDN _Mtr

JMPCN UpOILEND
R Upo1
JMP UpOILEND
Up0IL2:
UpOILEND:
ST-program is built by constructive LTL-specification after

checking common program properties.

SMV-model of the “library lift” program

Modeling of a timer is described in [1]. A model of
behaviour of floor sensor FS is following. When the motor
is on, a value of the sensor FS can be changed. When the
motor is off, a value of the sensor FS remains unchanged.
Fairness conditions for FS mean that when the motor is on,
floor sensor can not remain unchanged indefinitely.

module timer (){
I : 0..1; /* Input x/
Q: 0..1; /* Output =/
init(I):=0; init(Q):=0;

next(Q):= next(I) & (Q | {0,
FAIRNESS T — Q;

1});

module main (){ /x Inputs x*/
/* Buttons %/
PBFIr2 ,PBDwn2, PBFIrl ,PBDwnl, PBUp02,PBUpOl: 0..1;
/% Sensors */
DS2, DS1, DSO, FS: 0..1;
/% Outputs =/
Mtr, Dir: 0..1; /x Motor x*/
Flr2Lmp, FlrlLmp, FIrOLmp, DS2Lmp, DSILmp,
DSOLmp: 0..1; /+ Lamps */
/* Commands */

Flr2 , Flrl, Dwn2, Dwnl, Up0O2, UpOl: 0..1;
/* Auxiliary =/

Ctr0, Ctrl, Ctr2: 0..1;

DS: 0..1;

Tmr : timer;

/*Initialization section x/

/+* Inputs x/
init (PBFIr2):=0; init (PBFIrl):=0;
init (PBUp02):=0; init(PBUp0l):=0;
init (PBDwn2):=0; init (PBDwnl):=0;
init (DS1):=0; init(DS0):=0;
init (DS2):=0; init(FS):=0;

/% Outputs =/
init (Mtr):=0;
init (Up01):=0;
init (Dwn2):=0;

/+* Auxiliary x*/
init (Ctr0):=0; init(Ctrl):=1;

/* Transition system x/

/* Inputs =/
next (PBFIr2):={0, 1};
next(PBFIrl):={0, 1}; next(PBDwnl):={0, 1};
next (PBUp02):={0, 1}; next(PBUp01):={0, 1};
next(DS2):={0, 1}; next(DS1):={0, 1};
next(DS0):={0, 1};
case{ Mtr next(FS):={0,1};

default next(FS):=FS;};
FAIRNESS Mtr —> FS;

init (Flrl):=0;
init (Dir):=0;
init (Up02):=0;

init (Dwnl):=1;
init (Flr2):=0;

init (Ctr2):

0;

next(PBDwn2):={0, 1};

Ctrl & next(FS) & “FS

next(Ctrl):=0; /% Ctrl— =%/
default next(Ctrl):=Ctrl ;};
case {"Ctr2 & next(FS) & "FS & Ctrl & Dir:
next(Ctr2):=1; /% Ctr2+ =/
Ctr2 & next(FS) & “FS
next(Ctr2):=0; /x Ctr2— x*/
default next (Ctr2):=Ctr2;};

case {"Up0l & next(FS) & next(Ctr0) & next(PBUpO1):

next(Up0Ol):=1; /+ UpOl+ =*/
UpOl & next(FS) & next(Ctrl) & “Mtr:
next (Up01):=0; /+ UpOl— x*/

default next(Up01):=Up01;};
case {"Up02 & next(FS) & next(Ctr0) & next(PBUp02):
next (Up02):=1; /% Up02+ =/
Up02 & next(FS) & next(Ctr2) & “Mtr:
next (Up02):=0; [+ Up02— x/
default next (Up02):=Up02;};
case {"Dwn2 & next(FS) & next(Ctr2) &

“Mtr & (next(PBDwn2) | Tmr.Q):
next(Dwn2):=1; /% Dwn2+ x/
Dwn2 & next(FS) & next(Ctr0) & ~“Mtr:
next(Dwn2):=0; /* Dwn2— x*/

default next(Dwn2):=Dwn2; };
case {"Dwnl & next(FS) & next(Ctrl) &

“Mtr & (next(PBDwnl) | Tmr.Q):
next(Dwnl):=1; /% Dwnl+ %/
Dwnl & next(FS) & next(Ctr0) & ~“Mtr:
next(Dwnl):=0; /% Dwnl— =%/

default next(Dwnl):=Dwnl; };
case {"FIr2 & next(PBFIr2):
next(FIr2):=1; /%
Flr2 & next(FS) & next(Ctr2) & ~“Mtr:
next(FIr2):=0; /*
default next(FIr2):=FIr2;};
case {"FIrl & next(PBFIrl):
next(FIrl):=1; /%
Flrl & next(FS) & next(Ctrl) & “Mtr:
next(Flrl):=0; /%
default next (Flrl):=FIrl ;};
case {"Dir & next(FS) & next(Ctr0) & ~“Mtr:
next(Dir):=1; /% Dir+ =/
Dir & next(FS) & (next(Ctr2) | next(Ctrl) &
next(Dwnl) & “next(Up02) & (“next(FIr2) |
next(Dwn2))) & “Mtr:

Flr2+ */

Flr2— %/

Flrl+ x/

Flrl— x/

next(Dir):=0; /% Dir— x/
default : next(Dir):=Dir;};
DS:= DSO & DS1 & DS2; /x DS x/

case {"Mtr & next(DS) &
("next(FS) & (next(Dwnl)|next(Dwn2)|next(Up01)]|
next(Up02)| next(FIrl)| next(FIr2))|
next(FS) & next(Ctr0) & (next(UpOl)|next(Up02)]|
Tmr.Q & (next(Flrl) | next(Flr2))) |
next (FS) & next(Ctrl) & next(Dwnl) |
next(FS) & next(Ctr2) & next(Dwn2)):

next(Mtr):=1; /x Mtr+ x/
Mtr &("next(DS) | next(FS) & next(Ctr0) & ~Dir |
next(FS) & next(Ctr2) & Dir | next(FS) &

next(Ctrl) & (next(Flrl) & next(Dwnl)|next(Up01))):
next(Mtr):=0; /% Mtr— x/

FAIRNESS Mtr — “FS;
/* Outputs and auxiliary x/
case {"Ctr0 & next(FS) & "FS & Ctrl & ~Dir

next(Ctr0):=1; /% CtrO+ =/
Ctr0 & next(FS) & “FS
next (Ctr0):=0; [+ CtrO— x*/
default next(Ctr0):=Ctr0; };
case{"Ctrl & next(FS) & "FS &
(Ctr2 & “Dir | Ctr0 & Dir)
next(Ctrl):=1; /% Ctrl+ =/

default next(Mtr):=Mtr;};
next(Tmr.I):= next("Mtr & FS &

(Ctr0 & DSO | Ctrl & DS1 | Ctr2 & DS2));
FlrOLmp:= “Mtr & FS & Ctr0; /* FlrOLmp =/
FlrlLmp:= "Mtr & FS & Ctrl; /* FlrlLmp =/
Flr2Lmp:= “Mtr & FS & Ctr2; /+ Flr2Lmp x/

/+* DSOLmp, DS1Lmp, DS2Lmp */
DSOLmp:= DSO; DSILmp:= DS1; DS2Lmp:= DS2;

/* Properties section x/
P_Ctr: assert G(CtrO0+Ctr1+Ctr2 = 1);
P_Limit0: assert G7(FS & Ctr0 & Dir=0 & Mtr);
P_Limit2: assert G7(FS & Ctr2 & Dir=1 & Mtr);
P_Doors: assert G(Mtr —> DS);

P_Stop: assert G7("Mtr & DS & “FS);

P_Mtr: assert G(Mtr —> F("Mtr));

P_Flr2: assert G(Flr2 — “G(FIr2 U "DS)) —>
G(FIr2 — F("Flr2));

P_FIr

1: assert G(FIr1 — “G(FIr1 U "DS)) —>

G(Flrl — F("FlIrl));
P_UpOl: assert G(UpO0l — “G(UpOl U "DS)) —>
G(Up0l — F("Up01));

P_Up02: assert G(Up02 — ~“G(Up02 U "DS)) —>
G(Up02 — F("Up02));

P_Dwnl: assert G(Dwnl —> “G(Dwnl U "DS)) —>
G(Dwnl — F("Dwnl));

P_Dwn2: assert G(Dwn2 —> “G(Dwn2 U “DS)) —>
G(Dwn2 — F("Dwn2));

P_Move: assert G(DS & "FS — Mtr);

ST-program of “library lift”

VAR_GLOBAL
(* Inputsx*)

PBFIr2 ,PBDwn2, PBFIrl , PBDwnl, PBUp02,PBUpO1:

DS2,

DS1, DSO, FS: BOOL;

(+ Outputs *)

BOOL;

*)
*)

*)

*)

*)
*)

*)
*)

*)
*)

Mtr, Dir, Flr2Lmp, FlrlLmp, FlrOLmp, DS2Lmp: BOOL;
DS1Lmp, DSOLmp, Fl1r2 ,FlIrl, Dwn2, Up02, UpOl: BOOL;
Dwnl: BOOL :=1;
END_VAR
PROGRAM PLC_PRG
VAR
Tmr: TON := (PT := T#10s);
Ctr0, Ctr2: BOOL;
Ctrl: BOOL := TRUE;
_Ctr, _FS, _Dir, _Dwnl, _Dwn2, _FIrl, _FIr2: BOOL;
_Mtr, _TmrQ, _UpOl, _Up02: BOOL;
END_VAR
IF NOT _Ctr0 AND FS AND NOT _FS AND
_Ctrl AND NOT _Dir THEN
Ctr0:=1; (x CtrO+
ELSIF _Ctr0 AND FS AND NOT _FS THEN
Ctr0:=0; (x CtrO—
END_IF;
IF NOT _Ctrl AND FS AND NOT _FS AND
(_Ctr2 AND NOT _Dir OR
_Ctr0 AND _Dir) THEN
Ctrl:=1; (x Ctrl+
ELSIF _Ctrl AND FS AND NOT _FS THEN
Ctrl:=0; (x Ctrl—
END_IF;
IF NOT _Ctr2 AND FS AND NOT _FS AND
_Ctrl AND _Dir THEN
Ctr2:=1; (x Ctr2+
ELSIF _Ctr2 AND FS AND NOT _FS THEN
Ctr2:=0; (x Ctr2—
END_IF;
IF NOT _UpOl AND FS AND Ctr0 AND PBUpOI THEN
Up0l:=1; (+ UpOl+
ELSIF _UpOl AND FS AND Ctrl AND NOT _Mtr THEN
Up01:=0; (x UpOl1—
END_IF;
IF NOT _Up02 AND FS AND Ctr0 AND PBUp02 THEN
Up02:=1; (+ Up02+
ELSIF _Up02 AND FS AND Ctr2 AND NOT _Mtr THEN
Up02:=0; (x Up02—
END_IF;
IF NOT _Dwn2 AND NOT _Mtr AND FS AND Ctr2 AND
(PBDwn2 OR _TmrQ) THEN Dwn2:=1; (% Dwn2+
ELSIF _Dwn2 AND NOT _Mtr AND FS AND CtrO0 THEN
Dwn2:=0; (x Dwn2—
END_IF;

IF NOT

_Dwnl AND NOT _Mtr AND FS AND Ctrl AND

(PBDwnl OR _TmrQ) THEN Dwnl:=1; (% Dwnl+ x*)

ELSIF _Dwnl AND NOT _Mtr AND FS AND Ctr0 THEN
Dwnl:=0; (x Dwnl— x)
END_IF;
IF NOT _FIr2 AND PBFIr2 THEN Flr2:=1; (* Flr2+ x)
ELSIF _FIr2 AND NOT _Mtr AND FS AND Ctr2 THEN
Flr2 :=0; (x Flr2— x)
END_IF;
IF NOT _FIrl AND PBFIrITHEN FlIrl :=1; (x Flrl+ x)
ELSIF _FIrl AND NOT _Mtr AND FS AND Ctrl THEN
Flrl:=0; (x Flrl— x)
END_IF;
IF NOT _Dir AND NOT _Mtr AND FS AND CtrO0 THEN
Dir:=1; (x Dir+ x*)
ELSIF _Dir AND NOT _Mtr AND FS AND
(Ctr2 OR Ctrl AND Dwnl AND NOT Up02 AND
(NOT FIr2 OR Dwn2)) THEN Dir:=0; (x Dir— x*)
END_IF;
DS:=DS0 AND DS1 AND DS2;

IF NOT _Mtr AND DS AND

(NOT FS AND (Dwnl OR Dwn2 OR

Up0O1 OR Up02 OR FlIrl OR FlIr2) OR

FS AND CtrO AND

(Up01 OR Up02 OR _TmrQ AND

(FIr1l OR FlIr2)) OR

FS AND Ctrl AND Dwnl OR

FS AND Ctr2 AND Dwn2) THEN Mtr:=1;(x Mtr+ x*)

ELSIF _Mtr AND (NOT DS OR

END_IF;
Tmr.In:=

(Ctr0
Tmr () ;
FlrOLmp:
FlrlLmp:
Flr2Lmp:
DSOLmp:=
DSI1Lmp:=
DS2Lmp:=
(%

FS AND CtrO0 AND _Dir=0 OR

FS AND Ctr2 AND _Dir=1 OR

FS AND Ctrl AND

(Flrl AND NOT Dwnl OR UpO1l))

THEN Mtr:=0; (x Mtr— x)

NOT Mtr AND FS AND
AND DSO OR Ctrl AND DS1 OR Ctr2 AND DS2);

NOT Mtr AND FS AND CtrO0;

NOT Mtr AND FS AND Ctrl;

= NOT Mtr AND FS AND Ctr2;

DSO;

DS1;

DS2;

pseudo—operator section —————— *)

_TmrQ:=Tmr.Q; _FS:=FS; _Mtr:=Mtr;
_Dir:=Dir; _Ctr:=Ctr;
_Dwnl:=Dwnl; _Dwn2:=Dwn2;
_FlIr1:=Flrl; _Flr2:=FIr2;
_UpO01:=Up01; _Up02:=Up02;

