
On the deadlock control in parallel
resource-constrained workflows

Vladimir A. Bashkin
and Nadezhda Yu. Panfilova

Yaroslavl State University
Yaroslavl, Russia 150000

Email: v bashkin@mail.ru lillian007@mail.ru

Abstract—We study the verification of the soundness property
for workflow nets extended with resources. A workflow is sound if
it terminates properly (no deadlocks and livelocks are possible).
A class of resource-constrained workflow nets (RCWF-nets) is
considered, where resources can be used by a process instance,
but cannot be created or spent.

Two sound RCWF-net, using the same set of resources, can
be put in parallel. This parallel composition in some cases may
produce additional deadlocks. A problem of deadlock avoidance
in parallel workflows is studied, some methods of deadlock search
and control are presented.

Keywords—Petri net, workflow, soundness, deadlock, RCWF-
net, parallel composition

I. INTRODUCTION

Workflow management systems provide the automated sup-
port and coordination of business and technological processes
to reduce costs and flow times and to increase quality of service
and productivity. Workflows orchestrate people, resources,
technology and information flow. Workflow nets [1], [2], a
particular class of Petri nets, have become one of the standard
ways to model and analyze workflow processes.

Workflow net is an abstraction of the workflow that can be
used to check the so-called soundness property. This property
guarantees the absence of livelocks, deadlocks, and other
anomalies that can be detected without domain knowledge.
Nowadays there exists a number of soundness notions (see [3]
for a survey). Informally, the classical soundness ensures that
from any reachable state the system may terminate properly.

A workflow consists of a set of coordinated tasks describ-
ing the flow of work within the organization. In real world the
occurrence of those tasks may depend on resources, such as
machines, manpower, and raw material. To take resources into
account different extensions of a base formalism of WF-nets
have been introduced, coursing different versions of soundness.

In [4], [5] a specific class of WFR-nets with decidable
soundness was studied. In [10], [12] a more general class
of Resource-Constrained Workflow Nets (RCWF-nets) was
defined. Informally, the authors impose two constraints on
resources. First, they require that all resources that are initially
available are available again after terminating of all cases.
Second, they also require that for any reachable marking, the

This work is licensed under the Creative Commons Attribution License

number of available resources does not override the number
of initially available resources.

In [6], [7] a more general case of arbitrary resource
transformations was studied.

In [10] it was proven that for RCWF-nets with a single
resource type generalized soundness can be effectively checked
in polynomial time. In [12] it was proven that generalized
soundness is decidable in RCWF-nets with an arbitrary number
of resource places (by reducing to the home-space problem).

Although soundness is decidable, there is so far no efficient
decision algorithm because the proposed algorithm decides a
home-space property, which requires a finite but (in general)
too high number of reachability checks [12]. In addition, the
problem of the calculation of the smallest number of resources
for which soundness can be proved, remains open.

In this paper we consider a compositional approach to this
problem. We investigate possible ways of minimal resource
partitioning in control-independent and resource-dependent
parallel branches of a workflow. We define a natural notion
of parallel composition of two RCWF-nets, sharing common
resource places. Parallelism may introduce additional dead-
locks here, but we prove that these deadlocks (and other
soundness violations) are avoidable by an enlargement of
the initial resource. We present an approach, that allows to
compute a nontrivial subset of minimal sound resources of a
decomposable RCWF-net.

The main result of the paper is a method of deadlock
avoidance for parallel workflows. We show that under certain
circumstances a composite workflow can be restructured in
such a way that the resulting net would require not a sum but
a union of minimal sound resources of its parallel subnets.
This allows to save a significant part of resources without any
violation of the soundness property.

The paper is organized as follows. In Section 2 basic
definitions of multisets and Petri nets are given. In Section 3
resource-constrained workflow nets and their soundness prop-
erties are formally defined. In Section 4 we study reachability
properties of sound RCWF-nets. In Section 5 a notion of
parallel composition of RCWF-nets is introduced. Several
result are formulated, describing how minimal resources of a
composite workflow can be obtained from minimal resources

of its parallel subnets. In Section 6 deadlock/livelock avoidance
methods are presented. The first one can be applied for any
pair of sound workflows, but requires specific run-time control,
not incorporated into the net itself. The second one uses the
original Petri net structure, but is applicable to the safe nets
only. Section 7 contains some conclusions.

II. PRELIMINARIES

Let S be a finite set. A multiset m over a set S is a
mapping m : S → Nat, where Nat is the set of natural numbers
(including zero).

For two multisets m,m′ we write m ⊆ m′ iff ∀s ∈ S :
m(s) ≤ m′(s) (the inclusion relation). The sum and the union
of two multisets m and m′ are defined as usual: ∀s ∈ S :
m+m′(s) = m(s)+m′(s), m∪m′(s) = max(m(s),m′(s)).
By M(S) we denote the set of all finite multisets over S.

Let P and T be disjoint sets of places and transitions and
let F : (P × T) ∪ (T × P) → Nat. Then N = (P, T, F) is a
Petri net. A marking in a Petri net is a function M : P → Nat,
mapping each place to some natural number (possibly zero).
Thus a marking may be considered as a multiset over the set
of places. Pictorially, P -elements are represented by circles,
T -elements by boxes, and the flow relation F by arcs. Places
may carry tokens represented by filled circles.

For a transition t ∈ T the preset •t and the postset t•
are defined as the multisets over P such that •t(p) = F (p, t)
and t•(p) = F (t, p) for each p ∈ P . Similarly, for a place
p ∈ P we define •p and p• as the multisets over T such that
•p(t) = F (t, p) and p•(t) = F (p, t) for each t ∈ T .

A transition t ∈ T is enabled in a marking M iff ∀p ∈
P M(p) ≥ F (p, t). An enabled transition t may fire yielding
a new marking M ′ =def M − •t+ t•, i. e. M ′(p) =M(p)−
F (p, t) + F (t, p) for each p ∈ P (denoted M t→ M ′, or just
M → M ′). We say that M ′ is reachable from M iff there
is a sequence M = M1 → M2 → · · · → Mn = M ′. For a
Petri net N by R(N,M0) we denote the set of all markings
reachable from its initial marking M0.

A net (N,M0) is bounded iff R(N,M0) is finite.

A net (N,M0) is safe iff ∀M ∈ R(N,M0), p ∈ P we have
M(p) ≤ 1. Places in safe nets can be considered as boolean
variables (no tokens – false, 1 token – true).

III. RCWF-NETS

A resource-constrained workflow net (RCWF-net for short)
is a tuple N = (Pc, Pr, T, Fc, Fr, i, o) s.t.

• Pc is a finite set of control places;

• Pr is a finite set of resource places, Pc ∩ Pr = ∅;
• T is a finite set of transitions, Pc ∩ T = Pr ∩ T = ∅;
• Fc : (Pc × T) ∪ (T × Pc) → Nat is a multiset of

control arcs;

• Fr : (Pr × T) ∪ (T × Pr) → Nat is a multiset of
resource arcs;

• ∀t ∈ T ∃p ∈ Pc : Fc(p, t) + Fc(t, p) > 0 (each
transition is incident to some control place);

p4

r1

t3

p2

p1 t2 p3

i t1

r2

t5

o

t4

Fig. 1. RCWF-net

• i ∈ Pc is a source place and o ∈ Pc is a sink place
(input and output), such that •i = o• = ∅;

• every node from Pc ∪ T is on a path from i to o, and
this path consists of nodes from Pc ∪ T.

In RCWF-nets Petri net places are divided into control and
resource ones. Note that all transitions are necessarily linked to
control places — this guarantees the absence of “uncontrolled”
resource modifications.

A marking is also divided into control and resource parts.
For a multiset c + r, where c ∈ M(Pc) and r ∈ M(Pr), we
write c|r.

For a net N a resource is a multiset over Pr. A controlled
resource (a state) is a multiset over Pc ∪ Pr.

Fig. 1 represents an example of a RCWF-net, where
resource places r1 and r2 are depicted by ovals, resource arcs
— by dotted arrows.

Every RCWF-net N = (Pc, Pr, T, Fc, Fr, i, o) contains its
control subnet Nc = (Pc, T, Fc, i, o), which forms a RCWF-
net with the empty set of resources.

A marked net (N, i|r) is a net N together with some initial
marking i|r (here i denote a multiset, containing a single token
in the input place i).

Let N be an RCWF-net. N is (r)-sound for some resource
r ∈M(Pr) iff ∀c|r′ ∈ R(N, i|r) we have:

1) r′ ≤ r;
2) o|r ∈ R(N, c|r′).

N is sound iff there exists some resource r ∈M(Pr) such
that N is (r′)-sound for any r′ ≥ r.

For example, the net on Fig. 1 is sound, (r1 + r2)-sound
and not (r1)-sound.

Thus soundness for an RCWF-net means, that, first, this
workflow net can terminate properly from any reachable state,

and, moreover, adding any extra resource does not violate the
proper termination property.

In [12] it was proven that the soundness problem is
decidable even in a more general case of multiple input tokens.

Definition 1: For a sound RCWF-net N by res(N) and
mres(N) we denote the sets of sound and minimal sound
resources:

• res(N) =def {r ∈ M(Pr) | N is (r + r′) −
sound for any r′ ∈M(Pr)};

• mres(N) =def {r ∈ res(N) | 6 ∃r′ ∈ res(N) : r‘ <
r}.

Obviously, mres(N) is finite.

For example, for the net on Fig. 1 we have mres(N) =
{r1 + r2}.

As it was stated in [12], the problem of finding mres(N)
is still open. In this paper we introduce and evaluate a
promising approach to this problem, based on the parallel
composition/decomposition of RCWF-nets.

IV. PROPERTIES OF SOUND RESOURCES

The next statement formally defines a well-known “proper
completion” property of sound workflows:

Fact 1: For any (r)-sound net N

c|r ∈ R(N, i|r) ⇒ c = o ∨ c ∩ o = ∅.

Proof: Assume the converse: o + m|r ∈ R(N, i|r) for
some non-empty m.

From the second requirement of soundness we have o|r ∈
R(N, o + m|r). However, since the place o doesn’t have
outgoing arcs, we have ∅|r ∈ R(N,m|r). But every transition
in N has at least one output control place, thus m = ∅ — a
contradiction.

Another established fact is the soundness and boundedness
of the control subnet:

Fact 2: For any sound RCWF-net N =
(Pc, Pr, T, Fc, Fr, i, o) and its control subnet
Nc = (Pc, T, Fc, i, o) (that may be considered as an
RCWF-net with an empty set of resources) we have:

1) Nc is (∅)-sound;
2) (Nc, i|∅) is bounded;
3) if c|∅, c+ c′|∅ ∈ R(N, i|r) then c′ = ∅.

Proof: (1) Assume the converse: Nc is not (∅)-sound.
Since Nc contains no resource places, only the second part
of the soundness definition is violated:

∃c|∅ ∈ R(Nc, i|∅) : o|∅ 6∈ R(Nc, c|∅).

Denote the corresponding transition sequence by σ (so we have
i|∅ σ→ c|∅).

Now consider N. Obviously, there exists some large initial
resource r s.t. c|r′ ∈ R(N, i|c) for some r′ — it is sufficient
to sum all resources, required by transitions of σ.

On the other hand, no resource x would be enough to reach
the final state o|y from c|x (for any y), since it is unreachable
even in the “resource-free” control subnet Nc. Hence N is not
sound.

(2) Otherwise an infinite run is possible in (Nc, i|∅),
containing an infinite number of different markings, and hence
a pair of markings c1 < c2 with i → c1 → c2 → From
the soundness of Nc we have c1

σ→ o for some sequence of
transitions σ ∈ T ∗. But from c1 < c2 the same sequence is
possible in c2 : c2

σ→ o + (c2 − c1) — a contradiction to the
proper completion property.

(3) Assume the converse. From the soundness property we
have two transition sequences: i|∅ → c|∅ → o|∅ and i|∅ →
c+ c′|∅ → o|∅.

From the first sequence and the monotonicity of Petri nets
we have i+ c′|∅ → c+ c′|∅ → o+ c′|∅. Combining with the
second sequence, we obtain i|∅ → c + c′|∅ → o + c′|∅ — a
contradiction to the soundness property.

Every reachable c ∈ M(Pr) (a control state of a control
subnet Nc) corresponds to a single reachable resource value:

Lemma 1: If N is sound, r ∈ res(N) and c|r1, c|r2 ∈
R(N, i|r), then r1 = r2.

Proof: Assume the converse: let r1 6= r2.

Consider some r′ = r1 + δ1 = r2 + δ2. From r1 6= r2 we
have δ1 6= ∅ or δ2 6= ∅ or both. Additionally, δ1 6= δ2.

We have i|r → c|r1 → o|r and hence (from the monotonic-
ity of Petri nets) i|r + δ1 → c|r1 + δ1 → o|r + δ1. Similarly,
i|r+δ2 → c|r2+δ2 → o|r+δ2. But r1+δ1 = r′ = r2+δ2 and
hence we have i|r+ δ1 → c|r′ → o|r+ δ2. From the (r+ δ1)-
soundness property it should be δ1 = δ2 — a contradiction.

Note that we cannot replace in the statement of Lemma 1
“r ∈ res(N)” by “N is (r)-sound”, because an (r)-sound net
is not necessarily (r + δ)-sound.

For (r)-soundness we have a weaker property:

Lemma 2: If N is (r)-sound and c|r1, c|r2 ∈ R(N, i|r),
then

r1 6< r2 and r1 6> r2.

Proof: Similar to the previous Lemma. Assume the con-
verse: r1 < r2 and hence r2 = r1 + δ1 with δ1 6= ∅.

We have i|r → c|r1 → o|r and i|r → c|r2 = c|r1 + δ1 →
o|r, and so c|r1 + δ1 → o|r + δ1 — a contradiction to the
(r)-soundness.

Since any set of incomparable vectors over Nat|Pr| is finite,
we have an obvious

Corollary 1: If N is (r)-sound then R(N, i|r) is finite.

A particular consequence of Lemma 1 is an inability of a
cycle to modify a resource:

Proposition 1: If N is sound, r ∈ res(N), c|r1 ∈
R(N, i|r) and c|r2 ∈ R(N, c|r1), then r1 = r2.

Proof: Immediately from Lemma 1.

Moreover, a sound net can perform only fixed resource
transformations:

Proposition 2: If N is sound, r ∈ res(N), c|r′ ∈
R(N, i|r) and u ∈M(Pr), then for any c|v ∈ R(N, i|r + u)
we have v = r′ + u.

Proof: Assume the converse. Hence c|v, c|r′ + u ∈
R(N, i|r+u) with v 6= r′+u — a contradiction to Lemma 1.

V. COMPOSITIONS OF RCWF-NETS

Nets with the same sets of resource places can be composed
in parallel:

Definition 2: Let N1 and N2 be RCWF-nets with

• N1 =
(
(Pc)1, Pr, T1, (Fc)1, (Fr)1, i1, o1

)
and

• N2 =
(
(Pc)2, Pr, T2, (Fc)2, (Fr)2, i2, o2

)
.

A parallel composition of N1 and N2 (denoted by N =
N1‖N2) is an RCWF-net N = (Pc, Pr, T, Fc, Fr, i, o) with

• Pc =def (Pc)1 ∪ (Pc)2 ∪ {i, o},

• T =def T1 ∪ T2 ∪ {ti, to},

• Fc =def (Fc)1 ∪ (Fc)2 ∪
{(i, ti), (ti, i1), (ti, i2), (to, o), (o1, to), (o2, to)},

• Fr =def (Fr)1 ∪ (Fr)2.

We put two workflows in parallel, adding common source
and sink places.

Examples of simple RCWF-nets compositions are given
on Fig. 2. In the case Fig. 2.(a) both subnets has the same
minimal sound resource r, and the composition is also sound
with this resource. The case Fig. 2(b) is quite different. Note
that r1 + r2 is a minimal sound resource for both subnets, but
the composition is not (r1 + r2)-sound because of a deadlock
p1 + p2|∅, reachable from i|r1 + r2. Any larger resource is
sound.

Soundness of a resource for a subnet does not necessarily
imply it’s soundness for a composition (as one would expect,
taking into account the conservativeness of resource trans-
formations in an RCWF-net). A parallelism may introduce
additional deadlocks. However, a simple kind of additive
closure exists:

Theorem 1: If N1 and N2 are sound then N1‖N2 is sound
and, moreover:

1) r1 ∈ res(N1), r2 ∈ res(N2) ⇒ r1 + r2 ∈
res(N1‖N2);

2) r ∈ res(N1‖N2) ⇒ ∃r1 ∈ res(N1) : r ≤ r1;
3) r ∈mres(N1‖N2) ⇒ ∃r1 ∈ res(N1) : r ≤ r1.

Proof: The soundness itself and the first statement follows
from Proposition 2. Note that subnets N1 and N2 here work
independently, without interferencing into each other’s “part”
of the common resource.

To prove the second statement we can take r1 = r: since
a resource is sound for a parallel composition, it properly

a) sound composition b) possible deadlock

p1

t2

t3

i1 i2

o1 o2

 t4

p2

t1

r1

r2

i

ti

to

o

p1

t3

t2

i2 i1

 p2

t1

r

i

ti

to

o

t4

o1 o2

Fig. 2. Two examples of RCWF-nets compositions

supports system runs of the form i|r → i1+i2|r → o1+i2|r →
o1 + o2|r.

The third statement is a trivial consequence of the second
one.

The first statement of Theorem 1 implies that

Corollary 2: If N1 and N2 are sound and r1 ∈
mres(N1), r2 ∈ mres(N2), then there exists r ∈
mres(N1‖N2) such that r ≤ r1 + r2.

So, to find some minimal resource r one may search
through a finite number of resources, less then or equal to
r1+ r2. For every candidate r′ ≤ r1+ r2 the set R(N, i|r′) is
finite (Corollary 1) and can be constructed by a finite number
of steps.

Note that we have not proven that this method of minimal
sound resources computation allows to compute ALL elements
of mres(N1‖N2) (however, we believe it does). Nevertheless,
the computed subset is always nonempty and nontrivial.

So, a problem of mres(N) calculation can be partially
reduced to the same problem for subnets, composed in parallel.
In most cases the process of decompositions ends with a purely
sequentional workflows, which may have a very simple set of
sound (and minimal sound) resources.

VI. SOUNDNESS ENSURING

In this section we consider a resource r, sound for both
subnets but not sound for a parallel composition (like r1 +
r2 in Fig. 2(b)). Note that such a resource always enables

a non-empty set of “good” runs (at least two: i|r → i1 +
i2|r → o1 + i2|r → o1 + o2|r and i|r → i1 + i2|r → i1 +
o2|r → o1 + o2|r). Hence a resource is not worthless and it
would be interesting to develop some control policies or system
transformations, preserving all “good” runs and disabling all
“bad” ones (without increasing the initial resource).

So we consider both kinds of possible undesirable (not
properly terminating) behaviors of a Petri net, namely, dead-
locks and livelocks.

A reachable marking c|r is a deadlock state iff c 6= o and
there is no transition t ∈ T s.t. c|r t→ c′|r′ for some c′, r′.

A finite set L of reachable markings is a livelock iff

1) |L| > 1;
2) for any c|r, c′|r′ ∈ L there is a finite transition

sequence σ ∈ T ∗ s.t. c|r σ→ c′|r′;
3) for any c|r ∈ L and t ∈ T s.t. c|r t→ c′′|r′′ we have

c′′|r′′ ∈ L.

A livelock state is a state that belongs to some livelock.

Note that by definition o|r 6∈ L for any r.

By D(N, i|r) we denote a set of all deadlock and livelock
states of a marked RCWF-net (N, i|r).

Theorem 2: If N = N1‖N2 and r ∈ res(N1) ∩ res(N2)
then (N, i|r) is bounded (i.e. R(N, i|r) is finite).

Proof: From the second statement of Fact 2 the sets of
control markings are finite for both N1 and N2. Obviously,
the set of reachable control markings of N is a subset of a
product of these two finite sets, hence it is also finite.

Now consider markings from R(N, i|r). Assume the con-
verse — this set is infinite. Hence from the boundedness of
the control subnet there exists some control cycle, strictly
increasing the resource: i|r → c1 + c2|r′

σ→ c1 + c2|r′ + r′′

with c1 ∈M((Pc)1), c2 ∈M((Pc)2), σ ∈ T ∗ and r′′ 6= ∅.
Recall that T = T1∪T2 and denote by σ1 and σ2 the largest

subsequences of σ s.t. σ1 ∈ (T1)
∗ and σ2 ∈ (T2)

∗. Obviously,
σ1 and σ2 are control cycles in N1 and N2 respectively.

From Proposition 1 neither σ1 nor σ2 can change the
resource, hence their composition also cannot do this — a
contradiction.

Since D(N, i|r) ⊆ R(N, i|r) we have:

Corollary 3: If N = N1‖N2 and r ∈ res(N1) ∩ res(N2)
then D(N, i|r) is finite.

So the set of deadlocks and livelocks is computable by
a simple reachability set construction and search. A naive
deadlock control policy would be to compute a set of all
deadlocks/livelocks and all their predecessing states and to
control them in run-time, not allowing a system to make the
wrong “last step”.

A. Safe nets

A rather interesting case are safe workflows, i.e. RCWF-
nets with safe control subnets (where none of the control places
can accumulate more than one token). This is not a strong

restriction, because every bounded net is weakly bisimilar to
some safe net. Note that the net in Fig. 2(b) is safe and still
has a deadlock.

A safe RCWF-net has only ordinary control arcs:
Fc(x, y) ≤ 1 for any x and y.

We can apply a transformation, eliminating all dead-
locks/livelocks in a safe net:

Definition 3: Let N1 and N2 be sound safe RCWF-nets
with the same set Pr of resource places, and let r ∈ M(Pr)
be a resource s.t. r ∈ res(N1) and r ∈ res(N2).

Let N = N1‖N2 = (Pc, Pr, T, Fc, Fr, i, o) be a not-(r)-
sound parallel composition of N1 and N2.

By Dc(N, i|r) we denote the set of all different control
parts of elements of D(N, i|r), and let Z = |Dc(N, i|r)|
(obviously, we have Z > 0). And Dr(N, i|r) we denote the
set of critical resources, i.e. all resource places, which do not
contain any tokens for each state of D(N, i|r),

A net (Na, i|r + v), where Na = (Pc, Pr ∪ V, T, Fc, Fr ∪
Fin ∪ Fout, i, o), is called a controlled system of (N, i|r) iff

• V = {vk|k ∈ 1, Z} is a set of additional “holding”
places, with their number equal to the number of
possible control deadlocks/livelocks in the net N ;

• Fin are input holding arcs such that Fin =
{(t, vk) | Fc(t, p) = 1 for some p ∈ dk, where dk
is a kth element of Dr(N, i|r)};

• Fout are output holding arcs such that Fout =
{(vk, t) | Fc(p, t) = 1 for some p ∈ dk, where dk
is a kth element of Dr(N, i|r)};

• v = (|d1| − 1)v1 + (|d2| − 1)v2 + . . .+ (|dZ | − 1)vZ ,
where dk is a kth element of Dc(N, i|r).

Main idea to start with is that we have to avoid the con-
sequent triggering of transitions leading to deadlock/livelock
places. Thus for every element of D(N, i|r) we include into
the net a holding (restraining) place which resource will allow
triggering of transitions leading to just one control place
among them. Note that the holder should not prevent triggering
transitions not consuming critical resources (since making it
empty does not cause deadlock). Resource should be put
back to holding place right after token leaves deadlock place.
Implementation of this idea based on the net from Fig. 2 is
shown on Fig. 3.

Note that the initial resource (r + v) is actually not an
increased original initial resource r, since v is built over the
new (additional) set of resource places.

Theorem 3: Let N1 and N2 be sound safe RCWF-nets with
the same set Pr of resource places, and let r ∈ M(Pr) be a
resource s.t. r ∈ res(N1) and r ∈ res(N2).

Let N = N1‖N2 = (Pc, Pr, T, Fc, Fr, i, o) be a not-(r)-
sound parallel composition of N1 and N2.

Let net (Na, i|r+v) be the controlled system of the marked
net (N, i|r). Then (Na, i|r + v) is (r + v)–sound.

Proof: Obviously, none of the original deadlocks/livelocks
is reachable (by construction).

p1

t2

t3

i1 i2

o1 o2

 t4

p2

t1

r1

r2

i

ti

to

o

Vd

Fig. 3. Examples of RCWF-nets compositions with deadlock control

Now we need to prove that no new deadlocks/livelocks are
introduced.

Consider some deadlock/livelock c1 + c2|r of the original
net. From the third statement of Fact 2 and the safety property
none of the control states of N1, except c1 can have the same
or larger total number of tokens in all places of c1 (similarly for
the net N2 and places of c2). Hence |c1+c2|−1 = |c1|+|c2|−1
tokens is enough for all control states except this particular
deadlock/livelock — hence the corresponding holding place
would not introduce any undesirable restriction.

VII. CONCLUSION

We presented two methods of deadlock/livelock avoidance
for a restricted resource. The first one can be applied for any
pair of sound workflows, but requires specific run-time control,
not incorporated into the net itself. The second one uses the
original Petri net structure, but is applicable to the safe nets
only. The proposed technique is similar to a technique, studied
in the area of Flexible Manufacturing Systems (see [9] for a
classical result). However, the key difference is the possibility
of parallel behaviours in subnets (in FMS each subnet is a
simple sequential automaton).

Further research will consider the application of holding
places techique to the general case of RCWF-nets. As it can
be seen from some preliminary counterexamples, the method
would possibly require some additional modifications.

The problem of exact mres(N) calculation is still open
but it will be studied in the further research. We believe

that our approach can be applied here, at least for large
nontrivial subclasses of RCWF-nets. For example, we plan to
study structured workflows [2], [8], that can be obtained from
primitives by a set of algebraic operations, such as parallel
and sequential compositions. Another interesting method of
sound resource compositions was presented in [11] — based
on algebraic expressions over multisets.

Our method is not implemented in applications. However,
we believe it can be used as a verification and/or optimization
tool in workflow management systems. Basically, it may enable
the elimination of specific deadlocks and livelocks, induced by
incorrect (unverified) parallel composition of submodules.

REFERENCES

[1] W.M.P. van der Aalst. The Application of Petri Nets to Workflow
Management. The Journal of Circuits, Systems and Computers, 8(1):21–
66, 1998.

[2] W.M.P. van der Aalst, K.M. van Hee. Workflow Management: Models,
Methods and Systems, MIT Press, 2002.

[3] W.M.P. van der Aalst, K.M. van Hee, A.H.M. Hofstede, N. Sidorova,
H.M.W. Verbeek, M. Voorhoeve, M.T. Wynn. Soundness of workflow
nets: classification, decidability, and analysis, Form. Asp. of Comp.,
23(3):333–363, Springer, 2011.

[4] K. Barkaoui, L. Petrucci. Structural Analysis of Workflow Nets
with Shared Resources. In Proc. Workflow Management: Net-based
Concepts, Models, Techniques and Tools (WFM98), volume 98/7 of
Computing Science Reports, pages 82–95, Eidhoven University of
Technology, 1998.

[5] K. Barkaoui, R. Ben Ayed, Z. Sbaı̈. Workflow Soundness Verification
based on Structure Theory of Petri Nets. International Journal of
Computing and Information Sciences, Vol. 5, No. 1, 2007. P.51–61.

[6] V. A. Bashkin, I. A. Lomazova. Resource equivalence in workflow nets.
In Proc. Concurrency, Specification and Programming, 2006, volume
1, pages 80–91. Berlin, Humboldt Universitat zu Berlin, 2006.

[7] V.A. Bashkin, I.A. Lomazova. Soundness of Workflow Nets with an
Unbounded Resource is Decidable Joint Proc. of Petri Nets and Soft-
ware Engineering (PNSE’13) and Modeling and Business Environments
(ModBE’13). Milano, 2013. Vol. 989 of CEUR. 2013. P. 61–75.

[8] P. Chrza̧stowski-Wachtel. Sound Markings in Structured Nets. In
Proc. Concurrency, Specification and Programming, 2005, pages 71–85.
Warsaw, Warsaw University, 2005.

[9] J. Ezpeleta, J.-M. Colom, J. Martinez. A Petri Net Based Deadlock Pre-
vention Policy for Flexible Manufacturing Systems. IEEE Transactions
on Robotics and Automation, 11(2), 1995. P.173–184.

[10] K. van Hee, A. Serebrenik, N. Sidorova, M. Voorhoeve. Soundness of
Resource-Constrained Workflow Nets. In Proc. ICATPN 2005, volume
3536 of Lecture Notes in Computer Science, pages 250–267. Springer,
2005.

[11] I.A. Lomazova, I.V. Romanov. Analyzing Compatibility of Services via
Resource Conformance. Fundamenta Informaticae, Vol. 128, No. 1–2,
2013. P.129–141.

[12] N. Sidorova, C. Stahl. Soundness for resource-contrained workflow nets
is decidable. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 43(3), 2013. P.724–729.

