
Modular Construction of Time Petri Net
Reachability Graphs

Ilona Knizhnikova
National Research University Higher School of Economics

iknizhnikova@gmail.com

Leonid Dworzanski
National Research University Higher School of Economics

leo@mathtech.ru

Abstract—Time Petri nets are an extension of Petri nets
formalism with time specifications on transitions. The formalism
is convenient for model distributed systems and enables capturing
the time characteristics of distributed system activities. The
primary tool for models behaviour understanding is reachability
graph. In [10] the algorithm for constructing Time Petri net
reachability graph was suggested. It is based on essential states,
but the number of states in the resultant net reachability
graph increases when time specification are scaled up, while
the behaviour of the net is invariant under time specification
scaling. We study the modification of this algorithm that allows
to build Time Petri nets reachability graphs more efficiently using
common divisors of the time specification in the components of
a Time Petri net.

Keywords—time petri nets, reachability graph, essential states.

I. INTRODUCTION

Petri nets are a popular formalism for modelling concurrent
systems. Different extensions of Petri nets and their applica-
tions are extensively studied in the literature [12], [3], [2], [11],
[4], [6]. Obviously, time is very important aspect of systems
behaviour. Time restrictions like “this action can take from N
to M seconds” are crucial for real-time system, net protocols,
control systems et cetera. Time can be introduced into the
Petri nets formalism in many different ways [1]. Moreover,
even timeless distributed systems are hard to understand [8],
[5]. There are two popular types of such nets: time Petri nets
and timed Petri nets. Both of these modifications can simulate
counter machines, i.e. are Turing-complete. Both can be used
to model systems with time specifications, but in this article
only time Petri nets are considered.

Time restrictions make behaviour of Time Petri nets models
extremely hard to understand. It means that we have no options
but to use computer aided means to check the correctness of
a developing system or to analyze already constructed one.
The crucial tool to understand the behaviour of a model is
reachability graph. The problem of time Petri nets model
checking can be solved via essential-states-based algorithm for
constructing reduced reachability graphs [9]. But when all time
specifications of a Time Petri net are multiplied by a constant,
the size of reachability graph is increased or decreased while
the behaviour of the net has not changed. In this work we
study how to use this property of the algorithm to reduce the
space requirements for analysis of a Time Petri net.

The paper is organized as follows. To start with, we provide
basic notations of Petri nets. Then we define the Time Petri nets
formalism. Then we provide a Time Petri net example which

captures the process of a university course from the student
viewpoint. After that we apply our modification to build the
reachability graphs of the net components of the example and
provide the obtained results. The paper ends with conclusion.

II. PRELIMINARIES

Petri net is a well known formalism widely used to model
concurrent systems. Petri nets offer graphical notation and
rigorous formal semantics. A Petri net is a marked directed
bipartite graph, where the structure of the graph defines the
behaviour of the model while the marking of the graph defines
the current state.

Definition 2.1: A Petri (P/T-net) net is a 4-tuple
(P, T, F,W) where

• P and T are disjoint finite sets of places and transitions,
respectively;

• F ⊆ (P × T) ∪ (T × P) is a set of arcs;

• W : F → N — an arc multiplicity function, that is
a function which assigns every arc a positive integer
number (arc multiplicity).

Following extension of W we denote as W̃ :

W̃ (x, y) =

{
n, xFy ∧W (x, y) = n
0, ¬xFy

A marking of a Petri net (P, T, F,W) is a multiset over P,
i.e. a mapping M : P → N. By M(N) we denote a set
of all markings of a P/T-net N. We say that the transition
t in a P/T-net N = (P, T, F,W) is active in the marking
M iff for every p ∈ {p|(p, t) ∈ F} : M(p) ≥ W̃ (p, t). An
active transition may fire, resulting in a marking M ′ such that
∀p ∈ P :M ′(p) =M(p)− W̃ (p, t) + W̃ (t, p).

Another notion we will use is hammock. While it is well
known notion we will recall it informally. Hammock is a part
of the graph such, that only two vertexes of hammock are
linked with the rest of the graph. These vertexes are called
starting and ending vertexes of hammock. There can be the
subgraph of arbitrary complexity between these two vertexes,
but this system should have no link to the graph except starting
and/or ending vertex of hammock. [7]

III. MOTIVATING EXAMPLE

In this section, we provide the example of a time Petri net
Tnet that models the flow of some course.

This work is licensed under the Creative Commons Attribution License.

The first transition of the Tnet denotes the beginning
of a semester and the beginnig of a course. The process
consists of two almost independent scenarios, each of whose
is represented by a separate net hammock. First of them
(starting with the place start1 and ending with end1) can be
interpreted as the process of preparing for exams and working
with a teacher. Second one models an examination process.
The course can be completed iff these parts are performed
successfully, i.e. final mark depends on both of them. But they
do not block each other — a student has to pass the exam
without regard to his work during the semester.

The process starts with a transition course started firing,
which adds tokens to the places start1 and start2. Then two
hammocks are performing independently.

We start with considering the upper hammock. Firstly,
transition start solve problems fires. It represents the beginning
of student’s work and adds tokens to the places student and no
more problems. When both of these places contain tokens —
student isn’t solving a problem and is ready for actions. The
course can be ended through firing the transition all problems
solved, or the student can get some new problems to solve
(transition hand-in problem). In the second case, the student
needs to solve the problem. He or she starts with meeting
with a tutor (going to place meeting with tutor), discusses
the problem (transition discussion with tutor moves token
to the place student and this enables transition start work)
and then student starts working on it, and comes to some
decision. (Transition start work fires and moves token to the
place solving). After that, the problem is technically solved
and transition problem solved fires adding token to the place
no more problems, but the student still needs to meet his
tutor again to discuss the result. (Chain meeting with tutor–
discussion with tutor-adding token to place student fires again).
Only after that student understands the nuances of the problem
and the solution well enough.

Then the cycle may repeat again — student ends the
process or gets a new problem. If the first case has place,
the hammock finishes its execution.

Now we consider the second hammock. This hammock
starts with transition send assignment firing adding tokens
to places solving assignment and submission opened. Then
the hypothetical student has two options: complete his work
before deadline (transition submission), let the system register
his work (transition deadline), and then just get his mark by
getting through transition evaluate work.

If student had not managed to pass his work in time, the
system registers this (transition deadline) and the submission
is closed (disabling transition submission). Then he or she has
no choice, but to pass the work behind time (transition com-
mission arranged), wait for a re-examination (place preparing
for commission) and go through it (transition commission).
Independently of the success or the failure of his examination,
the student gets his mark — would it be A or F at the transition
evaluate work firing.

We will not provide the formal definition of a workflow
net here, but this model is a sound workflow net, i.e. initial
marking has one token in the start place. When a token reaches
the end place there are no other tokens in the net. And the
marking with the end place marked can always be reached.

IV. TIME PETRI NETS

In this section we define Time Petri nets (TPN).

We will use the definition of Time Petri net as given in [10].
Time Petri net (TPN) is an extended classic Petri net where
each transition t is associated with a time interval [at, bt].
If t is enabled, it still cannot fire before at time units have
elapsed, and it has to fire no later than bt time units after
being enabled, unless it has meanwhile become disabled by
the firing of another transition.

Time counting is started from the moment of enabling t
and is reset if t has been disabled. at is called ”earliest firing
time” of t (short eft(t)) and bt is ”latest firing time” of t (short
lft(t)). The firing of a transition does not take any time.

The interval bounds are non-negative rational numbers, and
bt can also be ∞.

Definition 4.1: A Time Petri net (TPN) is a 6-tuple Z =
(P, T, F, V,m0, I) such that

1) the 5-tuple S(Z) = (P, T, F, V,m0) is a Petri net,

2) I : T → Q+
0 × (Q+

0 ∪ ∞) and for each t ∈ T , with
I(t) = (I1(t), I2(t)) it holds that I1(t) ≤ I2(t)

Here I(t) is the time interval of the transition t, during this
interval t is ready to fire, I1(t) is eft(t) and I2(t) is lft(t).

Definition 4.2: (p-marking) Let P be the set of all places
in a Time Petri net Z. A p-marking in Z is a (total) function
m : P → N.

Definition 4.3: (t-marking) Let T be the set of all transi-
tions in a time Petri net Z. Any (total) function h : T → R

+
0 ∪#

is a t-marking in Z.

Definition 4.4: Let Z = (P, T, F, V,mo, I) be a Time Petri
net, m a p-marking and h a t-marking in Z. A state in Z is a
pair z := (m, h) such that

1) ∀t((t ∈ T ∧ t− > m)→ h(t) = #).

2) ∀t((t ∈ T ∧ t− ≤ m)→ h(t) ∈ R+
0 ∧ h(t) ≤ lft(t)).

Claim 1.Time specification of transitions of an arbitrary
time Petri net can be required to be non-negative integers
without loss of generality [10]

V. REACHABILITY GRAPH

Firstly we consider original algorithm proposed in [10]. It
is based on the conception of essential states.

Definition 5.1: (modified state change) Let τ be a non-
negative real number and z = (m,h) be a state in the Time
Petri net Z. It is possible for time τ to elapse in the state z in
Z if

∀(t ∈ T ∧ h(t) 6=→ h(t) + τ ≤ lft(t))

The elapsing of time τ will change z into the state z’ = (m’,
h’) with

1) m’:=m,

course started

[1,1]

start2

start

send assignment

[5,5]

solving assignment

submission

[0,10]

submission opened

deadline

[10,10]

submission closed

work accepted

start1

start solve problems

[3,3]

student

end1

end2

course completed

[1,5]

end

evaluate work

[5,5]

discussion with tutor

[3,3]

problem hand-in

[9,12]

assignment obtained start work

[3,6]

meeting with tutor problem solved

[3,3]

solving

preparing for commission

commission

[5,5]

all problems solved

[3,12]

no more problems

commision arranged

[15,15]

Fig. 1. The workflow net of a course process

2) ∀t ∈ T →

h′(t) :=

if ift− > m′

eft(t) t− ≤ m′ ∧ lft(t) =∞
∧ eft(t) < h(t) + τ

h(t) + τ otherwise

Definition 5.2: (essential-state) An integer-state z = (m, h)
in a Time Petri net Z is called essential-state when Z is defined
with the modified firing rule.

Definition 5.3: (reachable essential-state) Let Z be an arbi-
trary Time Petri net. The set REISZ of all reachable essential-
states in Z is defined as follows:

REISZ := {z|z0
σ(τ)→ z}, z is an essential-state and σ(τ)

is a run feasible in Z

Set of all reachable essential states of the net carries
complete information about this net’s behavioural properties.
This characteristic makes it possible to construct reachability
graph, which includes only essential states (and is much
smaller than original reachability graph) and still provides
enough information to analyse behavioural properties of the
net.

Definition 5.4: (reachability graph for arbitrary Time Petri
net) Let Z = (P, T, F, V,m0, I) be an arbitrary (finite or
infinite) Time Petri net with T = t1, . . . , tn. The (reduced)
reachability graph RGreduZ := (W,E,L) of Z is the directed
graph with edge labels whose set of vertices W, set of edges
E and edge labels from L ⊆ N × T are defined by Algorithm
1.

Algorithm 1: Time Petri net reachability graph
begin

R := Z0; W := ∅; E := ∅ ;
while R 6= ∅) do

select z = (m,h) from R; R := R− {z};
W :=W ∪ {z} ;
if {t ∈ T‖t− ≤ m} 6= ∅ then

if {t ∈ T |t− ≤ m ∧ lft(t) 6=∞} 6= ∅ then
Let k := min{lft(t)− h(t)|t− ≤ m}
else

Let
k := max{eft(t)− h(t)|t− ≤ m}

for time = 0 to k do
for i = 1 to n do

if ti ready to fire in (m,h) + time then
Let z′ be such that z time→ ti→ z′;
E := E ∪ {(z, [time, ti], z′)};
if z′ /∈W then

R := R ∪ {z′}

VI. MODULAR CONSTRUCTION OF TIME PETRI NET
REACHABILITY GRAPH

Algorithm constructing reachability graph through essential
states demonstrates high performance, when it works with nets,
whose time intervals are not very big. But if we multiply all
time specifications in the net on the same number, number of
essential states increases dramatically. But such scaling does
not affect behavioural properties of the net and the set of
reachable p-markings of the scaled and the original nets are
the same.

There is an evident way to fix the problem — just check
if the net can be down-scaled (divided by greatest common
divisor) and than analyse this downscaled net. But what if
we have the net consisting of two independent components.
Both of these components can be down-scaled, if considered
independently, but the time specification of these components
contains coprime numbers.

Such net can have huge reachability graph, which can not
be constructed because of the time or memory restrictions.
But the graphs for each of these parts can easily be built
via the downscale procedure. And these graphs carry enough
information to analyse behavioural properties of the original
net, such as boundedness, for example. We propose the way
to solve the problem through searching for the detached ham-
mocks, finding greatest common divisor (GCD) for all natural
time specification inside them, dividing these specifications on
the GCD and than applying reachability graph construction
algorithm to each of the found hammocks.

Obtained reachability graphs can be used for performing
model checking upon each of them and deduce identified
properties for the whole net, but for the moment we consider
only receiving reachability graphs.

We applied this technique to our example. The example
contains two hammocks. First includes all vertexes and tran-

Algorithm 2: Modular construction of Time Petri net
reachability graph

begin
Let H be the set of hammocks in the net;
X := ∅;
foreach h ∈ H do

foreach Transition t ∈ h do
Insert eft(t) into X;
Insert lft(t) into X;

GCDh=Find GCD(X);
foreach Transition t ∈ h do

T ′h = {t′|t ∈ Th ∧ eft(t′) =
eft(t)/GCDh ∧ lft(t′) = lft(t)/GCDh};

h′ = (Ph, T
′
h, F, V)

Apply Algorithm 1 to h

sitions between places start1 and end1 inclusively. Second
starts at place start2 and ends with end2. We can predict the
successful application of the modular approach as the GCD of
the first hammock time specifications is 3 and the GCD of the
second hammock is 5, which are coprime numbers. Then we
applied 2 and received the following results Table I.

The reachability graph of the whole net consists of 208
vertexes and 907 edges. But if we split up the net into 2
hammocks and then construct reachability graph for each of
them, then the sum of them will be much lesser than the
reachability graph of the whole net. In our case, the original
net’s reachability graph is not very big, because it is just an
example, but even here reduction is significant.

TABLE I. ORIGINAL AND MODIFIED ALGORITHMS COMPARISON

Vertexes Edges
Original (full net) 208 907

Modified (hammock 1) 8 14
Modified (hammock 2) 7 9

VII. CONCLUSION

In this paper we provided an example Time Petri net
that models the process of an academic course. The numeric
properties of the transitions time specifications and our mod-
ification of the algorithm enabled us decrease time and space
requirements for the analysis of the net. We constructed a
reachability graph that is much smaller than the original one.
The further research directions are to characterize the class of
time Petri nets and the behavioural properties for which such
technique is applicable.

ACKNOWLEDGMENT

This study was carried out within the National Research
University Higher School of Economics’ Academic Fund.

REFERENCES

[1] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux. Comparison
of different semantics for time petri nets. In ATVA, pages 293–307,
2005.

[2] B. Berthomieu, M. Boyer, and M. Diaz. Time petri nets. In Petri Nets,
pages 123–161.

[3] H. Genrich and K. Lautenbach. The Analysis of Distributed Systems
by means of Predicate/Transition-Nets. In G. Kahn, editor, Semantics
of Concurrent Compilation, volume 70 of Lecture Notes in Computer
Science, pages 123–146. Springer-Verlag, Berlin, 1979.

[4] K. Jensen and L. M. Kristensen. Coloured Petri nets: modelling and
validation of concurrent systems. Springer, 2009.

[5] L. Lamport. What good is temporal logic? In IFIP Congress, pages
657–668, 1983.

[6] I. A. Lomazova. Nested petri nets for adaptive process modeling. In
Pillars of computer science, pages 460–474. Springer, 2008.

[7] I. A. Lomazova. Interacting workflow nets for workflow process re-
engineering. Fundamenta Informaticae, 101(1):59–70, 2010.

[8] S. S. Owicki and L. Lamport. Proving liveness properties of concurrent
programs. ACM Trans. Program. Lang. Syst., 4(3):455–495, 1982.

[9] L. Popova-Zeugmann. Essential states in time Petri nets. Citeseer,
1998.

[10] L. Popova-Zeugmann. Time Petri Nets. Springer, 2013.
[11] C. Ramchandani. Analysis of asynchronous concurrent systems by

timed petri nets. 1974.
[12] M. Schiffers and H. Wedde. Analyzing program solutions of coor-

dination problems by cp-nets. In J. Winkowski, editor, Mathematical
Foundations of Computer Science 1978, volume 64 of Lecture Notes in
Computer Science, pages 462–473. Springer Berlin Heidelberg, 1978.

