

SYRCoSE 2014

Editors:

Alexander Kamkin, Alexander Petrenko and
Andrey Terekhov

Preliminary Proceedings of the 8th Spring/Summer Young Researchers’
Colloquium on Software Engineering

Saint Petersburg, May 29-31, 2014

2014

Preliminary Proceedings of the 8th Spring/Summer Young Researchers’ Colloquium on
Software Engineering (SYRCoSE 2014), May 29-31, 2014 – Saint Petersburg, Russia:

The issue contains the papers presented at the 8th Spring/Summer Young Researchers’ Colloquium
on Software Engineering (SYRCoSE 2014) held in Saint Petersburg, Russia on May 29-31, 2014.
Paper selection was based on a competitive peer review process being done by the program
committee. Both regular and research-in-progress papers were considered acceptable for the
colloquium.

The topics of the colloquium include formal methods, embedded system design, system
programming, process mining, testing, compiler technologies and others.

Предварительный сборник трудов 8-ого весеннего/летнего коллоквиума молодых
исследователей в области программной инженерии (SYRCoSE 2014), 29-31 мая 2014 г. –
Санкт Петербург, Россия:

Сборник содержит статьи, представленные на 8-ом весеннем/летнем коллоквиуме молодых
исследователей в области программной инженерии (SYRCoSE 2014), прошедшем в Санкт
Петербурге 29-31 мая 2014 г. Отбор статей производился на основе рецензирования
материалов программным комитетом. На коллоквиум допускались как полные статьи, так и
краткие сообщения, описывающие текущие исследования.

Программа коллоквиума охватывает следующие темы: формальные методы, проектирование
встроенных систем, системное программирование, анализ процессов, тестирование,
компиляторные технологии и др.

ISBN 978-5-91474-020-4

Contents

Foreword··5

Committees / Referees··6

Formal Methods

Modular Construction of Time Petri Nets Reachability Graph
 I. Knizhnikova, L. Dworzanski···8

On the Deadlock Control in Parallel Resource-Constrained Workflows
 V. Bashkin, N. Panfilova···13

LTL-Specification, Verification and Construction of PLC Programs
 D. Ryabukhin, E. Kuzmin··19

An Approach to Lightweight Static Data Race Detection
 P. Andrianov, A. Khoroshilov, V. Mutilin···27

Minimizing the Number of Static Verifier Traces to Reduce Time for Finding Bugs in Linux Kernel
Modules
 V. Mordan, E. Novikov··34

Tools Support for Linux Kernel Deductive Verification Workflow
 D. Efremov, N. Komarov···40

Dynamically Allocated Memory Verification in Object-Oriented Programs using Prolog
 R. Haberland, S. Ivanovskiy··46

Embedded System Design and System Programming

Energy-Aware Design of Embedded Software through Modelling and Simulation
 J.A. Esparza Isasa, P.G. Larsen, F.O. Hansen···51

Energy Aware Congestion Management in Dynamic Wireless Mesh Network
 S.P. Shiva Prakash, T.N. Nagabhushan, K. Krinkin, O. Sholokhova···57

An Architecture of Effective Discrete-Event Simulation Engine for Early Validation of Avionics Systems
 D. Buzdalov···65

Protecting Applications from Highly Privileged Malware Using Bare-metal Hypervisor
 K. Mallachiev, N. Pakulin···71

Process Mining

Checking Conformance of High-Level Business Process Models to Event Logs
 A. Begicheva, I. Lomazova··77

Applying Graph Grammars for the Generation of Process Models and Their Logs
 V. Kataeva, A. Kalenkova···83

Generation of a Set of Event Logs with Noise
 I. Shugurov, A. Mitsyuk···88

DPMine/C: C++ Library and Graphical Frontend for DPMine Workflow Language
 S. Shershakov··96

3 of 181

Component-based VTMine/C Framework: Not Only Modelling
 P. Kim, O. Bulanov, S. Shershakov···102

Testing

Extended Finite State Machine based Test Derivation Strategies for Telecommunication Protocols
 N. Kushik, A. Kolomeez, A. Cavalli, N. Yevtushenko··108

A Generic Knowledgebase for Test Generation
 A. Kotsynyak, A. Tatarnikov ···114

Interactive Test Case Design via Attribute Exploration
 F. Strok, G. Kondratiev···118

Keyword-Driven Testing with Message Sequence Charts
 B. Tyutin, A. Veselov, V. Kotlyarov···122

Reconciliation Testing Aspects of Trading Systems Software Failures
 A.-M. Kriger, V. Isayev, A. Pochukalina···125

Simulation-based Hardware Verification Back-end: Diagnostics
 M. Chupilko, A. Protsenko··130

Compiler Technologies

From Abstract Parsing to Abstract Translation
 S. Grigoriev, Ia. Kirilenko···135

Comparison of Generalized Ascent and Descent Parsers
 A. Ragozina, S. Grigoriev···140

One Approach to Automated Compiler Verification
 V. Bessonov, L. Lyadova···143

Generation of Overlapped Executable Code
 V. Aranov, A. Terentiev···150

Application-Specific Methods and Tools

Predicative Analytics for Developing Software
 N. Yarushkina, T. Afanasieva, I. Timina···154

Detecting and Highlighting Text in Images
 I. Pakhomov··· ···········159

Using Multidimensional Ontology of Electronic Document for Solving Semantic Indexing Problem
 V. Lanin, G. Sokolov···166

Generation of Domain-Specific Languages on the Basis of Ontologies
 A. Sukhov···170

Dynamic Information Model Interactions: Design and Implementation of Database-Driven Workflow
Approach
 A. Petrov··177

4 of 181

Foreword

Dear participants, we are glad to meet you at the 8th Spring/Summer Young Researchers’
Colloquium on Software Engineering (SYRCoSE). The event is held in Saint Petersburg, the
second largest city in Russia and its cultural capital. The colloquium is hosted by Saint
Petersburg State Polytechnical University (SPbSPU), one of the top research and educational
institutions in Russian Federation in the field of applied physics and mathematics, industrial
engineering, chemical engineering, aerospace engineering and many other disciplines.
SYRCoSE 2014 is organized by Institute for System Programming of the Russian Academy of
Sciences (ISPRAS) and Saint Petersburg State University (SPbSU) jointly with SPbSPU.

In this year, Program Committee (consisting of 50 members from more than 25 organizations)
has selected 31 papers. Each submitted paper has been reviewed independently by three referees.
Participants of SYRCoSE 2014 represent well-known universities, research institutes and
companies such as Aarhus University, Exactpro Systems, ISPRAS, JSS Research Foundation,
JSS Academy of Technical Education, Kostroma State Technological University, National
Research University – Higher School of Economics, Obninsk Institute for Nuclear Power
Engineering, Perm State National Research University, Saint Petersburg Electrotechnical
University “LETI”, SPbSPU, SPbSU, TELECOM SudParis, Tomsk State University, Ulyanovsk
State Technical University, Yandex, Yaroslavl State University and Yuri Gagarin State
Technical University of Saratov (4 countries, 13 cities and 18 organizations).

We would like to thank all of the participants of SYRCoSE 2014 and their advisors for
interesting papers. We are also very grateful to the PC members and the external referees for
their hard work on reviewing the papers and selecting the program. Our thanks go to the invited
speakers, Bertrand Meyer (ETH Zürich, Switzerland) and Kostya Serebryany (Google Moscow,
Russia). We would also like to thank our sponsors and supporters: Russian Foundation for Basic
Research (grant 14-07-06006), Google, Exactpro Systems and CyberLeninka. Finally, our
special thanks to local organizers, Igor Chernorutskiy, Vsevolod Kotlyarov and Tatyana Elamic
(SPbSPU), for their invaluable help in organizing the colloquium in Saint Petersburg.

Sincerely yours

Alexander Kamkin, Alexander Petrenko and Andrey Terekhov
May 2014

5 of 181

Committees

Program Committee Chairs

 Alexander Petrenko – Russia
Institute for System Programming of RAS Andrey Terekhov – Russia

Saint-Petersburg State University

Program Committee

 Jean-Michel Adam – France
Pierre Mendès France University Tiziana Margaria – Germany

University of Potsdam
 Sergey Avdoshin – Russia

National Research University Higher School of Economics Marek Miłosz – Poland
Institute of Computer Science, Lublin University of Technology

 Eduard Babkin – Russia
National Research University Higher School of Economics Alexey Namestnikov – Russia

Ulyanovsk State Technical University
 Svetlana Chuprina – Russia

Perm State National Research University Valery Nepomniaschy – Russia
Ershov Institute of Informatics Systems

 Pavel Drobintsev – Russia
Saint-Petersburg State Polytechnic University Mykola Nikitchenko – Ukraine

Kyiv National Taras Shevchenko University

 Liliya Emaletdinova – Russia
Institute for Technical Cybernetics and Informatics, KNRTU Yuri Okulovsky – Russia

Ural Federal University
 Victor Gergel – Russia

Lobachevsky State University of Nizhny Novgorod Elena Pavlova – Russia
Microsoft Research

 Efim Grinkrug – Russia
National Research University Higher School of Economics Ivan Piletski – Belorussia

Belarusian State University of Informatics and Radioelectronics
 Maxim Gromov – Russia

Tomsk State University Vladimir Popov – Russia
Ural Federal University

 Vladimir Hahanov – Ukraine
Kharkov National University of Radioelectronics Yury Rogozov – Russia

Taganrog Institute of Technology, Southern Federal University
 Shihong Huang – USA

Florida Atlantic University Rustam Sabitov – Russia
Kazan National Research Technical University

 Iosif Itkin – Russia
Exactpro Systems Nikolay Shilov – Russia

Ershov Institute of Informatics Systems
 Alexander Kamkin – Russia

Institute for System Programming of RAS Ruslan Smelyansky – Russia
Moscow State University

 Vsevolod Kotlyarov – Russia
Saint-Petersburg State Polytechnic University Valeriy Sokolov – Russia

Yaroslavl Demidov State University
 Oleg Kozyrev – Russia

National Research University Higher School of Economics Petr Sosnin – Russia
Ulyanovsk State Technical University

 Vladimir Kozyrev – Russia
National Research Nuclear University “MEPhI” Veniamin Tarasov – Russia

Povolzhskiy State University of Telecommunications and Informatics

 Daniel Kurushin – Russia
State National Research Polytechnic University of Perm Sergey Ustinov – Russia

Saint-Petersburg State Polytechnic University

 Peter Gorm Larsen – Denmark
Aarhus University Vladimir Voevodin – Russia

Research Computing Center of Moscow State University
 Rustam Latypov – Russia

Institute of Computer Science and Information Technologies, KFU Dmitry Volkanov – Russia
Moscow State University

 Alexander Letichevsky – Ukraine
Glushkov Institute of Cybernetics, NAS Mikhail Volkov – Russia

Ural Federal University
 Alexander Lipanov – Ukraine

Kharkov National University of Radioelectronics Nadezhda Yarushkina – Russia
Ulyanovsk State Technical University

 Irina Lomazova – Russia
National Research University Higher School of Economics Rostislav Yavorsky – Russia

National Research University Higher School of Economics
 Ludmila Lyadova – Russia

National Research University Higher School of Economics Nina Yevtushenko – Russia
Tomsk State University

 Victor Malyshko – Russia
Moscow State University Vladimir Zakharov – Russia

Moscow State University
 Vladimir Makarov – Russia

Yaroslav-the-Wise Novgorod State University Sergey Zaydullin – Russia
Kazan National Research Technical University

Organizing Committee Chairs and Secretaries

 Igor Chernorutskiy – Russia
Saint-Petersburg State Polytechnic University Alexander Petrenko – Russia

Institute for System Programming of RAS
 Tatyana Elamic – Russia

Saint-Petersburg State Polytechnic University Vsevolod Kotlyarov – Russia
Saint-Petersburg State Polytechnic University

 Alexander Kamkin – Russia
Institute for System Programming of RAS

6 of 181

Referees

Jean-Michel Adam Tiziana Margaria

Sergey Avdoshin Ivan Mikhailov

Eduard Babkin Alexey Namestnikov

Mikhail Chupilko Mykola Nikitchenko

Svetlana Chuprina Yuri Okulovsky

Pavel Drobintsev Nikolay Pakulin

Denis Efremov Elena Pavlova

Victor Gergel Alexander Petrenko

Efim Grinkrug Ivan Piletski

Maxim Gromov Vladimir Popov

Shihong Huang Yury Rogozov

Iosif Itkin Nikolay Shilov

Dmitry Ivankov Sergey Smolov

Anna Kalenkova Valeriy Sokolov

Alexander Kamkin Petr Sosnin

Dmitry Kosolobov Veniamin Tarasov

Vsevolod Kotlyarov Andrei Tatarnikov

Artem Kotsynyak Andrey Terekhov

Vladimir Kozyrev Dmitry Volkanov

Daniel Kurushin Mikhail Volkov

Peter Gorm Larsen Nadezhda Yarushkina

Alexander Lipanov Rostislav Yavorskiy

Irina Lomazova Nina Yevtushenko

Lyudmila Lyadova Vladimir Zakharov

Victor Malyshko

7 of 181

Modular construction of Time Petri net reachability
graph

Ilona Knizhnikova
National Research University Higher School of Economics

iknizhnikova@gmail.com

Leonid Dworzanski
National Research University Higher School of Economics

leo@mathtech.ru

Abstract—Time Petri nets are an extension of Petri nets for-
malism with time specifications on transitions. The formalism is
convenient to model distributed systems and enables capturing the
time characteristics of distributed system activities. The primary
tool for models behaviour understanding is reachability graph.
In [10] the algorithm for constructing Time Petri net reachability
graph was suggested. It is based on essential states, but the
number of states in the resultant net reachability graph increases
when time specification are scaled up, while the behaviour of the
net is invariant under time specification scaling. We study the
modification of this algorithm that allows to build Time Petri
nets reachability graphs more efficiently using common divisors
of the time specification in the components of a Time Petri net.

Keywords—time petri nets, reachability graph, essential states.

I. INTRODUCTION

Petri nets are a popular formalism for modelling concurrent
systems. Different extensions of Petri nets and their applica-
tions are extensively studied in the literature [12], [3], [2], [11],
[4], [6]. Obviously, time is the very important aspect of systems
behaviour. Time restrictions like “this action can take from N
to M seconds” are crucial for real-time system, net protocols,
control systems et cetera. Time can be introduced into the
Petri nets formalism in many different ways [1]. Moreover,
even timeless distributed systems are hard to understand [8],
[5]. There are two popular types of such nets: time Petri nets
and timed Petri nets. Both of these modifications can simulate
counter machines, i.e. are Turing-complete. Both can be used
to model systems with time specifications, but in this article
only time Petri nets are considered.

Time restrictions make behaviour of Time Petri nets models
extremely hard to understand. It means that we have no options
but to use computer aided means to check the correctness of
a developing system or to analyze already constructed one.
The crucial tool to understand the behaviour of a model is
reachability graph. The problem of time Petri nets model
checking can be solved via essential-states-based algorithm for
constructing reduced reachability graphs [9]. But when all time
specifications of a Time Petri net are multiplied by a constant,
the size of reachability graph is increased or decreased while
the behaviour of the net has not changed. In this work we
study how to use this property of the algorithm to reduce the
space requirements for analysis of a Time Petri net.

The paper is organized as follows. To start with, we provide
basic notations of Petri nets. Then we define the Time Petri nets
formalism. Then we provide a Time Petri net example which
captures the process of a university course from the student

viewpoint. After that we apply our modification to build the
reachability graphs of the net components of the example and
provide the obtained results. The paper ends with conclusion.

II. PRELIMINARIES

Petri nets are a well known formalism widely used to model
concurrent systems. Petri nets offer graphical notation and
rigorous formal semantics. A Petri net is a marked directed
bipartite graph, where the structure of the graph defines the
behaviour of the model while the marking of the graph defines
the current state.

Definition 2.1: A Petri (P/T-net) net is a 4-tuple
(P, T, F,W) where

• P and T are disjoint finite sets of places and transitions,
respectively;

• F ⊆ (P × T) ∪ (T × P) is a set of arcs;

• W : F → N — an arc multiplicity function, that is
a function which assigns every arc a positive integer
number (arc multiplicity).

Following extension of W we denote as W̃ :

W̃ (x, y) =

{
n, xFy ∧W (x, y) = n
0, ¬xFy

A marking of a Petri net (P, T, F,W) is a multiset over P,
i.e. a mapping M : P → N. By M(N) we denote a set
of all markings of a P/T-net N. We say that the transition
t in a P/T-net N = (P, T, F,W) is active in the marking
M iff for every p ∈ {p|(p, t) ∈ F} : M(p) ≥ W̃ (p, t). An
active transition may fire, resulting in a marking M ′ such that
∀p ∈ P :M ′(p) =M(p)− W̃ (p, t) + W̃ (t, p).

Another notion we will use is hammock. While it is well
known notion we will recall it informally. Hammock is a part
of the graph such, that only two vertexes of hammock are
linked with the rest of the graph. These vertexes are called
starting and ending vertexes of hammock. There can be the
subgraph of arbitrary complexity between these two vertexes,
but this system should have no link to the graph except starting
and/or ending vertex of hammock. [7]

III. MOTIVATING EXAMPLE

In this section, we provide the example of a time Petri net
Tnet that models the flow of some course.

8 of 181

The first transition of the Tnet denotes the beginning
of a semester and the beginnig of a course. The process
consists of two almost independent scenarios, each of whose
is represented by a separate net hammock. First of them
(starting with the place start1 and ending with end1) can be
interpreted as the process of preparing for exams and working
with a teacher. Second one models an examination process.
The course can be completed iff these parts are performed
successfully, i.e. final mark depends on both of them. But they
do not block each other — a student has to pass the exam
without regard to his work during the semester.

The process starts with a transition course started firing,
which adds tokens to the places start1 and start2. Then two
hammocks are performing independently.

We start with considering the upper hammock. Firstly,
transition start solve problems fires. It represents the beginning
of student’s work and adds tokens to the places student and no
more problems. When both of these places contain tokens —
student isn’t solving a problem and is ready for actions. The
course can be ended through firing the transition all problems
solved, or the student can get some new problems to solve
(transition hand-in problem). In the second case, the student
needs to solve the problem. He or she starts with meeting
with a tutor (going to place meeting with tutor), discusses
the problem (transition discussion with tutor moves token
to the place student and this enables transition start work)
and then student starts working on it, and comes to some
decision. (Transition start work fires and moves token to the
place solving). After that, the problem is technically solved
and transition problem solved fires adding token to the place
no more problems, but the student still needs to meet his
tutor again to discuss the result. (Chain meeting with tutor–
discussion with tutor-adding token to place student fires again).
Only after that student understands the nuances of the problem
and the solution well enough.

Then the cycle may repeat again — student ends the
process or gets a new problem. If the first case has place,
the hammock finishes its execution.

Now we consider the second hammock. This hammock
starts with transition send assignment firing adding tokens
to places solving assignment and submission opened. Then
the hypothetical student has two options: complete his work
before deadline (transition submission), let the system register
his work (transition deadline), and then just get his mark by
getting through transition evaluate work.

If student had not managed to pass his work in time, the
system registers this (transition deadline) and the submission
is closed (disabling transition submission). Then he or she has
no choice, but to pass the work behind time (transition com-
mission arranged), wait for a re-examination (place preparing
for commission) and go through it (transition commission).
Independently of the success or the failure of his examination,
the student gets his mark — would it be A or F at the transition
evaluate work firing.

We will not provide the formal definition of a workflow
net here, but this model is a sound workflow net, i.e. initial
marking has one token in the start place. When a token reaches
the end place there are no other tokens in the net. And the
marking with the end place marked can always be reached.

IV. TIME PETRI NETS

In this section we define Time Petri nets (TPN).

We will use the definition of Time Petri net as given in [10].
Time Petri net (TPN) is an extended classic Petri net where
each transition t is associated with a time interval [at, bt].
If t is enabled, it still cannot fire before at time units have
elapsed, and it has to fire no later than bt time units after
being enabled, unless it has meanwhile become disabled by
the firing of another transition.

Time counting is started from the moment of enabling t
and is reset if t has been disabled. at is called ”earliest firing
time” of t (short eft(t)) and bt is ”latest firing time” of t (short
lft(t)). The firing of a transition does not take any time.

The interval bounds are non-negative rational numbers, and
bt can also be ∞.

Definition 4.1: A Time Petri net (TPN) is a 6-tuple Z =
(P, T, F, V,m0, I) such that

1) the 5-tuple S(Z) = (P, T, F, V,m0) is a Petri net,

2) I : T → Q+
0 × (Q+

0 ∪ ∞) and for each t ∈ T , with
I(t) = (I1(t), I2(t)) it holds that I1(t) ≤ I2(t)

Here I(t) is the time interval of the transition t, during this
interval t is ready to fire, I1(t) is eft(t) and I2(t) is lft(t).

Definition 4.2: (p-marking) Let P be the set of all places
in a Time Petri net Z. A p-marking in Z is a (total) function
m : P → N.

Definition 4.3: (t-marking) Let T be the set of all transi-
tions in a time Petri net Z. Any (total) function h : T → R+

0 ∪#
is a t-marking in Z.

Definition 4.4: Let Z = (P, T, F, V,mo, I) be a Time Petri
net, m a p-marking and h a t-marking in Z. A state in Z is a
pair z := (m, h) such that

1) ∀t((t ∈ T ∧ t− > m)→ h(t) = #).

2) ∀t((t ∈ T ∧ t− ≤ m)→ h(t) ∈ R+
0 ∧ h(t) ≤ lft(t)).

Claim 1.Time specification of transitions of an arbitrary
time Petri net can be required to be non-negative integers
without loss of generality [10]

V. REACHABILITY GRAPH

Firstly we consider original algorithm proposed in [10]. It
is based on the conception of essential states.

Definition 5.1: (modified state change) Let τ be a non-
negative real number and z = (m,h) be a state in the Time
Petri net Z. It is possible for time τ to elapse in the state z in
Z if

∀(t ∈ T ∧ h(t) 6=→ h(t) + τ ≤ lft(t))

The elapsing of time τ will change z into the state z’ = (m’,
h’) with

1) m’:=m,

9 of 181

course started

[1,1]

start2

start

send assignment

[5,5]

solving assignment

submission

[0,10]

submission opened

deadline

[10,10]

submission closed

work accepted

start1

start solve problems

[3,3]

student

end1

end2

course completed

[1,5]

end

evaluate work

[5,5]

discussion with tutor

[3,3]

problem hand-in

[9,12]

assignment obtained start work

[3,6]

meeting with tutor problem solved

[3,3]

solving

preparing for commission

commission

[5,5]

all problems solved

[3,12]

no more problems

commision arranged

[15,15]

Fig. 1. The workflow net of a course process

2) ∀t ∈ T →

h′(t) :=

if ift− > m′

eft(t) t− ≤ m′ ∧ lft(t) =∞
∧ eft(t) < h(t) + τ

h(t) + τ otherwise

Definition 5.2: (essential-state) An integer-state z = (m, h)
in a Time Petri net Z is called essential-state when Z is defined
with the modified firing rule.

Definition 5.3: (reachable essential-state) Let Z be an arbi-
trary Time Petri net. The set REISZ of all reachable essential-
states in Z is defined as follows:

REISZ := {z|z0
σ(τ)→ z}, z is an essential-state and σ(τ)

is a run feasible in Z

Set of all reachable essential states of the net carries
complete information about this net’s behavioural properties.
This characteristic makes it possible to construct reachability
graph, which includes only essential states (and is much
smaller than original reachability graph) and still provides
enough information to analyse behavioural properties of the
net.

Definition 5.4: (reachability graph for arbitrary Time Petri
net) Let Z = (P, T, F, V,m0, I) be an arbitrary (finite or
infinite) Time Petri net with T = t1, . . . , tn. The (reduced)
reachability graph RGreduZ := (W,E,L) of Z is the directed
graph with edge labels whose set of vertices W, set of edges
E and edge labels from L ⊆ N × T are defined by Algorithm
1.

10 of 181

Algorithm 1: Time Petri net reachability graph
begin

R := Z0; W := ∅; E := ∅ ;
while R 6= ∅) do

select z = (m,h) from R; R := R− {z};
W :=W ∪ {z} ;
if {t ∈ T‖t− ≤ m} 6= ∅ then

if {t ∈ T |t− ≤ m ∧ lft(t) 6=∞} 6= ∅ then
Let k := min{lft(t)− h(t)|t− ≤ m}
else

Let
k := max{eft(t)− h(t)|t− ≤ m}

for time = 0 to k do
for i = 1 to n do

if ti ready to fire in (m,h) + time then
Let z′ be such that z time→ ti→ z′;
E := E ∪ {(z, [time, ti], z′)};
if z′ /∈W then

R := R ∪ {z′}

VI. MODULAR CONSTRUCTION OF TIME PETRI NET
REACHABILITY GRAPH

Algorithm constructing reachability graph through essential
states demonstrates high performance, when it works with nets,
whose time intervals are not very big. But if we multiply all
time specifications in a net on the same number, number of
essential states increases dramatically. But such scaling does
not affect behavioural properties of the net and the set of
reachable p-markings of the scaled and the original nets are
the same.

There is an evident way to fix the problem — just check
if the net can be down-scaled (divided by greatest common
divisor) and than analyse this downscaled net. But what if
we have the net consisting of two independent components.
Both of these components can be down-scaled, if considered
independently, but the time specification of these components
contains coprime numbers.

Such net can have huge reachability graph, which can not
be constructed because of the time or memory restrictions.
But the graphs for each of these parts can easily be built
via the downscale procedure. And these graphs carry enough
information to analyse behavioural properties of the original
net, such as boundedness, for example. We propose the way
to solve the problem through searching for the detached ham-
mocks, finding greatest common divisor (GCD) for all natural
time specification inside them, dividing these specifications on
the GCD and than applying reachability graph construction
algorithm to each of the found hammocks.

Obtained reachability graphs can be used for performing
model checking upon each of them and deduce identified
properties for the whole net, but for the moment we consider
only receiving reachability graphs.

We applied this technique to our example. The example
contains two hammocks. First includes all vertexes and tran-

Algorithm 2: Modular construction of Time Petri net
reachability graph

begin
Let H be the set of hammocks in the net;
X := ∅;
foreach h ∈ H do

foreach Transition t ∈ h do
Insert eft(t) into X;
Insert lft(t) into X;

GCDh=Find GCD(X);
foreach Transition t ∈ h do

T ′h = {t′|t ∈ Th ∧ eft(t′) =
eft(t)/GCDh ∧ lft(t′) = lft(t)/GCDh};

h′ = (Ph, T
′
h, F, V)

Apply Algorithm 1 to h

sitions between places start1 and end1 inclusively. Second
starts at place start2 and ends with end2. We can predict the
successful application of the modular approach as the GCD of
the first hammock time specifications is 3 and the GCD of the
second hammock is 5, which are coprime numbers. Then we
applied 2 and received the following results Table I.

The reachability graph of the whole net consists of 208
vertexes and 907 edges. But if we split up the net into 2
hammocks and then construct reachability graph for each of
them, then the sum of them will be much lesser than the
reachability graph of the whole net. In our case, the original
net’s reachability graph is not very big, because it is just an
example, but even here reduction is significant.

TABLE I. ORIGINAL AND MODIFIED ALGORITHMS COMPARISON

Vertexes Edges
Original (full net) 208 907

Modified (hammock 1) 8 14
Modified (hammock 2) 7 9

VII. CONCLUSION

In this paper we provided an example Time Petri net
that models the process of an academic course. The numeric
properties of the transitions time specifications and our mod-
ification of the algorithm enabled us decrease time and space
requirements for the analysis of the net. We constructed a
reachability graph that is much smaller than the original one.
The further research directions are to characterize the class of
time Petri nets and the behavioural properties for which such
technique is applicable.

ACKNOWLEDGMENT

This study was carried out within the National Research
University Higher School of Economics’ Academic Fund.

REFERENCES

[1] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux. Comparison
of different semantics for time petri nets. In ATVA, pages 293–307,
2005.

11 of 181

[2] B. Berthomieu, M. Boyer, and M. Diaz. Time petri nets. In Petri Nets,
pages 123–161.

[3] H. Genrich and K. Lautenbach. The Analysis of Distributed Systems
by means of Predicate/Transition-Nets. In G. Kahn, editor, Semantics
of Concurrent Compilation, volume 70 of Lecture Notes in Computer
Science, pages 123–146. Springer-Verlag, Berlin, 1979.

[4] K. Jensen and L. M. Kristensen. Coloured Petri nets: modelling and
validation of concurrent systems. Springer, 2009.

[5] L. Lamport. What good is temporal logic? In IFIP Congress, pages
657–668, 1983.

[6] I. A. Lomazova. Nested petri nets for adaptive process modeling. In
Pillars of computer science, pages 460–474. Springer, 2008.

[7] I. A. Lomazova. Interacting workflow nets for workflow process re-
engineering. Fundamenta Informaticae, 101(1):59–70, 2010.

[8] S. S. Owicki and L. Lamport. Proving liveness properties of concurrent
programs. ACM Trans. Program. Lang. Syst., 4(3):455–495, 1982.

[9] L. Popova-Zeugmann. Essential states in time Petri nets. Citeseer,
1998.

[10] L. Popova-Zeugmann. Time Petri Nets. Springer, 2013.
[11] C. Ramchandani. Analysis of asynchronous concurrent systems by

timed petri nets. 1974.
[12] M. Schiffers and H. Wedde. Analyzing program solutions of coor-

dination problems by cp-nets. In J. Winkowski, editor, Mathematical
Foundations of Computer Science 1978, volume 64 of Lecture Notes in
Computer Science, pages 462–473. Springer Berlin Heidelberg, 1978.

12 of 181

On the deadlock control in parallel
resource-constrained workflows

Vladimir A. Bashkin
and Nadezhda Yu. Panfilova

Yaroslavl State University
Yaroslavl, Russia 150000

Email: v bashkin@mail.ru lillian007@mail.ru

Abstract—We study the verification of the soundness property
for workflow nets extended with resources. A workflow is sound if
it terminates properly (no deadlocks and livelocks are possible).
A class of resource-constrained workflow nets (RCWF-nets) is
considered, where resources can be used by a process instance,
but cannot be created or spent.

Two sound RCWF-net, using the same set of resources, can
be put in parallel. This parallel composition in some cases may
produce additional deadlocks. A problem of deadlock avoidance
in parallel workflows is studied, some methods of deadlock search
and control are presented.

Keywords—Petri net, workflow, soundness, deadlock, RCWF-
net, parallel composition

I. INTRODUCTION

Workflow management systems provide the automated sup-
port and coordination of business and technological processes
to reduce costs and flow times and to increase quality of service
and productivity. Workflows orchestrate people, resources,
technology and information flow. Workflow nets [1], [2], a
particular class of Petri nets, have become one of the standard
ways to model and analyze workflow processes.

Workflow net is an abstraction of the workflow that can be
used to check the so-called soundness property. This property
guarantees the absence of livelocks, deadlocks, and other
anomalies that can be detected without domain knowledge.
Nowadays there exists a number of soundness notions (see [3]
for a survey). Informally, the classical soundness ensures that
from any reachable state the system may terminate properly.

A workflow consists of a set of coordinated tasks describ-
ing the flow of work within the organization. In real world the
occurrence of those tasks may depend on resources, such as
machines, manpower, and raw material. To take resources into
account different extensions of a base formalism of WF-nets
have been introduced, coursing different versions of soundness.

In [4], [5] a specific class of WFR-nets with decidable
soundness was studied. In [10], [12] a more general class
of Resource-Constrained Workflow Nets (RCWF-nets) was
defined. Informally, the authors impose two constraints on
resources. First, they require that all resources that are initially
available are available again after terminating of all cases.
Second, they also require that for any reachable marking, the
number of available resources does not override the number
of initially available resources.

In [6], [7] a more general case of arbitrary resource
transformations was studied.

In [10] it was proven that for RCWF-nets with a single
resource type generalized soundness can be effectively checked
in polynomial time. In [12] it was proven that generalized
soundness is decidable in RCWF-nets with an arbitrary number
of resource places (by reducing to the home-space problem).

Although soundness is decidable, there is so far no efficient
decision algorithm because the proposed algorithm decides a
home-space property, which requires a finite but (in general)
too high number of reachability checks [12]. In addition, the
problem of the calculation of the smallest number of resources
for which soundness can be proved, remains open.

In this paper we consider a compositional approach to this
problem. We investigate possible ways of minimal resource
partitioning in control-independent and resource-dependent
parallel branches of a workflow. We define a natural notion
of parallel composition of two RCWF-nets, sharing common
resource places. Parallelism may introduce additional dead-
locks here, but we prove that these deadlocks (and other
soundness violations) are avoidable by an enlargement of
the initial resource. We present an approach, that allows to
compute a nontrivial subset of minimal sound resources of a
decomposable RCWF-net.

The main result of the paper is a method of deadlock
avoidance for parallel workflows. We show that under certain
circumstances a composite workflow can be restructured in
such a way that the resulting net would require not a sum but
a union of minimal sound resources of its parallel subnets.
This allows to save a significant part of resources without any
violation of the soundness property.

The paper is organized as follows. In Section 2 basic
definitions of multisets and Petri nets are given. In Section 3
resource-constrained workflow nets and their soundness prop-
erties are formally defined. In Section 4 we study reachability
properties of sound RCWF-nets. In Section 5 a notion of
parallel composition of RCWF-nets is introduced. Several
result are formulated, describing how minimal resources of a
composite workflow can be obtained from minimal resources
of its parallel subnets. In Section 6 deadlock/livelock avoidance
methods are presented. The first one can be applied for any
pair of sound workflows, but requires specific run-time control,
not incorporated into the net itself. The second one uses the

13 of 181

original Petri net structure, but is applicable to the safe nets
only. Section 7 contains some conclusions.

II. PRELIMINARIES

Let S be a finite set. A multiset m over a set S is a
mapping m : S → Nat, where Nat is the set of natural numbers
(including zero).

For two multisets m,m′ we write m ⊆ m′ iff ∀s ∈ S :
m(s) ≤ m′(s) (the inclusion relation). The sum and the union
of two multisets m and m′ are defined as usual: ∀s ∈ S :
m+m′(s) = m(s)+m′(s), m∪m′(s) = max(m(s),m′(s)).
By M(S) we denote the set of all finite multisets over S.

Let P and T be disjoint sets of places and transitions and
let F : (P × T) ∪ (T × P) → Nat. Then N = (P, T, F) is a
Petri net. A marking in a Petri net is a function M : P → Nat,
mapping each place to some natural number (possibly zero).
Thus a marking may be considered as a multiset over the set
of places. Pictorially, P -elements are represented by circles,
T -elements by boxes, and the flow relation F by arcs. Places
may carry tokens represented by filled circles.

For a transition t ∈ T the preset •t and the postset t•
are defined as the multisets over P such that •t(p) = F (p, t)
and t•(p) = F (t, p) for each p ∈ P . Similarly, for a place
p ∈ P we define •p and p• as the multisets over T such that
•p(t) = F (t, p) and p•(t) = F (p, t) for each t ∈ T .

A transition t ∈ T is enabled in a marking M iff ∀p ∈
P M(p) ≥ F (p, t). An enabled transition t may fire yielding
a new marking M ′ =def M − •t+ t•, i. e. M ′(p) =M(p)−
F (p, t) + F (t, p) for each p ∈ P (denoted M t→ M ′, or just
M → M ′). We say that M ′ is reachable from M iff there
is a sequence M = M1 → M2 → · · · → Mn = M ′. For a
Petri net N by R(N,M0) we denote the set of all markings
reachable from its initial marking M0.

A net (N,M0) is bounded iff R(N,M0) is finite.

A net (N,M0) is safe iff ∀M ∈ R(N,M0), p ∈ P we have
M(p) ≤ 1. Places in safe nets can be considered as boolean
variables (no tokens – false, 1 token – true).

III. RCWF-NETS

A resource-constrained workflow net (RCWF-net for short)
is a tuple N = (Pc, Pr, T, Fc, Fr, i, o) s.t.

• Pc is a finite set of control places;

• Pr is a finite set of resource places, Pc ∩ Pr = ∅;

• T is a finite set of transitions, Pc ∩ T = Pr ∩ T = ∅;

• Fc : (Pc × T) ∪ (T × Pc) → Nat is a multiset of
control arcs;

• Fr : (Pr × T) ∪ (T × Pr) → Nat is a multiset of
resource arcs;

• ∀t ∈ T ∃p ∈ Pc : Fc(p, t) + Fc(t, p) > 0 (each
transition is incident to some control place);

• i ∈ Pc is a source place and o ∈ Pc is a sink place
(input and output), such that •i = o• = ∅;

p4

r1

t3

p2

p1 t2 p3

i t1

r2

t5

o

t4

Fig. 1. RCWF-net

• every node from Pc ∪ T is on a path from i to o, and
this path consists of nodes from Pc ∪ T.

In RCWF-nets Petri net places are divided into control and
resource ones. Note that all transitions are necessarily linked to
control places — this guarantees the absence of “uncontrolled”
resource modifications.

A marking is also divided into control and resource parts.
For a multiset c + r, where c ∈ M(Pc) and r ∈ M(Pr), we
write c|r.

For a net N a resource is a multiset over Pr. A controlled
resource (a state) is a multiset over Pc ∪ Pr.

Fig. 1 represents an example of a RCWF-net, where
resource places r1 and r2 are depicted by ovals, resource arcs
— by dotted arrows.

Every RCWF-net N = (Pc, Pr, T, Fc, Fr, i, o) contains its
control subnet Nc = (Pc, T, Fc, i, o), which forms a RCWF-
net with the empty set of resources.

A marked net (N, i|r) is a net N together with some initial
marking i|r (here i denote a multiset, containing a single token
in the input place i).

Let N be an RCWF-net. N is (r)-sound for some resource
r ∈M(Pr) iff ∀c|r′ ∈ R(N, i|r) we have:

1) r′ ≤ r;
2) o|r ∈ R(N, c|r′).

N is sound iff there exists some resource r ∈M(Pr) such
that N is (r′)-sound for any r′ ≥ r.

For example, the net on Fig. 1 is sound, (r1 + r2)-sound
and not (r1)-sound.

Thus soundness for an RCWF-net means, that, first, this
workflow net can terminate properly from any reachable state,
and, moreover, adding any extra resource does not violate the
proper termination property.

14 of 181

In [12] it was proven that the soundness problem is
decidable even in a more general case of multiple input tokens.

Definition 1: For a sound RCWF-net N by res(N) and
mres(N) we denote the sets of sound and minimal sound
resources:

• res(N) =def {r ∈ M(Pr) | N is (r + r′) −
sound for any r′ ∈M(Pr)};

• mres(N) =def {r ∈ res(N) | 6 ∃r′ ∈ res(N) : r‘ <
r}.

Obviously, mres(N) is finite.

For example, for the net on Fig. 1 we have mres(N) =
{r1 + r2}.

As it was stated in [12], the problem of finding mres(N)
is still open. In this paper we introduce and evaluate a
promising approach to this problem, based on the parallel
composition/decomposition of RCWF-nets.

IV. PROPERTIES OF SOUND RESOURCES

The next statement formally defines a well-known “proper
completion” property of sound workflows:

Fact 1: For any (r)-sound net N

c|r ∈ R(N, i|r) ⇒ c = o ∨ c ∩ o = ∅.

Proof: Assume the converse: o + m|r ∈ R(N, i|r) for
some non-empty m.

From the second requirement of soundness we have o|r ∈
R(N, o + m|r). However, since the place o doesn’t have
outgoing arcs, we have ∅|r ∈ R(N,m|r). But every transition
in N has at least one output control place, thus m = ∅ — a
contradiction.

Another established fact is the soundness and boundedness
of the control subnet:

Fact 2: For any sound RCWF-net N =
(Pc, Pr, T, Fc, Fr, i, o) and its control subnet
Nc = (Pc, T, Fc, i, o) (that may be considered as an
RCWF-net with an empty set of resources) we have:

1) Nc is (∅)-sound;
2) (Nc, i|∅) is bounded;
3) if c|∅, c+ c′|∅ ∈ R(N, i|r) then c′ = ∅.

Proof: (1) Assume the converse: Nc is not (∅)-sound.
Since Nc contains no resource places, only the second part
of the soundness definition is violated:

∃c|∅ ∈ R(Nc, i|∅) : o|∅ 6∈ R(Nc, c|∅).

Denote the corresponding transition sequence by σ (so we have
i|∅ σ→ c|∅).

Now consider N. Obviously, there exists some large initial
resource r s.t. c|r′ ∈ R(N, i|c) for some r′ — it is sufficient
to sum all resources, required by transitions of σ.

On the other hand, no resource x would be enough to reach
the final state o|y from c|x (for any y), since it is unreachable

even in the “resource-free” control subnet Nc. Hence N is not
sound.

(2) Otherwise an infinite run is possible in (Nc, i|∅),
containing an infinite number of different markings, and hence
a pair of markings c1 < c2 with i → c1 → c2 → From
the soundness of Nc we have c1

σ→ o for some sequence of
transitions σ ∈ T ∗. But from c1 < c2 the same sequence is
possible in c2 : c2

σ→ o + (c2 − c1) — a contradiction to the
proper completion property.

(3) Assume the converse. From the soundness property we
have two transition sequences: i|∅ → c|∅ → o|∅ and i|∅ →
c+ c′|∅ → o|∅.

From the first sequence and the monotonicity of Petri nets
we have i+ c′|∅ → c+ c′|∅ → o+ c′|∅. Combining with the
second sequence, we obtain i|∅ → c + c′|∅ → o + c′|∅ — a
contradiction to the soundness property.

Every reachable c ∈ M(Pr) (a control state of a control
subnet Nc) corresponds to a single reachable resource value:

Lemma 1: If N is sound, r ∈ res(N) and c|r1, c|r2 ∈
R(N, i|r), then r1 = r2.

Proof: Assume the converse: let r1 6= r2.

Consider some r′ = r1 + δ1 = r2 + δ2. From r1 6= r2 we
have δ1 6= ∅ or δ2 6= ∅ or both. Additionally, δ1 6= δ2.

We have i|r → c|r1 → o|r and hence (from the monotonic-
ity of Petri nets) i|r + δ1 → c|r1 + δ1 → o|r + δ1. Similarly,
i|r+δ2 → c|r2+δ2 → o|r+δ2. But r1+δ1 = r′ = r2+δ2 and
hence we have i|r+ δ1 → c|r′ → o|r+ δ2. From the (r+ δ1)-
soundness property it should be δ1 = δ2 — a contradiction.

Note that we cannot replace in the statement of Lemma 1
“r ∈ res(N)” by “N is (r)-sound”, because an (r)-sound net
is not necessarily (r + δ)-sound.

For (r)-soundness we have a weaker property:

Lemma 2: If N is (r)-sound and c|r1, c|r2 ∈ R(N, i|r),
then

r1 6< r2 and r1 6> r2.

Proof: Similar to the previous Lemma. Assume the con-
verse: r1 < r2 and hence r2 = r1 + δ1 with δ1 6= ∅.

We have i|r → c|r1 → o|r and i|r → c|r2 = c|r1 + δ1 →
o|r, and so c|r1 + δ1 → o|r + δ1 — a contradiction to the
(r)-soundness.

Since any set of incomparable vectors over Nat|Pr| is finite,
we have an obvious

Corollary 1: If N is (r)-sound then R(N, i|r) is finite.

A particular consequence of Lemma 1 is an inability of a
cycle to modify a resource:

Proposition 1: If N is sound, r ∈ res(N), c|r1 ∈
R(N, i|r) and c|r2 ∈ R(N, c|r1), then r1 = r2.

Proof: Immediately from Lemma 1.

Moreover, a sound net can perform only fixed resource
transformations:

15 of 181

a) sound composition b) possible deadlock

p1

t2

t3

i1 i2

o1 o2

 t4

p2

t1

r1

r2

i

ti

to

o

p1

t3

t2

i2 i1

 p2

t1

r

i

ti

to

o

t4

o1 o2

Fig. 2. Two examples of RCWF-nets compositions

Proposition 2: If N is sound, r ∈ res(N), c|r′ ∈
R(N, i|r) and u ∈M(Pr), then for any c|v ∈ R(N, i|r + u)
we have v = r′ + u.

Proof: Assume the converse. Hence c|v, c|r′ + u ∈
R(N, i|r+u) with v 6= r′+u — a contradiction to Lemma 1.

V. COMPOSITIONS OF RCWF-NETS

Nets with the same sets of resource places can be composed
in parallel:

Definition 2: Let N1 and N2 be RCWF-nets with

• N1 =
(
(Pc)1, Pr, T1, (Fc)1, (Fr)1, i1, o1

)
and

• N2 =
(
(Pc)2, Pr, T2, (Fc)2, (Fr)2, i2, o2

)
.

A parallel composition of N1 and N2 (denoted by N =
N1‖N2) is an RCWF-net N = (Pc, Pr, T, Fc, Fr, i, o) with

• Pc =def (Pc)1 ∪ (Pc)2 ∪ {i, o},
• T =def T1 ∪ T2 ∪ {ti, to},
• Fc =def (Fc)1 ∪ (Fc)2 ∪
{(i, ti), (ti, i1), (ti, i2), (to, o), (o1, to), (o2, to)},

• Fr =def (Fr)1 ∪ (Fr)2.

We put two workflows in parallel, adding common source
and sink places.

Examples of simple RCWF-nets compositions are given
on Fig. 2. In the case Fig. 2.(a) both subnets has the same

minimal sound resource r, and the composition is also sound
with this resource. The case Fig. 2(b) is quite different. Note
that r1 + r2 is a minimal sound resource for both subnets, but
the composition is not (r1 + r2)-sound because of a deadlock
p1 + p2|∅, reachable from i|r1 + r2. Any larger resource is
sound.

Soundness of a resource for a subnet does not necessarily
imply it’s soundness for a composition (as one would expect,
taking into account the conservativeness of resource trans-
formations in an RCWF-net). A parallelism may introduce
additional deadlocks. However, a simple kind of additive
closure exists:

Theorem 1: If N1 and N2 are sound then N1‖N2 is sound
and, moreover:

1) r1 ∈ res(N1), r2 ∈ res(N2) ⇒ r1 + r2 ∈
res(N1‖N2);

2) r ∈ res(N1‖N2) ⇒ ∃r1 ∈ res(N1) : r ≤ r1;
3) r ∈mres(N1‖N2) ⇒ ∃r1 ∈ res(N1) : r ≤ r1.

Proof: The soundness itself and the first statement follows
from Proposition 2. Note that subnets N1 and N2 here work
independently, without interferencing into each other’s “part”
of the common resource.

To prove the second statement we can take r1 = r: since
a resource is sound for a parallel composition, it properly
supports system runs of the form i|r → i1+i2|r → o1+i2|r →
o1 + o2|r.

The third statement is a trivial consequence of the second
one.

The first statement of Theorem 1 implies that

Corollary 2: If N1 and N2 are sound and r1 ∈
mres(N1), r2 ∈ mres(N2), then there exists r ∈
mres(N1‖N2) such that r ≤ r1 + r2.

So, to find some minimal resource r one may search
through a finite number of resources, less then or equal to
r1+ r2. For every candidate r′ ≤ r1+ r2 the set R(N, i|r′) is
finite (Corollary 1) and can be constructed by a finite number
of steps.

Note that we have not proven that this method of minimal
sound resources computation allows to compute ALL elements
of mres(N1‖N2) (however, we believe it does). Nevertheless,
the computed subset is always nonempty and nontrivial.

So, a problem of mres(N) calculation can be partially
reduced to the same problem for subnets, composed in parallel.
In most cases the process of decompositions ends with a purely
sequentional workflows, which may have a very simple set of
sound (and minimal sound) resources.

VI. SOUNDNESS ENSURING

In this section we consider a resource r, sound for both
subnets but not sound for a parallel composition (like r1 +
r2 in Fig. 2(b)). Note that such a resource always enables
a non-empty set of “good” runs (at least two: i|r → i1 +
i2|r → o1 + i2|r → o1 + o2|r and i|r → i1 + i2|r → i1 +
o2|r → o1 + o2|r). Hence a resource is not worthless and it
would be interesting to develop some control policies or system

16 of 181

transformations, preserving all “good” runs and disabling all
“bad” ones (without increasing the initial resource).

So we consider both kinds of possible undesirable (not
properly terminating) behaviors of a Petri net, namely, dead-
locks and livelocks.

A reachable marking c|r is a deadlock state iff c 6= o and
there is no transition t ∈ T s.t. c|r t→ c′|r′ for some c′, r′.

A finite set L of reachable markings is a livelock iff

1) |L| > 1;
2) for any c|r, c′|r′ ∈ L there is a finite transition

sequence σ ∈ T ∗ s.t. c|r σ→ c′|r′;
3) for any c|r ∈ L and t ∈ T s.t. c|r t→ c′′|r′′ we have

c′′|r′′ ∈ L.

A livelock state is a state that belongs to some livelock.

Note that by definition o|r 6∈ L for any r.

By D(N, i|r) we denote a set of all deadlock and livelock
states of a marked RCWF-net (N, i|r).

Theorem 2: If N = N1‖N2 and r ∈ res(N1) ∩ res(N2)
then (N, i|r) is bounded (i.e. R(N, i|r) is finite).

Proof: From the second statement of Fact 2 the sets of
control markings are finite for both N1 and N2. Obviously,
the set of reachable control markings of N is a subset of a
product of these two finite sets, hence it is also finite.

Now consider markings from R(N, i|r). Assume the con-
verse — this set is infinite. Hence from the boundedness of
the control subnet there exists some control cycle, strictly
increasing the resource: i|r → c1 + c2|r′

σ→ c1 + c2|r′ + r′′

with c1 ∈M((Pc)1), c2 ∈M((Pc)2), σ ∈ T ∗ and r′′ 6= ∅.

Recall that T = T1∪T2 and denote by σ1 and σ2 the largest
subsequences of σ s.t. σ1 ∈ (T1)

∗ and σ2 ∈ (T2)
∗. Obviously,

σ1 and σ2 are control cycles in N1 and N2 respectively.

From Proposition 1 neither σ1 nor σ2 can change the
resource, hence their composition also cannot do this — a
contradiction.

Since D(N, i|r) ⊆ R(N, i|r) we have:

Corollary 3: If N = N1‖N2 and r ∈ res(N1) ∩ res(N2)
then D(N, i|r) is finite.

So the set of deadlocks and livelocks is computable by
a simple reachability set construction and search. A naive
deadlock control policy would be to compute a set of all
deadlocks/livelocks and all their predecessing states and to
control them in run-time, not allowing a system to make the
wrong “last step”.

A. Safe nets

A rather interesting case are safe workflows, i.e. RCWF-
nets with safe control subnets (where none of the control places
can accumulate more than one token). This is not a strong
restriction, because every bounded net is weakly bisimilar to
some safe net. Note that the net in Fig. 2(b) is safe and still
has a deadlock.

A safe RCWF-net has only ordinary control arcs:
Fc(x, y) ≤ 1 for any x and y.

We can apply a transformation, eliminating all dead-
locks/livelocks in a safe net:

Definition 3: Let N1 and N2 be sound safe RCWF-nets
with the same set Pr of resource places, and let r ∈ M(Pr)
be a resource s.t. r ∈ res(N1) and r ∈ res(N2).

Let N = N1‖N2 = (Pc, Pr, T, Fc, Fr, i, o) be a not-(r)-
sound parallel composition of N1 and N2.

By Dc(N, i|r) we denote the set of all different control
parts of elements of D(N, i|r), and let Z = |Dc(N, i|r)|
(obviously, we have Z > 0).

A net (Na, i|r + v), where Na = (Pc, Pr ∪ V, T, Fc, Fr ∪
Fin ∪ Fout, i, o), is called a controlled system of (N, i|r) iff

• V = {vk|k ∈ 1, Z} is a set of additional “holding”
places, with their number equal to the number of
possible control deadlocks/livelocks in the net N ;

• Fin are input holding arcs such that Fin =
{(vk, t) | Fc(t, p) = 1 for some p ∈ dk, where dk
is a kth element of Dc(N, i|r)};

• Fout are output holding arcs such that Fout =
{(t, vk) | Fc(p, t) = 1 for some p ∈ dk, where dk
is a kth element of Dc(N, i|r)};

• v = (|d1| − 1)v1 + (|d2| − 1)v2 + . . .+ (|dZ | − 1)vZ ,
where dk is a kth element of Dc(N, i|r).

Main idea to start with is that we have to avoid the con-
sequent triggering of transitions leading to deadlock/livelock
places. Thus for every element of D(N, i|r) we include into
the net a holding (restraining) place which resource will allow
triggering of transitions leading to just one control place among
them. Resource should be put back to holding place right after
token leaves deadlock place. Implementation of this idea based
on the net from Fig. 2 is shown on Fig. 3.

Note that the initial resource (r + v) is actually not an
increased original initial resource r, since v is built over the
new (additional) set of resource places.

Theorem 3: Let N1 and N2 be sound safe RCWF-nets with
the same set Pr of resource places, and let r ∈ M(Pr) be a
resource s.t. r ∈ res(N1) and r ∈ res(N2).

Let N = N1‖N2 = (Pc, Pr, T, Fc, Fr, i, o) be a not-(r)-
sound parallel composition of N1 and N2.

Let net (Na, i|r+v) be the controlled system of the marked
net (N, i|r). Then (Na, i|r + v) is (r + v)–sound.

Proof: Obviously, none of the original deadlocks/livelocks
is reachable (by construction).

Now we need to prove that no new deadlocks/livelocks are
introduced.

Consider some deadlock/livelock c1 + c2|r of the original
net. From the third statement of Fact 2 and the safety property
none of the control states of N1, except c1 can have the same
or larger total number of tokens in all places of c1 (similarly for
the net N2 and places of c2). Hence |c1+c2|−1 = |c1|+|c2|−1

17 of 181

p1

t2

t3

i1 i2

o1 o2

 t4

p2

t1

r1

r2

i

ti

to

o

Vd

Fig. 3. Examples of RCWF-nets compositions with deadlock control

tokens is enough for all control states except this particular
deadlock/livelock — hence the corresponding holding place
would not introduce any undesirable restriction.

VII. CONCLUSION

We presented two methods of deadlock/livelock avoidance
for a restricted resource. The first one can be applied for any
pair of sound workflows, but requires specific run-time control,
not incorporated into the net itself. The second one uses the
original Petri net structure, but is applicable to the safe nets
only. The proposed technique is similar to a technique, studied
in the area of Flexible Manufacturing Systems (see [9] for a
classical result). However, the key difference is the possibility
of parallel behaviours in subnets (in FMS each subnet is a
simple sequential automaton).

Further research will consider the application of holding
places techique to the general case of RCWF-nets. As it can
be seen from some preliminary counterexamples, the method
would possibly require some additional modifications.

The problem of exact mres(N) calculation is still open
but it will be studied in the further research. We believe
that our approach can be applied here, at least for large
nontrivial subclasses of RCWF-nets. For example, we plan to
study structured workflows [2], [8], that can be obtained from
primitives by a set of algebraic operations, such as parallel
and sequential compositions. Another interesting method of
sound resource compositions was presented in [11] — based
on algebraic expressions over multisets.

Our method is not implemented in applications. However,
we believe it can be used as a verification and/or optimization
tool in workflow management systems. Basically, it may enable
the elimination of specific deadlocks and livelocks, induced by
incorrect (unverified) parallel composition of submodules.

REFERENCES

[1] W.M.P. van der Aalst. The Application of Petri Nets to Workflow
Management. The Journal of Circuits, Systems and Computers, 8(1):21–
66, 1998.

[2] W.M.P. van der Aalst, K.M. van Hee. Workflow Management: Models,
Methods and Systems, MIT Press, 2002.

[3] W.M.P. van der Aalst, K.M. van Hee, A.H.M. Hofstede, N. Sidorova,
H.M.W. Verbeek, M. Voorhoeve, M.T. Wynn. Soundness of workflow
nets: classification, decidability, and analysis, Form. Asp. of Comp.,
23(3):333–363, Springer, 2011.

[4] K. Barkaoui, L. Petrucci. Structural Analysis of Workflow Nets
with Shared Resources. In Proc. Workflow Management: Net-based
Concepts, Models, Techniques and Tools (WFM98), volume 98/7 of
Computing Science Reports, pages 82–95, Eidhoven University of
Technology, 1998.

[5] K. Barkaoui, R. Ben Ayed, Z. Sbaı̈. Workflow Soundness Verification
based on Structure Theory of Petri Nets. International Journal of
Computing and Information Sciences, Vol. 5, No. 1, 2007. P.51–61.

[6] V. A. Bashkin, I. A. Lomazova. Resource equivalence in workflow nets.
In Proc. Concurrency, Specification and Programming, 2006, volume
1, pages 80–91. Berlin, Humboldt Universitat zu Berlin, 2006.

[7] V.A. Bashkin, I.A. Lomazova. Soundness of Workflow Nets with an
Unbounded Resource is Decidable Joint Proc. of Petri Nets and Soft-
ware Engineering (PNSE’13) and Modeling and Business Environments
(ModBE’13). Milano, 2013. Vol. 989 of CEUR. 2013. P. 61–75.

[8] P. Chrza̧stowski-Wachtel. Sound Markings in Structured Nets. In
Proc. Concurrency, Specification and Programming, 2005, pages 71–85.
Warsaw, Warsaw University, 2005.

[9] J. Ezpeleta, J.-M. Colom, J. Martinez. A Petri Net Based Deadlock Pre-
vention Policy for Flexible Manufacturing Systems. IEEE Transactions
on Robotics and Automation, 11(2), 1995. P.173–184.

[10] K. van Hee, A. Serebrenik, N. Sidorova, M. Voorhoeve. Soundness of
Resource-Constrained Workflow Nets. In Proc. ICATPN 2005, volume
3536 of Lecture Notes in Computer Science, pages 250–267. Springer,
2005.

[11] I.A. Lomazova, I.V. Romanov. Analyzing Compatibility of Services via
Resource Conformance. Fundamenta Informaticae, Vol. 128, No. 1–2,
2013. P.129–141.

[12] N. Sidorova, C. Stahl. Soundness for resource-contrained workflow nets
is decidable. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 43(3), 2013. P.724–729.

18 of 181

LTL-specification, verification and construction
of PLC programs

Ryabukhin D. A.
Yaroslavl State University

Yaroslavl, Russia
Email: dmitriy ryabukhin@mail.ru

Kuzmin E. V.
Yaroslavl State University

Yaroslavl, Russia
Email: kuzmin@uniyar.ac.ru

Abstract—An approach to specification, verification and con-
struction of PLC programs for discrete problems is proposed. For
the specification of the program behavior, we use the linear-time
temporal logic LTL. Programming is carried out in ST, IL and
LD languages according to an LTL-specification. The correctness
analysis of an LTL-specification is carried out by the symbolic
model checking tool Cadence SMV. A new approach to PLC-
programming is shown by an example. For a discrete problem,
we give an ST-program, its LTL-specification and an SMV-model.

I. INTRODUCTION

Application of programmable logic controllers (PLCs) for
systems controling complex industrial processes makes ex-
acting correctness demands to PLC-programs. Any software
error is considered to be inadmissible. However, the exist-
ing development tools for programming PLC, for example
widely known CoDeSys (Controller Development System)
[8], provide only usual debugging facilities through testing
programs (not guaranteeing total absence of errors) by means
of a visualization of PLC-control objects. At the same time
certain theoretical knowledge and experience of applying the
existing developments in the field of formal methods of
modeling and analysis of software systems are accumulated.
The programming of logical controllers is a practical area, in
which existing developments could have successful applica-
tion. Successful application is understood as implementation of
formal methods in the process of program design at the level of
a well-functioning technology which is clear to all specialists
involved in this process — engineers, programmers and testers.
Being as usual of a small size and having a finite state space,
PLC-programs are exceptionally convenient objects for the
formal (including automatic) analysis of correctness.

Programmable Logic Controllers (PLCs) are a special type
of a computer widely used in automation systems [10], [5].
A PLC is a reprogrammable computer, based on sensors and
actors, which is controlled by a user program. They are highly
configurable and thus are applied to various industrial sectors.
A PLC is a reactive system. A PLC repeats the execution of
a user program periodically. There are three main phases for
program execution (working cycle): 1) reading from inputs
(sensors) and latching them in the memory, 2) program exe-
cution (with input variables remaining constant), 3) latching
the values of the output variables to the environment.

Programming languages for logic controllers are defined
by the IEC 61131-3 standard. This standard includes the
description of five languages: SFC, IL, ST, LD and FBD.

IL (Instruction List) is an assembly language with an
accumulator and jumps to labels. IL allows to work with any
data types, to call functions and function blocks, written in
IEC 61131-3 standard languages. IL is used to build small
components, when critical control is required. Instructions are
executed with the accumulator content. The IL accumulator is
a universal container, which can keep values of any type.

ST (Structured Text) is high-level programming language.
Its syntax is the adapted Pascal syntax.

LD (Ladder Diagram) represents a program by a graphical
diagram based on circuit diagrams of relay logic hardware. The
language itself can be seen as a set of connections between
logical checkers (contacts) and actuators (coils). If a path can
be traced between the left side of the connection and the
output, through asserted contacts, the output coil storage bit
is asserted true. If no path can be traced, the output is false.

This languages provides a possibility of application of all
existing methods of program correctness analysis — testing,
theorem proving [9] and model checking [7] — for verification
of PLC-programs. Theorem proving is more applicable to
“continuous” stability and regulation problems of the engineer-
ing control theory, since an implementation of these problems
in PLC is associated with programming of an appropriate
system of formulas. Model checking is most suitable for
“discrete” problems of logical control, requiring PLCs with
binary inputs and outputs. This provides a finite space of
possible states of PLC-programs.

The most convenient for programming, specification and
verification of PLC-programs are ST, LD and SFC languages,
since they do not cause difficulties for neither developers
nor engineers and can be easily translated into languages of
software tools of automatic verification.

Earlier in the article [2], a review of methods and ap-
proaches to programming “discrete” PLC problems was car-
ried out on languages LD, SFC and ST. For these approaches
the usability of the model checking method for the analysis of
program correctness with respect to the automatic verification
tool Cadence SMV [13] was evaluated. Some possible PLC-
program vulnerabilities arising at traditional approaches to
programming of PLC was revealed. In particular, existing

19 of 181

articles relating to correctness analysis of PLC programs [3],
[6], [11], [12] is mainly devoted to construction of translators
from IEC 61131 standard languages to interface languages of
verification software. Demonstration of results is carried out
on trivial examples. However, our experience of working with
the practical logic control problems showed that the direct
translation does nothing for analysis of program properties,
since it is often not possible to express desired properties in
temporal logic languages.

In this article, an approach to construction and verification
of PLC-programs for discrete problems is proposed. For the
specification of the program behavior, we use the linear-time
temporal logic LTL. Programming is carried out in ST, IL
and LD languages according to an LTL-specification. The
correctness analysis of an LTL-specification is carried out
by the symbolic model checking tool Cadence SMV. A new
approach to programming and verification of PLC-programs
is shown by an example. For a discrete problem we give
an ST-program, its LTL-specification and an SMV-model.
The purpose of the article is to describe an approach to
programming PLC, which would provide a possibility of PLC-
program correctness analysis by the model checking method.

The further work is to build software tools for modeling,
specification, construction and verification of PLC-programs.

II. MODEL CHECKING. A PLC PROGRAM MODEL

Model checking is the process of checking whether a given
model (a Kripke structure) satisfies a given logical formula.
A Kripke structure represents the behaviour of a program. A
temporal logic formula encodes the property of the program.
We use the linear-time temporal logic (LTL).

A Kripke Structure on a set of atomic propositions P is a
state transition system S = (S, s0,→, L), with a non-empty
set of states S, an initial state s0 ∈ S, a transition relation
→⊆ S × S which is defined for all s ∈ S, and a function
L : S → 2P , labeling every state by a subset of atomic
propositions.

A Path of the Kripke structure from the state s0 — is an
infinite consequence of states π = s0s1s2 . . . where ∀ i ≥ 0
si → si+1.

The linear-time temporal logic language is considered as a
specification language for behavioural properties of a program-
ming model. PLC is a classic reactive control system, which
once running must always have a correct infinite behavior. LTL
formulas allow to represent this behavior.

The syntax of the LTL formula is given by the following
grammar, pi ∈ P :

ϕ,ψ ::= true | p0 | p1 | . . . | pn | ¬ϕ | ψ ∧ ϕ |
Xϕ | ψ U ϕ | F ϕ | Gϕ.

LTL formula describes a property of one path of the Kripke
structure, descendant from an emphasized current state. The
temporal operators X , F , G and U are interpreted as follows:
Xϕ — ϕ must hold at the next state, Fϕ — ϕ must hold at
some future state, Gϕ — ϕ must hold at the current state and
all future state, ψ U ϕ — ϕ holds at the current or a future

state, and ψ must hold up until this point. In addition, classical
logical operators ∨ and ⇒ will be used further.

The Kripke structure satisfies an LTL formula (property) ϕ,
if ϕ holds true for all paths, starting from the initial state s0.

The Kripke model for a PLC program can be built quite
naturally. For a state of the model we take a vector of values
of all program variables, which can be divided into two parts.
The first part is a value vector of inputs at the moment of the
beginning of a new PLC working cycle. The second part is
a value vector of outputs and internal variables after passing
a complete working cycle (on the inputs from the first part).
In other words, the state of the model is a state of a PLC-
program after the complete passing of a working cycle. Thus,
a transition from one state to another depends on the (previous)
values of the outputs and internal variables of the first state
and the (new) values of the inputs of the second state. For
each state, the degree of the transition relation branching is
determined by the number of all possible combinations of PLC
input signals. Atomic propositions of the model are logical
expressions on PLC program variables with using arithmetic
and relational operators.

III. PROGRAMMING CONCEPT

A purpose of the article is to describe an approach to
programming PLC, which would provide a possibility of PLC-
program correctness analysis by the model checking method.
We will proceed from convenience and simplicity of using the
model checking method. We require holding two following
conditions.

Condition 1. The value of each variable must not change
more than once per one full execution of the program while
passing the PLC working cycle.

Condition 2. The value of each variable must change at only
one place in the program in some operation block without
nestings.

This conditions are reasonable assumption because inputs
are always latched while operating the cycle. We will change
the variable value only when it is really necessary, i. e. we will
forbid an access to the variable by assigning if conditions of
mandatory changing of its value do not hold. In this approach,
the requirements of changing the value of a certain variable
V after one pass of the PLC working cycle are represented by
the following LTL formulas.

The next LTL formula is used for describing situations,
leading to an increase of the variable value V

GX(V > V⇒OldValCond ∧FiringCond ∧V=NewValExpr)(1)

This formula means that whenever a new value of variable V
is larger than its previous value, recorded in the variable V , it
follows that the old value of variable V satisfies the condition
OldValCond , a condition of the external action FiringCond
is accomplished, and the new value of variable V is the value
of the expression NewValExpr .

The leading underscore symbol “ ” in the denotation of the
variable V is taken as a pseudo-operator, allowing to refer to

20 of 181

the previous state value of a variable V . This pseudo-operator
can be used only under the scope of the temporal operator X.

Conditions FiringCond and OldValCond are logical ex-
pressions on program variables and constants, which are
constructed using comparison operators, logical and arith-
metic operators and the pseudo-operator “ ”. By definition,
the pseudo-operator can be applied only to variables. The
expression FiringCond describes situations, when changing
the value of the variable V is needed (if it is allowed by
the condition OldValCond). The expression NewValExpr is
built using variables and constants, comparison, logical and
arithmetic operators and the pseudo-operator “ ”.

For descriptions of all possible increasing value situations
the formula (1) may have several sets of considered conjunc-
tive parts OldValCond i ∧FiringCond i ∧V =NewValExpr i,
combined in a disjunction, after the operator ⇒.

Situations that lead to a decrease of V value are described
similarly:

GX(V < V⇒OldValCond ′∧FiringCond ′∧V=NewValExpr ′)(1′)

Temporal formulas of the form (1) and (1′) describe a
desired behavior of some integer variable. A more simple
LTL formula is proposed to use in case of a logical (binary)
data type variable. The following formula describes situations
which increase the value of a binary variable V :

GX(¬ V ∧ V ⇒ FiringCond). (2)

Situations that lead to a decrease of the variable V value are
described similarly:

GX(V ∧ ¬V ⇒ FiringCond ′). (2′)

Let’s consider a special case of the specification form (1)
and (1′), where for V we have
FiringCond = FiringCond ′ = 1,
NewValExpr = NewValExpr ′,
OldValCond = (V <NewValExpr) and
OldValCond ′ = (V >NewValExpr):

GX(V > V ⇒ V <NewValExpr ∧ V =NewValExpr);

GX(V < V ⇒ V >NewValExpr ∧ V =NewValExpr).

This specification can be replaced by the following LTL
formula:

GX(V =NewValExpr). (3)

The variable V we will call a register-variable, if it has
specification of forms (1), (1′), (2) and (2′). If V is con-
structed by specification of the form (3), it is called a function-
variable. In the special case of specification (3), where the
expression NewValExpr does not contain leading underscore
pseudo-operator “ ”, variable V is called a substitution-
variable.

It is important to note that each LTL formula template
is constructive, i. e. the program can be easily build from
specification that would correspond to temporal properties
expressed by these formulas. Thus, we can say that PLC
programming is reduced to building a behavior specification
of each program variable, which is output or auxiliary internal

variable. The process of writing a program code is completed,
when specification for each such variable is created. Note, that
quantity and meaning of output variables are defined by a PLC
and a problem formulation.

The program specification is divided into two parts: 1)
specification of a behaviour of all program variables (except
inputs), 2) specification of common program properties. The
second part of specification affects quantity and meaning of
internal auxiliary PLC program variables.

In specification it is important to consider the order of
temporal formulas describing the behavior of the variables.
A variable without the pseudo-operator “ ” may be involved
in the specification of another variable behavior only if the
specification of its behavior is completed and is in the text
above.

If necessary, we will use the keyword “Init” for indication
of a variable initial value. For example, Init(V) = 1 means
that the variable V initially is set to 1. If the initial value of
some variable is not explicitly defined, it is assumed that this
value is zero.

IV. PROGRAMMING BY SPECIFICATION

In this section, we consider a way of constructing a program
code by constructive LTL-specification of the program variable
behavior. In general, a translation process from LTL-formulas
to program code is the following. Two temporal formulas of
variable V , marked V+ (value increase, (1)) and V− (value
decrease, (1′)), are set in conformity to the text block in the
ST language:

IF OldValCond AND FiringCond THEN
V :=NewValExpr ; (* V+ *)

ELSIF OldValCond ′ AND FiringCond ′ THEN
V :=NewValExpr ′; (* V− *)

END IF;

in the IL language:

calculation of OldValCond AND FiringCond
JMPCN VL1
calculation of NewValExpr
ST V
JMP VLEND

VL1:
calculation of OldValCond′ AND FiringCond′

JMPCN VL2
calculation of NewValExpr′

ST V
JMP VLEND

VL2:
VLEND:

If the number of conjunctive blocks

OldValCond i ∧ FiringCond i ∧ V =NewValExpr i

in LTL formulas will be more than two, the number of
alternative branches “ELSIF” or labels will grow (by one
branch or label for each new block).

Note, that the behavior of the obtained program will com-
pletely satisfy LTL formulas of specifications.

21 of 181

For LTL formula of a boolean variable V behavior in the
forms V+ (2) and V− (2′), we have the following ST-block:

IF NOT V AND FiringCond THEN V := 1 ; (* V+ *)
ELSIF V AND FiringCond ′ THEN V := 0; (* V− *)
END IF;

IL-block:
calculation of NOT V AND FiringCond
JMPCN VL1
S V
JMP VLEND

VL1:
calculation of V AND FiringCond′

JMPCN VL2
R V
JMP VLEND

VL2:
VLEND:

LD-block (in LD only boolean variable are used):
V V

–|/|———————–FiringCond —————–(S)————-
V V

–| |———————–FiringCond ′—————–(R)————-

Each program variable must be defined in the description
section (local or global) and initialized in conformity with
the specification. Note that, for example, in CoDeSys [8] all
variables are initialized to zero by default.

In addition, we must implement the idea of the pseudo-
operator “ ”. To do this, in the end of the program an area
for a pseudo-operator section is allocated. In this area an
assignment V :=V is added after description of the behavior
of all specification variables. In IL this assignment is:

LD V
ST V

An assignment in LD:
V V

——-| |———————————————()——————

The assignment is added for each variable V , to the last
value of which is addressed as V . The variable V is also
necessary to define in the description section with the same
initialization as for the variable V .

Note, that the approach to programming by specification,
which describes the reason of changing each program variable
value, looks very natural and reasonable, because a PLC
output signal is the control signal, and changing the value of
this control signal usually carries an additional meaning. For
example, it is important to understand why an engine or some
lamp must be turned on/off. Therefore, it seems quite obvious
that every variable must be accompanied by two properties,
one for each direction changing. It is assumed that if change
conditions are not made, the variable remains at its previous
state.

V. BUILDING SMV-MODEL BY SPECIFICATION

We consider the verifier Cadence SMV [13] as a software
tool of correctness analysis by model checking method. It is

proposed to build a Kripke structure model in the SMV lan-
guage with further verification of common program properties
satisfiability for this model after creating the specification. If
some common program property is not hold for the model,
the verifier builds an example of incorrect path in a Kripke
structure model, by which corrections in the specification are
produced. And only after all the program properties have been
verified with positive results, ST-progam of PLC is built by
specification.

The SMV language allows to define a variable value in the
next state of a model by using the “next” operator. Branching
of the transition relation is provided by the “nondeterministic”
assignment. For example, assignment next(V) := {0, 1} means
that states and transitions to them will be generated both with
a value of V =0, and with a value of V =1. In the SMV
language the symbols “&”, “|”, “∼” and “−>” denote logical
“and”, “or”, “not” and implication, respectively.

The SMV language is oriented on creating the next states
of Kripke models from the current state. The initial current
state of the model is the state of program after initialization.
Therefore, specification of the behavior of a variable V (1)
and (1′) will be easier (clearer) to rewrite in the following
equivalent form

V+: G(X(V > V)⇒
X(OldValCond) ∧X(FiringCond) ∧X(V =NewValExpr)),
V−: G(X(V < V)⇒

X(OldValCond ′) ∧X(FiringCond ′) ∧X(V =NewValExpr ′)).

And then we get an SMV-model of a variable V behavior
quite naturally, putting the “next” operator in conformity to
the temporal operator X:

case{ next(OldValCond) & next(FiringCond) :
next(V) := next(NewValExpr);

next(OldValCond ′) & next(FiringCond ′) :
next(V) := next(NewValExpr ′);

default : next(V) := V ; }.

Keyword “default” means what must happen by default, i. e.
if conditions of first two branches in the “case” block don’t
hold.

In the case of a boolean variable V specification (2) and
(2′) is converted to the following SMV-model

case{ ∼V & next(FiringCond) : next(V) := 1;
V & next(FiringCond ′) : next(V) := 0;

default : next(V) :=V ;}.

A model of a function-variable behavior is defined as
next(V) := next(NewValExpr).
Let’s now consider a specification of the behavior of a

substitution-variable V . In this case NewValExpr does not
contain pseudo-operator “ ”. This allows to rewrite the spec-
ification in the following equivalent form:

V : XG(V =NewValExpr).

In fact, this formula means that if the initial state of the model
does not considered, then an equality V =NewValExpr must
hold in all other states of the model. Fairness of formula
XG(V =NewValExpr) follows from the fairness of more

22 of 181

general formula G(V =NewValExpr). Therefore, more gen-
eral formula can be used as the constructive specification for
building SMV-model of a substitution-variable V . SMV-model
is built by this specification in the form of assignment

V :=NewValExpr .

The Cadence SMV verifier allows to check program models,
containing up to 59 binary variables (all variables in SMV
are represented by sets of binary variables). The substitution-
variables are not included in this number, i. e. only register-
variables and function-variables are considered.

VI. CONCLUSION

The approach has been successfully approved on some
(about a dozen) “discrete” logical control problems of different
types with the average number of binary PLC inputs and out-
puts about 30 and the total number of binary program variables
up to 59. For example, properties, relating to maintenance of
the technological process (to exclude the possibility of noncon-
forming product outflow), were verified for a PLC program,
controlling a mixture preparation device. Properties relating to
connection standby pumps in time were tested for problem of
hydraulic pump system control. And properties of mandatory
execution of received commands of cabin lift calling were
tested for library lift control problem. The verification work
was carried out on PC with processor Intel Core i7 2600K 3.40
GHz. Time spent by verifier Cadence SMV to check specified
properties is limited to a few seconds.

The further work is to build software tools for modeling,
specification, construction and verification of PLC-programs,
according to the results of the work on this topic.

ACKNOWLEDGEMENTS

This work was financially supported by the Russian Foun-
dation for Basic Research (project no. 12-01-00281-a).

REFERENCES

[1] Kuzmin E. V., Sokolov V. A. Modeling, Specification and Construction of
PLC-programs // Modeling and analysis of information systems. 2013.
V. 20, No. 2. P. 104–120 [in Russian].

[2] Kuzmin E. V., Sokolov V. A. On Construction and Verification of PLC-
programs // Modeling and analysis of information systems. 2012. V. 19,
No. 4. P. 25–36. [In Russian].

[3] Kuzmin E. V., Sokolov V. A. On Verification of PLC-programs Written
in the LD-Language // Modeling and analysis of information systems.
2012. V. 19, No. 2. P. 138–144. [In Russian]

[4] Kuzmin E. V., Sokolov V. A., Ryabukhin D. A. Construction and Verifica-
tion of PLC LD-programs by LTL-specification // Modeling and analysis
of information systems. 2013. V. 20, No. 6. P. 78–94 [in Russian].

[5] Petrov I. V. Programmiruemye kontrollery. Standartnye jazyki i
priemy prikladnogo proektirovanija. M.: SOLON-Press, 2004. 256 p.
[In Russian].

[6] Canet G., Couffin S., Lesage J.-J., Petit A., Schnoebelen Ph. Towards
the Automatic Verification of PLC Programs Written in Instruction List
// Proc. of the IEEE International Conference on Systems, Man and
Cybernetics. Argos Press, 2000. P. 2449–2454.

[7] Clark E. M., Grumberg O., Peled D. A. Model Checking. The MIT Press,
2001.

[8] CoDeSys. Controller Development System.
http://www.3s-software.com/

[9] Gries D. The Science of Programming. Springer-Verlag, 1981.
[10] Parr E. A. Programmable Controllers. An engineer’s guide. Newnes,

2003. 442 p.

[11] Pavlovic O., Pinger R., Kollman M. Automation of Formal Verification
of PLC Programs Written in IL // Proc. of 4th International Verification
Workshop (VERIFY‘07). Bremen, Germany, 2007. P. 152–163.

[12] Rossi O., Schnoebelen Ph. Formal Modeling of Timed Function Blocks
for the Automatic Verification of Ladder Diagram Programs // Proc. of
the 4th International Conference on Automation of Mixed Processes:
Hybrid Dynamic Systems, Shaker Verlag, 2000. P. 177–182.

[13] SMV (Symbolic Model Verifier). The Cadence SMV Model Checker.
http://www.kenmcmil.com/smv.html

APPENDIX A

Library lift

A library lift scheme is represented in Fig. 1. The purpose
of the lift is to lift up books on request from the basement to
the first and second floors of the library and to return them to
the basement.

The elevator cabin is called from the base floor by pressing
buttons “Up 2” and “Up 1”. If the corresponding command
was accepted, this button lamp turns on. It turns off when the
command is done. When the cabin is on some floor, the lamps
“Floor 2”, “Floor 1” or “Floor 0” are on. There are shaft doors,
which are opened and closed manually. The sensors “DS2”,
“DS1” and “DS0” are needed to determine the position of
doors. The door sensor is on if door is closed. The signal from
the door sensor is determined using a lamp of the sensor.

The floor sensor “FS” in the elevator cabin is used for
finding the position of the cabin in the shaft. The floor sensor
is on, if the cabin is entirely on a particular floor. Otherwise,
the signal is removed.

The library lift control is carried out using a PLC receiving
input signals from sensors and buttons and sending output
signals to the lift motor and lamps. The task is to construct
a PLC program with 10 binary inputs and 14 binary outputs
for controling the lift. PLC interface is shown in Fig. 2. More
detailed requirements for the library lift program are given in
the article [4]. The constructive specification of the library lift
control program was built according to these requirements and
the programming concept by LTL-specification.
Ct r0 + : GX(˜ Ct r0 & Ct r0 −> FS & ˜ FS &

Ct r1 & ˜ Dir) ;
Ctr0−: GX(Ct r0 & ˜ Ct r0 −> FS & ˜ FS) ;
C t r1 + : GX(˜ Ct r1 & Ct r1 −> FS & ˜ FS &

(Ct r2 & ˜ Dir | Ct r0 & Dir)) ;
Ctr1−: GX(Ct r1 & ˜ Ct r1 −> FS & ˜ FS) ;
i n i t (C t r1) = 1 ;
C t r2 + : GX(˜ Ct r2 & Ct r2 −> FS & ˜ FS &

Ct r1 & Dir) ;
Ctr2−: GX(Ct r2 & ˜ Ct r2 −> FS & ˜ FS) ;
Up01 +: GX(˜ Up01 & Up01 −> FS & Ct r0 & PBUp01) ;
Up01−: GX(Up01 & ˜ Up01 −> FS & Ct r1 & ˜ Mtr) ;
Up02 +: GX(˜ Up02 & Up02 −> FS & Ct r0 & PBUp02) ;
Up02−: GX(Up02 & ˜ Up02 −> FS & Ct r2 & ˜ Mtr) ;
Dwn2+: GX(˜ Dwn2 & Dwn2 −> FS & Ct r2 & ˜ Mtr &

(PBDwn2 | Tmr .Q)) ;
Dwn2−: GX(Dwn2 & ˜Dwn2 −> FS & Ct r0 & ˜ Mtr) ;
Dwn1+: GX(˜ Dwn1 & Dwn1 −> FS & Ct r1 & ˜ Mtr &

(PBDwn1 | Tmr .Q)) ;
Dwn1−: GX(Dwn1 & ˜Dwn1 −> FS & Ct r0 & ˜ Mtr) ;
I n i t (Dwn1) = 1 ;
F l r 2 + : GX(˜ F l r 2 & F l r 2 −> PBFlr2) ;
F l r 1 + : GX(˜ F l r 1 & F l r 1 −> PBFlr1) ;
F l r2 −: GX(F l r 2 & ˜ F l r 2 −> FS & Ct r2 & ˜ Mtr) ;

23 of 181

0

DS0

0

1

DS1

2

DS2

1

Call

2

FS

Call

Fig. 1. A scheme of a library lift

F l r1 −: GX(F l r 1 & ˜ F l r 1 −> FS & Ct r1 & ˜ Mtr) ;
Di r + : GX(˜ Di r & Dir −> FS & Ct r0 & ˜ Mtr) ;
Dir−: GX(Dir & ˜ Di r −> (C t r2 | Ct r1 & Dwn1 &

˜ Up02 & (˜ F l r 2 | Dwn2)) & FS & ˜ Mtr) ;
DS : GX(DS = DS0 & DS1 & DS2) ;
Mtr + : GX(˜ Mtr & Mtr −> DS &

˜ FS & (Dwn1 | Dwn2 | Up01 | Up02 | F l r 1 | F l r 2) |
FS & Ct r0 & (Up01 | Up02 | Tmr .Q & (F l r 1 | F l r 2)) |
FS & Ct r1 & Dwn1 | FS & Ct r2 & Dwn2)) ;

Mtr−: GX(Mtr & ˜ Mtr −> (˜ DS |
FS & Ct r0 & ˜ Dir |
FS & Ct r2 & Dir |
FS & Ct r1 & (F l r 1 & ˜Dwn1 | Up01))) ;

Tmr . In : GX(Tmr . In = ˜ Mtr & FS &
(Ct r0 & DS0 | Ct r1 & DS1 | Ct r2 & DS2)) ;

Flr0Lmp : GX(Flr0Lmp = ˜ Mtr & FS & Ct r0) ;
DS0Lmp : GX(DS0Lmp = DS0) ;
Flr1Lmp : GX(Flr1Lmp = ˜ Mtr & FS & Ct r1) ;
DS1Lmp : GX(DS1Lmp = DS1) ;
Flr2Lmp : GX(Flr2Lmp = ˜ Mtr & FS & Ct r2) ;
DS2Lmp : GX(DS2Lmp = DS2) .

This specification allows to check the following common
program properties of the library lift control program.

1. G(Ctr0 + Ctr1 + Ctr2 = 1) means that at any moment
the elevator cabin is only on one floor.

2. There are no situations, when the elevator cabin
is on the basement and the motor is in descent mode:
G¬(FS ∧ Ctr0 ∧ Dir =0 ∧ Mtr). There are no situations,
when the elevator cabin is on the second floor and the motor
is in ascent mode: G¬(FS ∧ Ctr2 ∧ Dir =1 ∧ Mtr).

3. Always, when the motor is on, the shaft doors are closed:
G(Mtr ⇒ DS). And if the shaft doors are closed and the
cabin is not entirely on a particular floor, the motor is on:

Motor / LampsButtons

PLC OutputsInputs

PBFlr1

Call on floor 1 Run the motor

Mtr

Dir

Dir

Move up mode

1 1

2

PBFlr2

Call on floor 2

2

PBDwn1

3

Sensors

DS0

Door 0 is closed

7

DS1

Door 1 is closed

8

Commands / Lamps

Door 0 is closed

3

DS0Lmp

Flr0Lmp

Up01

Up02

Down from fl. 1 to fl. 0

PBDwn2

4

Down from fl. 2 to fl. 0

PBUp01

5

Up from floor 0 to floor 1

PBUp02

6

Up from floor 0 to floor 2

DS2

Door 2 is closed

9

FS

Floor sensor

10

Move down mode

2

Cabin on floor 0

4

Up to floor 1

5

Up to floor 2

6

Door 1 is closed

7

DS1Lmp

Flr1Lmp

Flr1

Dwn1

Cabin on floor 1

8

Down to floor 0

9

Call on floor 1

10

Door 2 is closed

11

DS2Lmp

Flr2Lmp

Flr2

Dwn2

Cabin on floor 2

12

Down to floor 0

13

Call on floor 2

14

Fig. 2. PLC control interface of a library lift

G(DS ∧ ¬FS ⇒ Mtr). There are no situations when the motor
is off, the doors are closed and the cabin is not entirely on a
particular floor: G¬(¬Mtr ∧ DS ∧ ¬FS).

4. Every moment when motor turns on, it shall be turned
off in future: G(Mtr ⇒ F(¬Mtr)).

5. If these program executions are considered, when after
receipt of a call/send to a floor command Cmd and before
its execution, the shaft door will be opened or closed only a
finite number of times. Always in this case Cmd sooner or
later will be executed, where Cmd — is Flr1 , Flr2 , Up01 ,
Up02 , Dwn1 or Dwn2 : G(Cmd ⇒ ¬G(Cmd U ¬DS)) ⇒
G(Cmd ⇒ F(¬Cmd)).

For the variable Up01 we give an example of its IL and
LD code blocks built by the LTL specification. LD-block:

Up01 FS Ctr0 PBUp01 Up01

—|/|——| |—–| |——-| |—————————–(S)———–
Up01 FS Ctr1 Mtr Up01

—| |——| |—–| |——-|/|—————————–(R)———–

IL-block:
LDN Up01 (* Up01+ *)
AND FS
AND Ctr0
AND PBUp01
JMPCN Up01L1
S Up01
JMP Up01LEND

Up01L1: LD Up01 (* Up01- *)
AND FS
AND Ctr1
ANDN Mtr

24 of 181

JMPCN Up01LEND
R Up01
JMP Up01LEND

Up01L2:
Up01LEND:

ST-program is built by constructive LTL-specification after
checking common program properties.

SMV-model of the “library lift” program

Modeling of a timer is described in [1]. A model of
behaviour of floor sensor FS is following. When the motor
is on, a value of the sensor FS can be changed. When the
motor is off, a value of the sensor FS remains unchanged.
Fairness conditions for FS mean that when the motor is on,
floor sensor can not remain unchanged indefinitely.
module t i m e r (){

I : 0 . . 1 ; /∗ I n p u t ∗ /
Q : 0 . . 1 ; /∗ Outpu t ∗ /
i n i t (I) : = 0 ; i n i t (Q) : = 0 ;
n e x t (Q) : = n e x t (I) & (Q | {0 , 1}) ;
FAIRNESS I −> Q;

}
module main (){ /∗ I n p u t s ∗ /
/∗ B u t t o n s ∗ /

PBFlr2 , PBDwn2 , PBFlr1 , PBDwn1 , PBUp02 , PBUp01 : 0 . . 1 ;
/∗ S e n s o r s ∗ /

DS2 , DS1 , DS0 , FS : 0 . . 1 ;
/∗ O u t p u t s ∗ /

Mtr , Di r : 0 . . 1 ; /∗ Motor ∗ /
Flr2Lmp , Flr1Lmp , Flr0Lmp , DS2Lmp , DS1Lmp ,
DS0Lmp : 0 . . 1 ; /∗ Lamps ∗ /

/∗ Commands ∗ /
F l r2 , F l r1 , Dwn2 , Dwn1 , Up02 , Up01 : 0 . . 1 ;

/∗ A u x i l i a r y ∗ /
Ctr0 , Ctr1 , C t r2 : 0 . . 1 ;
DS : 0 . . 1 ;
Tmr : t i m e r ;

/∗ I n i t i a l i z a t i o n s e c t i o n ∗ /
/∗ I n p u t s ∗ /

i n i t (PBFlr2) : = 0 ; i n i t (PBFlr1) : = 0 ;
i n i t (PBUp02) : = 0 ; i n i t (PBUp01) : = 0 ;
i n i t (PBDwn2) : = 0 ; i n i t (PBDwn1) : = 0 ;
i n i t (DS1) : = 0 ; i n i t (DS0) : = 0 ;
i n i t (DS2) : = 0 ; i n i t (FS) : = 0 ;

/∗ O u t p u t s ∗ /
i n i t (Mtr) : = 0 ; i n i t (F l r 1) : = 0 ; i n i t (Dwn1) : = 1 ;
i n i t (Up01) : = 0 ; i n i t (Di r) : = 0 ; i n i t (F l r 2) : = 0 ;
i n i t (Dwn2) : = 0 ; i n i t (Up02) : = 0 ;

/∗ A u x i l i a r y ∗ /
i n i t (C t r0) : = 0 ; i n i t (C t r1) : = 1 ; i n i t (C t r2) : = 0 ;

/∗ T r a n s i t i o n sys tem ∗ /
/∗ I n p u t s ∗ /

n e x t (PBFlr2) : ={0 , 1} ; n e x t (PBDwn2) : ={0 , 1} ;
n e x t (PBFlr1) : ={0 , 1} ; n e x t (PBDwn1) : ={0 , 1} ;
n e x t (PBUp02) : ={0 , 1} ; n e x t (PBUp01) : ={0 , 1} ;
n e x t (DS2) : ={0 , 1} ; n e x t (DS1) : ={0 , 1} ;
n e x t (DS0) : ={0 , 1} ;
c a s e { Mtr : n e x t (FS) : ={0 , 1} ;

d e f a u l t : n e x t (FS) : = FS ; } ;
FAIRNESS Mtr −> FS ;
FAIRNESS Mtr −> ˜ FS ;

/∗ O u t p u t s and a u x i l i a r y ∗ /
c a s e { ˜ C t r0 & n e x t (FS) & ˜ FS & Ct r1 & ˜ Di r :

n e x t (C t r0) : = 1 ; /∗ Ct r0 + ∗ /
C t r0 & n e x t (FS) & ˜ FS :

n e x t (C t r0) : = 0 ; /∗ Ctr0− ∗ /
d e f a u l t : n e x t (C t r0) : = Ct r0 ; } ;

c a s e { ˜ C t r1 & n e x t (FS) & ˜ FS &
(Ct r2 & ˜ Di r | Ct r0 & Dir) :

n e x t (C t r1) : = 1 ; /∗ Ct r1 + ∗ /

C t r1 & n e x t (FS) & ˜ FS :
n e x t (C t r1) : = 0 ; /∗ Ctr1− ∗ /

d e f a u l t : n e x t (C t r1) : = Ct r1 ; } ;
c a s e { ˜ C t r2 & n e x t (FS) & ˜ FS & Ct r1 & Dir :

n e x t (C t r2) : = 1 ; /∗ Ct r2 + ∗ /
C t r2 & n e x t (FS) & ˜ FS :

n e x t (C t r2) : = 0 ; /∗ Ctr2− ∗ /
d e f a u l t : n e x t (C t r2) : = Ct r2 ; } ;

c a s e { ˜ Up01 & n e x t (FS) & n e x t (C t r0) & n e x t (PBUp01) :
n e x t (Up01) : = 1 ; /∗ Up01+ ∗ /

Up01 & n e x t (FS) & n e x t (C t r1) & ˜ Mtr :
n e x t (Up01) : = 0 ; /∗ Up01− ∗ /

d e f a u l t : n e x t (Up01) : = Up01 ; } ;
c a s e { ˜ Up02 & n e x t (FS) & n e x t (C t r0) & n e x t (PBUp02) :

n e x t (Up02) : = 1 ; /∗ Up02+ ∗ /
Up02 & n e x t (FS) & n e x t (C t r2) & ˜ Mtr :

n e x t (Up02) : = 0 ; /∗ Up02− ∗ /
d e f a u l t : n e x t (Up02) : = Up02 ; } ;

c a s e { ˜Dwn2 & n e x t (FS) & n e x t (C t r2) &
˜ Mtr & (n e x t (PBDwn2) | Tmr .Q) :

n e x t (Dwn2) : = 1 ; /∗ Dwn2+ ∗ /
Dwn2 & n e x t (FS) & n e x t (C t r0) & ˜ Mtr :

n e x t (Dwn2) : = 0 ; /∗ Dwn2− ∗ /
d e f a u l t : n e x t (Dwn2) : = Dwn2 ; } ;

c a s e { ˜Dwn1 & n e x t (FS) & n e x t (C t r1) &
˜ Mtr & (n e x t (PBDwn1) | Tmr .Q) :

n e x t (Dwn1) : = 1 ; /∗ Dwn1+ ∗ /
Dwn1 & n e x t (FS) & n e x t (C t r0) & ˜ Mtr :

n e x t (Dwn1) : = 0 ; /∗ Dwn1− ∗ /
d e f a u l t : n e x t (Dwn1) : = Dwn1 ; } ;

c a s e { ˜ F l r 2 & n e x t (PBFlr2) :
n e x t (F l r 2) : = 1 ; /∗ F l r 2 + ∗ /

F l r 2 & n e x t (FS) & n e x t (C t r2) & ˜ Mtr :
n e x t (F l r 2) : = 0 ; /∗ Fl r2− ∗ /

d e f a u l t : n e x t (F l r 2) : = F l r 2 ; } ;
c a s e { ˜ F l r 1 & n e x t (PBFlr1) :

n e x t (F l r 1) : = 1 ; /∗ F l r 1 + ∗ /
F l r 1 & n e x t (FS) & n e x t (C t r1) & ˜ Mtr :

n e x t (F l r 1) : = 0 ; /∗ Fl r1− ∗ /
d e f a u l t : n e x t (F l r 1) : = F l r 1 ; } ;

c a s e { ˜ Di r & n e x t (FS) & n e x t (C t r0) & ˜ Mtr :
n e x t (Di r) : = 1 ; /∗ Dir + ∗ /

D i r & n e x t (FS) & (n e x t (C t r2) | n e x t (C t r1) &
n e x t (Dwn1) & ˜ n e x t (Up02) & (˜ n e x t (F l r 2) |
n e x t (Dwn2))) & ˜ Mtr :

n e x t (Di r) : = 0 ; /∗ Dir− ∗ /
d e f a u l t : n e x t (Di r) : = Di r ; } ;
DS:= DS0 & DS1 & DS2 ; /∗ DS ∗ /

c a s e { ˜ Mtr & n e x t (DS) &
(˜ n e x t (FS) & (n e x t (Dwn1) | n e x t (Dwn2) | n e x t (Up01) |
n e x t (Up02) | n e x t (F l r 1) | n e x t (F l r 2)) |
n e x t (FS) & n e x t (C t r0) & (n e x t (Up01) | n e x t (Up02) |
Tmr .Q & (n e x t (F l r 1) | n e x t (F l r 2))) |
n e x t (FS) & n e x t (C t r1) & n e x t (Dwn1) |
n e x t (FS) & n e x t (C t r2) & n e x t (Dwn2)) :

n e x t (Mtr) : = 1 ; /∗ Mtr+ ∗ /
Mtr &(˜ n e x t (DS) | n e x t (FS) & n e x t (C t r0) & ˜ Di r |
n e x t (FS) & n e x t (C t r2) & Dir | n e x t (FS) &
n e x t (C t r1) & (n e x t (F l r 1) &˜ n e x t (Dwn1) | n e x t (Up01))) :

n e x t (Mtr) : = 0 ; /∗ Mtr− ∗ /
d e f a u l t : n e x t (Mtr) : = Mtr ; } ;
n e x t (Tmr . I) : = n e x t (˜ Mtr & FS &

(Ct r0 & DS0 | Ct r1 & DS1 | Ct r2 & DS2)) ;
Flr0Lmp := ˜ Mtr & FS & Ct r0 ; /∗ Flr0Lmp ∗ /
Flr1Lmp := ˜ Mtr & FS & Ct r1 ; /∗ Flr1Lmp ∗ /
Flr2Lmp := ˜ Mtr & FS & Ct r2 ; /∗ Flr2Lmp ∗ /
/∗ DS0Lmp , DS1Lmp , DS2Lmp ∗ /
DS0Lmp:= DS0 ; DS1Lmp:= DS1 ; DS2Lmp:= DS2 ;

/∗ P r o p e r t i e s s e c t i o n ∗ /
P Ctr : a s s e r t G(C t r0 + Ct r1 + Ct r2 = 1) ;
P Limi t0 : a s s e r t G˜ (FS & Ct r0 & Dir =0 & Mtr) ;
P Limi t2 : a s s e r t G˜ (FS & Ct r2 & Dir =1 & Mtr) ;
P Doors : a s s e r t G(Mtr −> DS) ;

25 of 181

P Stop : a s s e r t G ˜ (˜ Mtr & DS & ˜ FS) ;
P Mtr : a s s e r t G(Mtr −> F (˜ Mtr)) ;
P F l r2 : a s s e r t G(F l r 2 −> ˜G(F l r 2 U ˜DS)) −>

G(F l r 2 −> F (˜ F l r 2)) ;
P F l r1 : a s s e r t G(F l r 1 −> ˜G(F l r 1 U ˜DS)) −>

G(F l r 1 −> F (˜ F l r 1)) ;
P Up01 : a s s e r t G(Up01 −> ˜G(Up01 U ˜DS)) −>

G(Up01 −> F (˜ Up01)) ;

P Up02 : a s s e r t G(Up02 −> ˜G(Up02 U ˜DS)) −>
G(Up02 −> F (˜ Up02)) ;

P Dwn1 : a s s e r t G(Dwn1 −> ˜G(Dwn1 U ˜DS)) −>
G(Dwn1 −> F (˜ Dwn1)) ;

P Dwn2 : a s s e r t G(Dwn2 −> ˜G(Dwn2 U ˜DS)) −>
G(Dwn2 −> F (˜ Dwn2)) ;

P Move : a s s e r t G(DS & ˜ FS −> Mtr) ;
}

ST-program of “library lift”

VAR GLOBAL
(∗ I n p u t s ∗)

PBFlr2 , PBDwn2 , PBFlr1 , PBDwn1 , PBUp02 , PBUp01 : BOOL;
DS2 , DS1 , DS0 , FS : BOOL;

(∗ O u t p u t s ∗)
Mtr , Dir , Flr2Lmp , Flr1Lmp , Flr0Lmp , DS2Lmp : BOOL;
DS1Lmp , DS0Lmp , F l r2 , F l r1 , Dwn2 , Up02 , Up01 : BOOL;
Dwn1 : BOOL : = 1 ;

END VAR

PROGRAM PLC PRG
VAR

Tmr : TON := (PT := T#10 s) ;
Ctr0 , C t r2 : BOOL;
Ct r1 : BOOL := TRUE;

Ctr , FS , Dir , Dwn1 , Dwn2 , F l r1 , F l r 2 : BOOL;
Mtr , TmrQ , Up01 , Up02 : BOOL;

END VAR
IF NOT Ct r0 AND FS AND NOT FS AND

Ctr1 AND NOT Dir THEN
Ct r0 : = 1 ; (∗ Ct r0 + ∗)

ELSIF Ct r0 AND FS AND NOT FS THEN
Ct r0 : = 0 ; (∗ Ctr0− ∗)

END IF ;
IF NOT Ct r1 AND FS AND NOT FS AND

(Ct r2 AND NOT Dir OR
Ct r0 AND Dir) THEN

Ct r1 : = 1 ; (∗ Ct r1 + ∗)
ELSIF Ct r1 AND FS AND NOT FS THEN

Ct r1 : = 0 ; (∗ Ctr1− ∗)
END IF ;
IF NOT Ct r2 AND FS AND NOT FS AND

Ctr1 AND Dir THEN
Ct r2 : = 1 ; (∗ Ct r2 + ∗)

ELSIF Ct r2 AND FS AND NOT FS THEN
Ct r2 : = 0 ; (∗ Ctr2− ∗)

END IF ;
IF NOT Up01 AND FS AND Ct r0 AND PBUp01 THEN

Up01 : = 1 ; (∗ Up01+ ∗)
ELSIF Up01 AND FS AND Ct r1 AND NOT Mtr THEN

Up01 : = 0 ; (∗ Up01− ∗)
END IF ;
IF NOT Up02 AND FS AND Ct r0 AND PBUp02 THEN

Up02 : = 1 ; (∗ Up02+ ∗)
ELSIF Up02 AND FS AND Ct r2 AND NOT Mtr THEN

Up02 : = 0 ; (∗ Up02− ∗)
END IF ;
IF NOT Dwn2 AND NOT Mtr AND FS AND Ct r2 AND

(PBDwn2 OR TmrQ) THEN Dwn2 : = 1 ; (∗ Dwn2+ ∗)
ELSIF Dwn2 AND NOT Mtr AND FS AND Ct r0 THEN

Dwn2 : = 0 ; (∗ Dwn2− ∗)
END IF ;
IF NOT Dwn1 AND NOT Mtr AND FS AND Ct r1 AND

(PBDwn1 OR TmrQ) THEN Dwn1 : = 1 ; (∗ Dwn1+ ∗)
ELSIF Dwn1 AND NOT Mtr AND FS AND Ct r0 THEN

Dwn1 : = 0 ; (∗ Dwn1− ∗)
END IF ;
IF NOT F l r 2 AND PBFlr2 THEN F l r 2 : = 1 ; (∗ F l r 2 + ∗)
ELSIF F l r 2 AND NOT Mtr AND FS AND Ct r2 THEN

F l r 2 : = 0 ; (∗ Fl r2− ∗)
END IF ;

IF NOT F l r 1 AND PBFlr1THEN F l r 1 : = 1 ; (∗ F l r 1 + ∗)
ELSIF F l r 1 AND NOT Mtr AND FS AND Ct r1 THEN

F l r 1 : = 0 ; (∗ Fl r1− ∗)
END IF ;
IF NOT Dir AND NOT Mtr AND FS AND Ct r0 THEN

Dir : = 1 ; (∗ Dir + ∗)
ELSIF Dir AND NOT Mtr AND FS AND

(Ct r2 OR Ct r1 AND Dwn1 AND NOT Up02 AND
(NOT F l r 2 OR Dwn2)) THEN Dir : = 0 ; (∗ Dir− ∗)

END IF ;
DS:=DS0 AND DS1 AND DS2 ;

IF NOT Mtr AND DS AND
(NOT FS AND (Dwn1 OR Dwn2 OR
Up01 OR Up02 OR F l r 1 OR F l r 2) OR
FS AND Ct r0 AND
(Up01 OR Up02 OR TmrQ AND
(F l r 1 OR F l r 2)) OR
FS AND Ct r1 AND Dwn1 OR
FS AND Ct r2 AND Dwn2) THEN Mtr : = 1 ; (∗ Mtr+ ∗)

ELSIF Mtr AND (NOT DS OR
FS AND Ct r0 AND Dir =0 OR
FS AND Ct r2 AND Dir =1 OR
FS AND Ct r1 AND
(F l r 1 AND NOT Dwn1 OR Up01))
THEN Mtr : = 0 ; (∗ Mtr− ∗)

END IF ;
Tmr . In := NOT Mtr AND FS AND

(Ct r0 AND DS0 OR Ct r1 AND DS1 OR Ct r2 AND DS2) ;
Tmr () ;
Flr0Lmp := NOT Mtr AND FS AND Ct r0 ;
Flr1Lmp := NOT Mtr AND FS AND Ct r1 ;
Flr2Lmp := NOT Mtr AND FS AND Ct r2 ;
DS0Lmp:=DS0 ;
DS1Lmp:=DS1 ;
DS2Lmp:=DS2 ;
(∗ −−−−−−− pseudo−o p e r a t o r s e c t i o n −−−−−−−∗)
TmrQ := Tmr .Q; FS := FS ; Mtr := Mtr ;
Di r := Di r ; C t r := C t r ;
Dwn1 :=Dwn1 ; Dwn2 :=Dwn2 ;
F l r 1 := F l r 1 ; F l r 2 := F l r 2 ;
Up01 := Up01 ; Up02 := Up02 ;

26 of 181

An approach to lightweight static data race detection

Andrianov Pavel
Institute for System Programming

Russian Academy of Sciences,
Email: andrianov@ispras.ru

Khoroshilov Alexey
Institute for System Programming

Russian Academy of Sciences,
Email: khoroshilov@ispras.ru

Mutilin Vadim
Institute for System Programming

Russian Academy of Sciences,
Email: mutilin@ispras.ru

Abstract—The paper presents a lightweight approach to static
data race detection. It is based on the Lockset one, but it
implements several simplifications that are aimed to reduce
amount of false alarms. The approach is implemented on top
of CPAchecker tool and its evaluation is in progress. The main
target of our research and evaluation is operating system kernels
but the approach can be applied to analysis of other programs
as well.

Keywords. static analysis, data race condition, verification,
operating system kernel, shared data

I. INTRODUCTION

Despite a great progress in the field of software verification,
errors associated with multithreading execution remain among
the most difficult to identify. In addition concurrency bugs
are rather noumerous and, for example, make up about 20%
of all bugs on average across file systems [1]. The most
common causes of errors associated with the parallel execution
of system code are data race conditions in which simultaneous
access to shared data from multiple threads takes place. In
particular the analysis of bug fixes for a year of Linux kernel
development has shown that errors associated with data races
are the most numerous class and make up 17% of typical
errors [2].

At the moment there are two ways for finding data races
automatically: dynamic analysis and static analysis. Dynamic
analysis techniques allow to obtain a relatively small percent-
age of false alarms, but they are able to find data races only
at those paths that occurred during the actual execution of a
program. As far as data race recquires two almost simultanious
accesses to the same data, this fact reduces chance of its
detection. Also it is known that a significant number of
execution paths are difficult to reproduce in test environment.
Examples of tools, implemented such method, are Eraser [3],
RaceHound [4] and DataCollider [5].

Methods of static analysis have the other problems. The
lightweight methods, e.g. method, implemented in the tool
Locksmith [6], analyze source code superficially. Such meth-
ods allow to find simple errors and work very fast. But the
number of false alarms is about 90% on device drivers and
about 98% on some POSIX applications [7]. The idea of
such methods can be improved to decrease number of false
alarms. The another way is heavyweight analysis. It is much
more precise, but requires a lot of time. In case of data race
detection total number of places, where data race can occur,
is too large. There are some experiments with verification
of kernel modules source code, for example, DDVerify [8].
But the results showed that the heavyweight multithreaded

analyis does not scale on such code. They got a combinatorial
explosion of states, so, even for small modules the amount of
recuired time and memory was huge.

In operating system kernels parallelism is more complex
and less precise, because many kernel functions can be exe-
cuted in parallel and it is difficult to define when the parallel
execution can start. So finding data races in operating system
kernel is much more difficult than in user-level programs.

So there is a need to create a lightweight method of static
analysis which is easy to scale to large amounts of source code
and allows to find most of error cases while keeps false alarms
rate at reasonable level.

In this paper we suggest a new method of static analysis
for data race detection, implemented on top of CPAchecker
tool [9].

The rest of the paper is organized as follows. In the Section
2 required definitions are given. After that the idea of analysis
is presented. The Section 4 describes the idea of configurable
program analysis. After that implementation of our method is
given. Then a need of annotations of source code is explained.
The Section 7 talks about the solution architecture. After that
the visualization of results is presented. In conclusion we
briefly speak about the results, related work and future plans.

II. DEFINITIONS

In this article term thread is used to represent independent
thread of execution in operating system kernel, for example,
interrupt handlers and system calls executed on behalf of user
space threads.

A lock is an object used for concurrent memory access
exclusion. If lock is acquired from one thread the another
thread trying to acquire the same lock can not continue its
execution before the lock is released. For example, mutexes
and spin locks are typical examples of such locks. We con-
sider the kernel specific syncronization mechanizms such as
disabling of interrupts and scheduling as specific locks as well.
The lock can be linked with an address. For example, function
mutex_lock(&mutex) linked with the address &mutex.

Shared data — an area of memory which is available
from several threads. In C language shared data is presented
by global variables and pointers to memory which is accessible
from several threads via legal C constructions. It is important
to note that sharedness is a characteristic of time. A local data
can become shared at one point and return its local status later.

Usage of data — read or write data access.

27 of 181

Data race condition is a situation when there are two
concurrent access to the same shared data and at least one of
the access events is writing. Data race does not always lead to
an error (for example, access to statistics counter), but it is a
symptom of it.

III. LIGHTWEIGHT METHOD OF DATA RACE DETECTION

Our method is based on algorithm Lockset [3]. This
algorithm considers two usages of the same data as a data race
if these usages occur with disjoint sets of locks. The algorithm
Lockset stores locks for every thread and set C of potential
candidates of locks for every usage of shared data. If a usage
occurs it intersects C and set of acquired locks for current
thread and obtain new set C̃. If the last one is empty this is
potential data race.

As far as our goal is to develop a lightweight static analysis
method to analyze large amount of source code we apply some
simplifications.

Our first heuristics is a definition if shared data is the same.
We do not analyze a memory model but consider memory
locations as the same only by syntax rules. For variables the
equality of memory locations follows only from the equality
of variables. Pointers with equal names are always considered
to be pointed to the same memory area.

The second simplification makes a try to decrease a number
of false alarms. We generate warnings only for usages of data,
protected by locks at least once. If there are two usages without
locks at all we do not generate warning. This is rather strong
limitation because many real errors can occur exactly without
locks.

The last simplification is the model of threads. We consider
that every kernel API function, specified in documentation,
could be executed in parallel with other one, including itself.
The actual interrelation between kernel API functions is more
difficult.

IV. CONFIGURABLE STATIC ANALYSIS

As far as our method implementation is based on Con-
figurable Program Analysis (CPA) [9] let us briefly describe
it.

The main idea of configurable static analysis is to combine
advantages of data flow analysis and model checking methods
and create a way to configure its interrelation. On the one hand,
in data flow analysis algorithm works with control-flow graph
(CFG) of program, disseminating information along the edges,
on the other hand, model checking algorithms of heavyweight
analysis unroll the tree of reachable states until one of the
states will not be covered by another state.

In configurable static analysis proposed in [9] it is allowed
to configure the analysis algorithm CPA choosing the merging
operator and way to check the completion of the analysis.
In addition, configurable static analysis can be configured of
several algorithms CPA offering different types of analysis.

Configurable program analysis (D, transfer,
merge, stop) consists of an abstract domain D, transfer
relation transfer, merge operator merge, the stop operator
stop as described below. These four components configure

analysis algorithm and affect the accuracy and the resources
required for analysis.

Abstract domain D specifies the set of abstract states. Every
abstract state is matched to its abstract value, i.e. set of concrete
states, which it represents. Concrete state of program is a
mapping of program variables set into the values of these
variables.

Transfer relation transfer determines for each abstract
state e potential following abstract states {e’}, where each
transition is marked by an edge of the CFG.

Operator merge allows to combine information from
several paths of analysis. It determines, when two nodes of
the reachability tree are merged into one and when they are
analyzed individually. In the data flow analysis merging always
happens, when nodes refer to the same point in the program. In
classical methods of model checking nodes are never merged.

Operator stop checks whether the current state is covered
by set of given states (already completed state). It determines
when consideration of a path is stoped in current node. In the
data flow analysis stop occurs when there is no abstract state
including new concrete states, i.e. a fixed point is reached. In
the methods of model checking stop occurs when one set of
concrete states corresponding an abstract state is a subset of
states corresponding to some other abstract state.

Let us look at one example of CPAs configuration tree
(Fig. 1).

Fig. 1. Simple CPA configuration tree

We have three CPAs. The main is CompositeCPA. It
includes LocationCPA and CallstackCPA.

State of LocationCPA contains only a line of source code.
Hence its abstract domain is the set of possible line numbers.

Transfer relation changes the line number of cur-
rent state to the line number of the edge successor.

Merge operator never merges states. Stop occures only
if we have already analyzed the current state before.

State of CallstackCPA consists of function calls stack. If
we call a new function we push its name at top of the stack.
If we return back we pull its name from the stack. It is the
work of transfer relation. Stop and merge are the same as
previous ones.

The aim of CompositeCPA is to combine CPAs mentioned
above. Its domain is a cartesian product of LocationCPA
domain and CallstackCPA domains. Transfer relation of Call-
stackCPA calls the containing transfer relations. First, it obtains
a new state of LocationCPA, then a new state of CallstackCPA,
and combines them together, thus we get the new state of
CompositeCPA.

28 of 181

Merge and stop operators are also a combination of
containing ones. To merge two states of CompositeCPA, first,
Location states are merged, then Callstack ones are merged
and finally they are combined into a next Composite state.
The stop operator works in the similar way: if any containing
CPA consider to stop analysis the analysis is stoped.

Consider, how the composition of CPAs analyzes the
simple code:

1. int g(int a) {
2. int b = 0;
3. if (a == 0) {
4. b++;
5. }
6. return b;
7. }
8. int f() {
9. return 0;
10. }
11. int main() {
12. int t;
13. t = f();
14. g(t);
15. }

In figure 2 there is a path of an analysis of the program
above.

Fig. 2. Analysis path

First number in the braces is representing the state of
LocationCPA (the line number) and after that follows the call
stack of functions. Analysis starts from the main function, then
it analyses the function f, then goes to g. In this function it
meets if condition at line 3. It analyses two branches and gets
the same resulting states at line 5. It means that one state is
covered by another, so it continues the analysis with the only
state.

V. IMPLEMENTATION

The implementation of the method is proposed to be into
two stages. First of all, the shared data are identified, then for
every usage of shared data the set of acquired locks is obtained.

Figure 3 represents these stages in CPAchecker-Lockator. The

Fig. 3. Stages of analysis in CPAchecker-Lockator

configuration for Shared analysis consists of functions which
introduce local data, for example, calloc(), malloc()
and so on. We are sure that pointer returned by these functions
points to local data and in current point of program it can not
be shared. The configuration for Lock analysis includes locks
descriptions and annotations which are described in section VI.

A. CPA configuration for Shared analysis

Shared analysis is used for collecting the list of shared
variables in every point of a program, see Fig. 4.

Fig. 4. Shared analysis configuration

BAMCPA (Block Abstraction Memorization) [10] — is
responsible for modularity of analysis. If a function has been
already analyzed with some state before the call and a set of
resulting states on return from the function were already stored,
the reanalysis of this function does not occur, the stored states
are used instead.

ARGCPA (Abstract Reachability Graph) — is responsible
for restoration of a path from current state to initial one. It
stores parents and children for every state, so it can traverse
all reached states and reestablish the path.

CompositeCPA — provides the analysis where the state is
a product of the containing CPAs and the transter is performed
for all containg CPAs simultaneously.

LocationCPA — stores current line of source code in its
state and is responsible for traversal of CFG.

29 of 181

CallstackCPA — stores a stack of called functions, so it is
responsible for transfering by function calls and returns.

LocalCPA — is responsible for detecting locality of all
variables accessible in current point of program. The data
status can be local, global or unknown. The task of transfer
operator is to spread the status variables for assignment oper-
ators and function calls. For example, if there is assignment a
= b then status of variable b is transferred to the variable a.
At merge points the analysis joins results on the branches, such
that for each variable the maximal status is taken. Considering
the following example:

if (condition) {
a = b;

} else {
a = c;

}

At the merge point of the two branches of the if statement
the status for a variable is taken as maximal status between
then-branch and else-branch. Therefore, if b is local and c is
global, then the result for a is global.

The result of this stage is a list of shared data. If we do
not exactly know the sharedness we include the data into the
list, thus considering it as shared.

B. CPA configuration for Lock analysis

Lock analysis is used for collecting a set of acquired locks
for every usage of shared data, provided by previous stage of
analysis.

Fig. 5. Lock analysis configuration

ABMCPA, ARGCPA, LocationCPA and CallstackCPA are
the same.

UsageCPA collects statistics of data usage. Transfer rela-
tion of UsageCPA identifies variables used in the expressions
for read/write access and keeps the call stack for the usage, as
well as a set of acquired locks.

At the end of analysis we obtain statistics about all usages
for every shared data. The usage consists of:

• Set of acquired locks;

• Stack of function calls;

• The line number;

• CFG edge type (a function call expression, etc.);

• The type of access (READ, WRITE).

The UsageCPA is also used to establishing equality of vari-
ables, so they can be regarded as the same data for the analysis.
This is required, for example, for lists, where the elements of
the list usually have equal variable names like next given by
the field name of the list structure. If we do not distinguish
elements of different lists we get many false alarms, because
the usages of different lists may be pretected by different lock
sets. That is why we want to bind the variable representing
the elements to the list variable name to distinguish between
the other lists. For this purpose the configurations contains
functions which are used to work with the list. For example,
the expression e = getElement(list) binds the variable
e to the variable list passed as a parameter. In transfer relation
upon detection of an annotated function the binding relation
is changed accordingly.

LockCPA analyzes the set of acquired locks. Its state holds
a set of locks acquired during the program execution. Each
lock contains information about:

• Name of the lock;

• Recursive counter of acquires;

• Stack of function calls for every acquire.

Transfer relation changes the state of a plurality of acquired
locks. When a lock acquisition function is called, the cor-
responding lock is added to the lock set or the counter is
incremented. When a releasing function is called, the the
counter is decremented and if it becomes zero the lock is
removed from the set.

States of all CPAs are never merged. Analysis stops if a
state has been already analyzed.

VI. ANNOTATIONS

Let us consider the following chunk of code:

if (!isLOCKED) {
lock();

}
global_var++;
if (!isLOCKED) {

unlock();
}

In this example the increase of the global counter always
occurs under the lock. Either someone acquires it earlier, or
this function acquires it and releases it after increasing counter.
But the analysis considers four paths because it can take if
or else branch in both if statements. Two of these paths are
infeasible, because the conditions in the if statements are the
same. So at the end the analysis has two states of acquired lock
sets: {lock} and {∅}, where the first one is is not reachable
in the real execution.

Such situations do not often occur, but each of them offers
a significant number of false alarms, since the output of the
function under lock affects all further paths of analysis. The
annotation of functions are used to deal with such cases. It
is a way to tell analysis that a function is always releases or
acquires the lock.

30 of 181

Annotation describes function in terms of LockCPA states.
After the function has been analyzed, the state is adjusted in
accordance with the annotation.

Currently 4 types of specifications are supported:

• Acquiring a lock — function always acquires a lock.

• Releasing lock — function always releases a lock.

• Reseting a lock — if the lock can be acquired several
times recursively, the function totally releases it.

• Restoring a lock — function does not modify set of
locks, all changes should be forgotten.

VII. SOLUTION ARCHITECTURE

For race detection we reuse the Linux Driver Verification
(LDV [11]) architecture developed within ISPRAS project for
the verification of Linux operating system device drivers (see
Fig. 6).

Fig. 6. Solution architecture

First kernel of operating system is prepared. During this
stage compiler calls are replaced by our command extractor
calls. Also other modules are prepared for building at this
stage. Then build command stream is extracted by special
scripts. Obtained command stream is transmitted to Domain-
Specific C Verifier component. It instruments source code, us-
ing locks description. For example, it replaces macros used for
acquisition and releasing locks by model functions, annotated
in the configuration, because macros can be expanded to very
difficult command sequence, while model function is easier to
analyze.

Then model of environment is included. It is presented by
main function containing system calls which can be executed
in parallel according to documentation and interrupt handlers
calls. So we consider that all functions called from main are
executed simultaneously.

After all preparations the source code is analyzed by
CPAchecker-Lockator. It generates report containing a list of
unsafe cases with detail information about each of them.

Statistics General Unsafe
Global variables: 195 29

Simple: 122 23
Pointer: 73 6

Local variables: 3 0
Simple: 0 0
Pointer: 3 0

Structure fields: 118 24
Simple: 105 24
Pointer: 13 0

Total: 316 53

TABLE I. Example of general report for launch on Linux driver
floppy.ko

VIII. VISUALIZATION OF RESULTS

To visualize the potential cases of data races another
component of LDV Tools called Error Trace Visualizer is
reused. When the tool generates a warning about the data
race, it must be shown to the user. Moreover, the user should
check if it is a false alarm or true error. Therefore it is
necessary to present visualization of the unsafe error trace and
its association with the context - source code under analysis.
Error Trace Visualizer interprets the data received from the
verifier, converts them and associates it with the source code.
To represent the results the HTML-report is generated. The
main page of a report contains general statistics (Tab. I). There
are total numbers of variables of each of three categories:
global, local and structure fields and number of variables,
producing unsafes. The pointer variable means the access by
pointer and simple one — the access to varible itself. Also
the report lists all found locks. After that there is a list of all
unsafes, that could potentially be a data race. For each unsafe
the report contains a pair of usages with disjoint sets of locks.

Also there is an option to generate source code coverage.
It shows the code which has been analyzed by the verifier and
its relation to the whole kernel code.

An example of source code presentation is shown in Fig. 7.

Here we can see two functions called from the entry
point (main function). The function print prints information
about global variable, and increase increments its value
with lock protection. There is a data race, because function
increase can write to the variable simulteneously with the
check in the function print. So, as a consequence of the race
the printed output message may be wrong.

Our tool generates a warning for variable global with
error trace shown in Fig. 8.

On the left side we can see the error call stack with points
of acquiring locks and points of calling functions. Every point
links to corresponding line on source code (see Fig. 7).

IX. RESULTS

The method was applied to a real time operating system
kernel. It has been already tested and was worked several years
in production. The amount of analyzed code was about 50 000
lines. We found about 20 new data races, acknowledged by
developers. Total amount of warnings was 139. It takes about
3 minutes and 6 Gb of RAM for the analysis. Also there was a
test launch of the tool on the Linux kernel 3.8, on drivers/
directory. The amount of analyzed modules was about 3500.

31 of 181

Fig. 7. Example of source code

Fig. 8. Example of unsafe

The tool generated about 900 unsafe cases. Several of them
were analyzed and one actual bug was found, but it had been
already fixed in the newest version of Linux kernel.

X. RELATED WORK

In our method we are performing static analysis in con-
trast to dynamic analysis which has its own benefits. We
are considering only methods for the analysis of C code,
excluding for example Java analyzers, like [12]. The method of
Locksmith [6] is the most similar. It is also based on Lockset
algorithm, but has different apporoaches for the analysis of
locks and shared data. Basically it performs intra-procedural
analysis with propagation of constraints which gives it context-
sensitivity, but it does not take into account path conditions.
Our method is inter-procedural and explores each path sepa-
rately as long as they result in different states. As far as it
is based on CPAchecker it allows to extend the method with
existing analysis, like explicit or predicate. Another distinction
is a computation of shared data. The Locksmith determines
sharedness for a variable across all program, while in our
method the sharedness is determined for a particular program
location.

XI. FUTURE WORK

The main problem of all methods of static analysis is a
great amount of false alarms. Some of them can be discarded
with help of shared analysis. But at the moment the large
part of false alarms are caused by inaccuracies in analysis
of expressions. For instance, now the analysis does not prop-
erly consider conditions in if statements.There is an existing
method, called CEGAR (Counterexample Guided Abstraction
Refinement) [14], which takes into account conditions by
means of predicated abstraction, but it is used for checking
reachability properties. In case of data races CEGAR algorithm
should be modified to take into account that two threads should
be considered instead of one. In particular, it means that it
should be able to refine many error paths together.

Another issue is a full launch on Linux kernel with analysis
of results.

REFERENCES

[1] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Shan
Lu, A Study of Linux File System Evolution, 11th USENIX Conference
on File and Storage Technologies (FAST ’13)

[2] Mutilin V.S., Novikov E.M., Khoroshilov A.V. Analysis of typical faults
in Linux operating system drivers. Trudy ISP RAN [The Proceedings of
ISP RAS], vol. 22, pp. 349–374, 2012 (in Russian).

[3] Stefan Savage, Michael Burrows, Greg Nelson, Patric Sobalvarro,
Thomas Anderson Eraser: A Dynamic Data Race Detector for Multi-
threaded Programs ACM Transactions on Computer Systems, Vol. 15,
No. 4, November 1997, Pages 391–411.

[4] Gerlits E.A., Kuliamin V.V., Maksimov A.V., Petrenko A.K., Khoroshilov
A.V., Tsyvarev A.V. Testing of Operating Systems. Trudy ISP RAN [The
Proceedings of ISP RAS], vol. 26, pp. 73–107, 2014 (in Russian).

[5] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, Kirk Olynyk
Effective Data-Race Detection for the Kernel Operating System Design
and Implementation (OSDI’10), 2010, USENIX.

[6] Polyvios Pratikakis, Jeffrey S. Foster, Michael Hicks. Locksmith: Prac-
tical Static Race Detection for C, ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 33(1):Article 3, January 2011.

[7] Polyvios Pratikakis, Jeffrey S. Foster, Michael Hicks. Locksmith:
Context-Sensitive Correlation Analysis for Race Detection, Proceedings
of the 2006 ACM SIGPLAN conference on Programming language
design and implementation, pp. 320 - 331, ACM New York, 2006

[8] Thomas Witkowski, Nicolas Blanc, Daniel Kroening, Georg Weis-
senbacher, Model Checking Concurrent Linux Device Drivers, ASE’07,
November 4–9, 2007

32 of 181

[9] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz, Configurable
Software Verification: Concretizing the Convergence of Model Checking
and Program Analysis, ACM Transactions on Computer Systems, Vol.
15, No. 4, November 1997, Pages 391–411.

[10] Daniel Wonisch, Block Abstract Memorization for CPAchecker, TACAS
2012, LNCS 7214, pp. 531-533.

[11] Mutilin V.S., Novikov E.M., Strakh A.V., Khoroshilov A.V., Shved
P.E. Arkhitektura Linux Driver Verification [Linux Driver Verification
Architecture]. Trudy ISP RAN [The Proceedings of ISP RAS], vol. 20,
pp. 163-187, 2011 (in Russian).

[12] Mayur Naik, Alex Aiken, John Whaley Effective static race detection
for Java. PLDI ’06 Proceedings of the 2006 ACM SIGPLAN conference
on Programming language design and implementation, 41, 6, pp. 308 -
319, 2006

[13] Jan Wen Voung, Ranjit Jhala, Sorin Lerner, RELAY: Static Race
Detection on Millions of Lines of Code. ESEC/FSE’07, 2007

[14] Khoroshilov A.V., Mandrykin M.U., Mutilin V.S. Introduction to CE-
GAR — Counter-Example Guided Abstraction Refinement pp. 219-292.
(in Russian)

33 of 181

Minimizing the number of static verifier traces to

reduce time for finding bugs in Linux kernel modules

Vitaly Mordan

Institute for System Programming

Russian Academy of Sciences

Moscow, Russia

Email: mordan@ispras.ru

Evgeny Novikov

Institute for System Programming

Russian Academy of Sciences

Moscow, Russia

Email: novikov@ispras.ru

Abstract— Static verifiers usually stop after they find a first

bug in a program under analysis. This slows down the process of

finding and fixing of bugs of the same kind in a given Linux

kernel module. In order to solve this problem we used the static

verifier CPAchecker with option to continue analysis after

finding of a first bug. Besides we extended LDV Tools – a toolset

for verification of Linux kernel modules – for finding several

bugs in a given module against a specified rule specification. But

first experiments revealed a new problem – the verifier produced

too many similar traces. The given paper introduces a formal

definition of equivalent traces and presents different comparison

algorithms and a semi-automated approach, which makes

possible to find several bugs in a given Linux kernel module

against a specified rule specification at once.

Keywords—Linux kernel module; correctness rule; static

verifier trace; equivalence class.

I. INTRODUCTION

The Linux kernel is one of the most fast-paced software
projects [1]. The number of its active developers is more than
one thousand. A new release comes out in 2-3 months, it
contains thousands of changes. At present the Linux kernel
consists of more than 15 million lines of code. At the same
time every bug in the Linux kernel is critical [2]. Researches
revealed that most of bugs in the Linux kernel are located in its
modules (modules contain approximately 7 times more bugs
than the kernel itself) [3]. One of the approaches to find those
bugs is using static verifiers. At the moment just LDV Tools
[4] among all toolsets that allow to apply static verifiers for
Linux kernel modules are under active development. This
toolset has already helped to find 150 bugs in Linux kernel
modules and corresponding patches were applied by the Linux
kernel developers [5].

Each Linux kernel module can contain any number of bugs.
At the same time most of static verifiers stop after they find a
first bug. One can fix this bug and repeat verification until no
bugs will be detected in a given module but this approach may
take a lot of time and can not be automated.

Let us consider the following program (Fig. 1). There is
function getnchar which works properly only with positive
values of its parameter. A static verifier needs to check that all

calls of this function is correct. A formal task for the static
verifier is to check that label ERROR can not be reached.

Fig. 1. Program with 2 bugs.

There are two bugs in this program: at lines 9 and 10
correspondingly. Most of static verifiers most likely will find
the first one and will stop their analysis. After fixing of this bug
the user may think the program is safe but it is not the case the
program still has another bug.

For simple programs this problem is not so critical. But for
such big projects like the Linux kernel, where checking of all
modules against one rule specification requires more than 1
day and where fixing of bugs requires preparing and applying
of corresponding patches, this problem greatly increases time
for finding all bugs.

This paper presents an approach to reduce time for finding
all bugs in Linux kernel modules. The approach based on
Linux Driver Verification Tools (LDV Tools), which are an
open source toolset for checking correctness of Linux kernel
modules against rule specifications with help of different static
verifiers [6]. The LDV Tools architecture is presented in Fig. 2.

LDV Tools provide an interface to verify a set of modules
against a set of rule specifications. When verification is
complete, verification results will be placed in an archive. After
that, this archive can be uploaded to a database. LDV Analytics
Center allows to analyze the verification results. It is integrated
with Error Trace Visualizer that visualize traces from a static
verifier to allow the user either to find actual bugs or to identify
source of false alarms. Also LDV Analytics Center provides an

1: void getnchar(int n)

2: {

3: if (n <= 0)

4: ERROR: goto ERROR;

5: ...

6: }

7: int main()

8: {

9: getnchar(-1);

10: getnchar(-2);

11: return 0;

12: }

34 of 181

interface to Knowledge Base that keeps information on all
already analyzed unsafes. Knowledge Base scripts mark new
uploaded static verifier traces if they are equivalent to any of
already analyzed traces by specified criteria.

There are several examples of more than one bug for a
given rule and a given Linux kernel module, which were found
by LDV Tools [5]. For example, bug reports L0029

1
 and

L0034
2
 are devoted to a lack of mutex release in different

functions in the kernel of versions 2.6.38 and 2.6.39
correspondingly. Bug report L0030

3
 deals with a lack of

mutex release in a couple of places and so on. These examples
show that sometimes it is possible to find similar bugs if a
verification toolset is able to find one of them. In order to solve
this problem it was decided to extend LDV Tools so that the
toolset could find all bugs in a given module against a specified
rule specification.

Fig. 2. LDV Tools architecture.

First, we need a static verifier that is able to continue
analysis after a first bug is found. CPAchecker is a tool for
configurable software verification [7]. It aims at easy
integration of new verification components. With revision
r8387

4
 it has an option “find and report multiple specification

violations”. Also it already has been integrated with LDV
Tools [6]. That is why it was decided to use CPAchecker as the
static verifier for finding all bugs in a given Linux kernel
module against a specified rule specification in LDV Tools.

1 http://linuxtesting.org/results/report?num=L0029

2 http://linuxtesting.org/results/report?num=L0034

3 http://linuxtesting.org/results/report?num=L0030

4 https://svn.sosy-lab.org/software/cpachecker/trunk/

Second, some components of LDV Tools were improved so
that they can process multiple traces (formal definitions will be
given in Section II) from CPAchecker. The CPAchecker
wrapper was extended to get multiple traces from the static
verifier and to send them to Reachability C Verifier.
Reachability C Verifier was improved to put all traces into a
final report. Finally, LDV Uploader, which uploads analysis
results into a database, was extended for uploading several
traces for a given module.

After that we conducted experiments. At first LDV Tools
with CPAchecker were checked on known issues (L0029,
L0034 and L0030). 2 bugs were found for L0029/L0034 and 3
bugs were found for L0030 – as expected. More thorough
evaluation of LDV Tools with CPAchecker was made on
known bugs in Linux kernel 3.12-rc1 (in total 15 modules and
4 rule specifications). Then a main issue of this approach was
revealed – the total number of found traces was 1998 for only
15 modules. Manual examination revealed only 23 different
bugs (see Table 1), a lot of traces were similar.

In order to find several bugs in Linux kernel modules in
practice the number of found traces should be minimized, but
we should pay much attention to keep those traces that
correspond to different bugs.

Next section gives some formal definitions. Section III
describes comparison algorithms for traces. In section IV semi-
automated approach was suggested to further improve
comparison algorithms. In Section V the results are presented.

II. FORMAL DEFINITIONS

Below some formal definitions are given.

Static verifier trace – is a sequence of operations
(assignments, function calls, assumptions, etc.) in program
source files that leads from a specific entry point to a specific
label. By default entry point main and label ERROR are used.
Different static verifiers use different formats for their traces,
so in LDV Tools all such traces are converted into the common
format [8]. There are 4 types of nodes which can be used in
traces in the common format:

 CALL – call of a specified function;
 RETURN – return from the last called but not yet

returned function;
 ASSUME – choosing a specified branch in conditional

clauses;
 BLOCK – contains assignments and some auxiliary

operators (like goto).

There is also information on a line number, on a source file
and formal arguments (for function calls) for each operation.
For example, the static verifier trace in the common format for
the program in Fig. 1:

8 “test.c” CALL : main()

10 “test.c” CALL 'n' : getnchar(-1)

3 “test.c” ASSUME : (n < 0)

4 “test.c” BLOCK : goto ERROR

Function call tree – a tree corresponding to function calls
in a static verifier trace. Hereafter we suppose that all function

35 of 181

calls in function call trees are ordered. It can be obtained by
removing ASSUME and BLOCK nodes from static verifier
trace.

LDV model functions – functions in rule specifications,
which contains the main logic of correctness rules [9].

Bug – a reason which causes a violation of a specified
correctness rule. For example, it is “lack of mutex release in
probe function”. Fixing of a bug is usually represented as a
patch.

Two or more static verifier traces are called equivalent if
they correspond to the same bug. In other words, for all
equivalent static verifier traces a reason of a correctness rule
violation is the same.

Therefore all static verifier traces can be divided into
equivalence classes. Each equivalence class contains only
equivalent static verifier traces, i.e. corresponding to the same
bug. After such dividing it will be necessary to manually
analyze only one static verifier trace from each equivalence
class. In this case only one static verifier trace for each bug will
be in the final report and their number can be reduced without
missing any bugs.

III. STATIC VERIFIER TRACE COMPARISON ALGORITHMS

In order to divide all static verifier traces into equivalence
classes we propose to use special algorithms for their
comparison. Ideally results of theses algorithms should satisfy
the definition of equivalent traces. But in practice it is often
impossible to automatically understand where is a reason of a
correctness rule violation in a static verifier trace.

Static verifier trace comparison algorithms should
somehow reduce the number of static verifier traces, but do not
remove traces that correspond to different bugs. They can take
into account specifics of Linux kernel modules and correctness
rules. For example, the main logic of correctness rules is in
LDV model functions.

All suggested below static verifier trace comparison
algorithms are not absolutely correct in terms of the given
definition but in practice it is expected that the number of
static verifier traces corresponding to different bugs, which
were called equivalent by an algorithm, to be minimal (or even
zero) because of specifics of Linux kernel modules and LDV
Tools rule specifications.

A. Function call tree comparison algorithm

The first algorithm is aimed to not consider BLOCKs and
ASSUMEs in static verifier traces while comparing these traces.
BLOCKs usually are used for assignments which can not lead
to the ERROR label unless they are inside a model function. If
ASSUME adds some new branch in a static verifier trace it will
be revealed in function calls in that branch if so. So only
CALLs and RETURNs from static verifier traces are considered
by this algorithm.

Function call tree comparison algorithm: static verifier
traces are considered equivalent if their function call trees are
equal.

For example, next two static verifier traces for the same
program will be equivalent:

CALL : function_1()

ASSUME : (x != 1)

BLOCK : x = 0;

CALL : function_2()

BLOCK : y = 1;

RETURN

and

CALL : function_1()

ASSUME : (x == 1)

CALL : function_2()

BLOCK : y = 1;

RETURN

This algorithm was implemented as a function in the
Reachability C Verifier component. The CPAchecker wrapper
gets all found static verifier traces and sends them to
Reachability C Verifier as before. But before adding them into
the final report Reachability C Verifier will call the function
implementing the given comparison algorithm, if the specific
option was specified in launching LDV Tools. This function
will filter received traces and will return only the first static
verifier trace from each equivalence class. After that, those
traces will be added into the final report.

Unfortunately this algorithm is far from optimal since there
is still a lot of equivalent static verifier traces from different
equivalence classes. In experiments 1998 static verifier traces
from 15 Linux kernel modules were divided into 1812
equivalence classes while the ideal result is 23.

In general case this algorithm can add static verifier traces,
that correspond to different bugs, into the same equivalence
class. For example, assignments and assumes outside function
calls can lead to different bugs (Fig. 3).

Fig. 3. Example of incorrect operation of the function call tree

comparison algorithm.

There are two different static verifier traces:

CALL : func

ASSUME : arg == 1

CALL : mutex_unlock

and

1: void func(int arg)

2: {

3: if (arg == 0)

4: mutex_lock(&mutex);

5: elsif (arg == 1)

6: ...// no function calls <- 1st bug

7: else

8: ...// no function calls <- 2nd bug

9: mutex_unlock(&mutex);

10: }

36 of 181

CALL : func

ASSUME : arg != 0

ASSUME : arg != 1

CALL : mutex_unlock

which will belong to the same equivalence class.

B. Model functions comparison algorithm

Since the main logic of rule specifications is in LDV model
functions, the previous algorithm was improved to shrink
function call trees so that each their leaf is a model function
call.

Model functions comparison algorithm: static verifier
traces are considered equivalent if they have equal model
function call trees, in which any subtree have a model function
call.

Thus in order to compare two static verifier traces with this
algorithm the following steps are required:

1) Find function call trees for both static verifier traces

(like in the previous algorithm).

2) Determine all model functions, that were called in a

module under analysis (all of them have specific comments

"LDV_COMMENT_MODEL_FUNCTION_DEFINITION").

3) Delete from both trees all subtrees, that does not have

any model functions calls at all.

4) Compare resulting model function trees.

For example, next two parts of static verifier traces will be
equivalent (functions f(), g() and h() do not have any calls of
model functions in their function call trees):

CALL : f()

RETURN

CALL : g()

CALL : h()

RETURN

CALL : ldv_func()

RETURN

RETURN

and

CALL : g()

CALL : ldv_func()

RETURN

RETURN

This algorithm was implemented as a function in
Reachability C Verifier component similar to the function call
tree comparison algorithm.

In practice this algorithm showed much better results –
1998 static verifier traces were divided into 482 equivalence
classes (Table 1). For some modules (like drivers/usb/misc/ftdi-
elan.ko) this algorithm made significant improvement – 947
static verifier traces were divided into 47 equivalence classes.
But there are still cases (like drivers/input/tablet/gtco.ko),
where this algorithm could not reduce the number of static
verifier traces at all.

C. Probe comparison algorithm.

In the previous algorithms only types of nodes from static
verifier traces and LDV model functions of specified rule
specifications were used. But also there are some specific
functions in Linux kernel modules, that also can be used in
order to compare static verifier traces. Examples, where the
previous algorithms failed, may provide information on what
can be helpful.

More detailed analysis revealed that probe functions of
modules (these functions initialize new attached devices for
instances) can be called any number of times. So if this
function has a bug, which will be revealed lately (e.g. memory
leak), it can be called any number of times before this bug
finally will be found (Fig. 4).

Fig. 4. One bug in the probe function can cause a lot of

different static verifier traces.

Thus we have a lot of different static verifier traces that
actually correspond to the same bug. This issue should be
resolved in order to reduce the number of equivalent static
verifier traces.

Probe comparison algorithm: static verifier traces are
considered equivalent if they are equivalent by the model
functions algorithm and all sequences of calls of a probe
function with the same name are considered as one function
call.

Theoretically there can be static verifier traces, that are not
equivalent, but were called equivalent by this algorithm. But in
practice, there were no such cases so far.

The main idea of this algorithm is the following. If there
was a bug in some function, there is no need to call that
function again and again, a first trace already corresponds to
that bug. That is why it is enough to call such the function only
once. And it turned out that probe functions were often the
reason of such problems.

In practice this algorithm showed the best results – 1998
static verifier traces were divided into 64 equivalence classes
(Table 1). For some modules (like drivers/input-/tablet/gtco.ko,
drivers/media/rc/imon.ko,
drivers/staging/media/lirc/lirc_sasem.ko etc.) the result was
ideal. Only in one case there was still many static verifier
traces – 35 for drivers/usb/misc/ftdi-elan.ko. Nevertheless it is
much more easy to analyze 64 static verifier traces than 482.

It is unlikely that this algorithm will be used in practice
together with the previous algorithms in the future, because it is
rather specific. But for a given research it has helped to
significantly reduce the number of equivalent static verifier
traces and has made possible to analyze them. This revealed
more common problems that can not be solved simply with
comparison algorithms.

1: probe(); // probe failed

2: // ... any number of failed probe calls

3: probe(); // probe failed

4: ldv_check_final_state(); // bug will be

found

37 of 181

IV. SEMI-AUTOMATED APPROACH

In order to find a better solution to minimize the number of
static verifier traces more thorough analysis of probe
comparison algorithm results was made.

A. Probe comparison algorithm results analysis.

For 9 modules eventually results are ideal (see Table 1). 2
modules among them contains more than one bug
(drivers/media/rc/imon.ko and drivers/media/rc/imon.ko). For
drivers/media/rc/imon.ko there were 3 equivalence classes.
There are 3 paths in function imon_probe that lead to missing
of put after get. For
drivers/net/wireless/ath/carl9170/carl9170.ko there were 7
equivalence classes which correspond to 7 different bugs (rcu
calls inside critical section).

For drivers/staging/media/as102/dvb-as102.ko additionally
found static verifier trace is actually a false alarm because of an
incorrect environment model (release was called without
probe). So this problem is beyond static verifier trace
comparison algorithms.

Module drivers/usb/misc/ftdi-elan.ko introduces a new
problem. There is one bug, that was revealed later in different
places which becomes different static verifiers traces. The
same problem is in module
drivers/media/usb/pvrusb2/pvrusb2.ko. This problem is the
general case of an issue with probe functions considered
earlier.

Module drivers/net/tun.ko contains 1 bug –
hlist_add_head_rcu call inside critical section. But it also
contains 4 different traces to the given bug. The same problem
(different paths to the bug) is in 2 other modules. In module
net/rxrpc/af-rxrpc.ko an additional path with lock-unlock was
found. In both cases bugs were the same. In module
drivers/net/wireless/rtl818x/rtl8187/rtl8187.ko a second trace
consists of a correct and incorrect calls of function probe.
Sometimes other paths to a bug can be helpful for
understanding and for fixing the bug, but we consider them
excessive.

B. Revealed problems.

The distribution of reasons of diversities from ideal results
on 15 Linux kernel modules for probe comparison algorithm is
presented in Fig. 5.

Fig. 5. The distribution of reasons of diversities from ideal

results on 15 Linux kernel modules.

Static verifier trace comparison algorithms do not aim to
deal with false alarms, so we are not going to consider this
problem in the given paper. But other problems ('one bug
revealed later in different places' and 'different paths to the
same bug') should be resolved. The probe algorithm has solved
the problem when one bug was revealed later in many places
for one special case. But in the general case this problem can
not be solved so easily.

For example, there is one bug in function probe (a lock is
acquired but not released), that could be revealed in different
places later (Fig. 6). As one can see there is no sequences of
calls of failing function probe – they were assigned to the same
equivalence class by the probe comparison algorithm. In
examples below lock acquires locks and unlock releases locks.

Fig. 6. 4 static verifier traces that correspond to the same bug.

At the same time there could be a situation with different
bugs and different static verifier traces. For example, there are
2 bugs (release of an unacquired lock) in 2 different functions
(Fig. 7).

Fig. 7. 2 static verifier traces that correspond to different bugs.

C. Suggested approach.

To solve the problems presented above we suggest a semi-
automated approach:

1) When all static verifier traces are added into the final

report after some comparison algorithm was applied (for

example, the probe comparison algorithm)

2) Then an expert marks up a some bug in LDV Analytics

Center.

3) After that a special script finds all static verifier traces,

that are equivalent to the trace corresponding to the bug, and

excludes them from further analysis.
This approach was implemented as a script for LDV Tools

Knowledge Base. The expert can mark up specified place in
the static verifier trace (for example, function with a bug) and

38 of 181

use this script. The script will automatically mark all static
verifier traces, that contains the same bug, among all traces
relevant a given module. After that the expert can see in LDV
Analytics Center which static verifier traces were considered to
have the same bug and ignore them.

This approach has helped to resolve both problems. For 4
modules (net/rxrpc/af-rxrpc.ko,
drivers/media/usb/pvrusb2/pvrusb2.ko,
drivers/net/wireless/rtl818x/rtl8187/rtl8187.ko and
drivers/net/tun.ko) only one bug was found as in ideal results
(Table 1). For module drivers/usb/misc/ftdi-elan.ko 31 static
verifier traces were marked as corresponding to the same bug,
one trace is appeared to be a false alarm because of an incorrect
environment model (same as above) and 3 traces are appeared
to be false alarm because of pointer analysis in CPAchecker
1.2, which was used for conducting experiments (this problem
was resolved in CPAchecker 1.3.4).

So, the number of static verifier traces was reduced to ideal
results (if not consider false alarms) by means of the probe
comparison algorithm and the semi-automated approach.

V. RESULTS

The results of all experiments are presented in Table 1. In
experiments LDV Tools rule specifications 39_7a

5
, 106_1a

6
,

132_1a
7
 and 147_1a

8
 were used.

Linux kernel module RS FE Tree MF Probe SAA Manual

39_7a 6 5 2 2 1 1

106_1a 3 3 2 2 1 1

132_1a 65 65 65 1 1 1

132_1a 17 17 2 1 1 1

132_1a 136 76 15 3 3 3

132_1a 4 4 4 1 1 1

132_1a 6 6 5 1 1 1

drivers/staging/media/as102/dvb-as102.ko 132_1a 2 2 2 2 2 1

132_1a 394 278 15 1 1 1

132_1a 234 234 234 1 1 1

drivers/net/wireless/rtl818x/rtl8187/rtl8187.ko 132_1a 2 2 2 2 1 1

132_1a 947 938 47 35 5 1

132_1a 154 154 76 1 1 1

147_1a 17 17 4 4 1 1

147_1a 11 11 7 7 7 7

Total – 15 modules 4 1998 1812 482 64 28 23

net/rxrpc/af-rxrpc.ko

drivers/media/usb/pvrusb2/pvrusb2.ko

drivers/input/tablet/gtco.ko

drivers/isdn/gigaset/bas_gigaset.ko

drivers/media/rc/imon.ko

drivers/staging/gdm724x/gdmulte.ko

drivers/staging/gdm72xx/gdmwm.ko

drivers/staging/media/lirc/lirc_imon.ko

drivers/staging/media/lirc/lirc_sasem.ko

drivers/usb/misc/ftdi-elan.ko

drivers/usb/wusbcore/wusb-cbaf.ko

drivers/net/tun.ko

drivers/net/wireless/ath/carl9170/carl9170.ko

Table 1. Summary table

(„RS‟ – rule specification, „FE‟ – first experiment,

„Tree‟ – function call tree comparison algorithm,

„MF‟ – model function comparison algorithm,

„Probe‟ – probe comparison algorithm,

„SAA‟ – semi-automated approach,

„Manual‟ – manual examination).

The suggested approach has helped to find 8 new bugs in
Linux kernel 3.12-rc1 modules drivers/media/rc/imon.ko and
drivers/media/rc/imon.ko.

5 http://forge.ispras.ru/issues/867

6 http://forge.ispras.ru/issues/2742

7 http://forge.ispras.ru/issues/3306

8 http://forge.ispras.ru/issues/3832

VI. CONCLUSION

The suggested approach provides means to reduce the

number of static verifier traces by dividing them into

equivalence classes. Proposed algorithms for static verifier

trace comparison show acceptable results and they allow to

reach ideal results with not big efforts of the experts. This

approach makes possible to analyze all bugs in a given Linux

kernel module against a specified rule specification found by

LDV Tools and CPAchecker static verifier.

The suggested approach should also be tested on known

false positives to make sure that it also works as expected. In

future this approach will be extended to check several rule

specifications at once, that is very promising area of research.

This will further reduce time for finding bugs in Linux kernel

modules.

The suggested approach can be applied in other areas

outside of Linux kernel modules and LDV Tools.

REFERENCES

[1] Corbet J., Kroah-Hartman G., McPherson A. Linux kernel development.
How Fast it is Going, Who is Doing It, What They are Doing, and Who
is Sponsoring It. http://go.linuxfoundation.org/who-writes-linux-2012,
2012.

[2] Beyer D. Petrenko A. Linux Driver Verification. In Proc. Leveraging
Applications of Formal Methods, Verification and Validation.
Applications and Case Studies, LNCS, vol. 7610, pp. 1-6, 2012. doi:
10.1007/s10009-007-0044-z.

[3] Chou A., Yang J., Chelf B., Hallem S., Engler D. An Empirical Study of
Operating System Errors. In Proc. 18th ACM Symposium on Operating
Systems Principles (SOSP), pp. 73-88, 2001. doi:
10.1145/502034.502042.

[4] Mutilin V.S., Novikov E.M., Strakh А.V., Khoroshilov А.V., Shved P.E.
Аrkhitektura Linux Driver Verification [Linux Driver Verification
Architecture]. Trudy ISP RАN [The Proceedings of ISP RAS], vol. 20,
pp. 163-187, 2011 (in Russian).

[5] Bugs found in Linux kernel modules with help of LDV Tools.
http://linuxtesting.org/results/ldv.

[6] Khoroshilov A., Mutilin V., Novikov E., Shved P., Strakh A. Towards
an Open Framework for C Verification Tools Benchmarking. In Proc.
Perspectives of Systems Informatics (PSI), LNCS, vol 7162, pp. 82-91,
2012. doi: 10.1007/978-3-642-29709-0_17.

[7] Beyer D., Keremoglu M.E. CPAchecker: A Tool for Configurable
Software Verification. In Proc. Computer Aided Verification (CAV),
LNCS, vol. 6806, pp. 184–190, 2011. 10.1007/978-3-642-22110-1_16.

[8] Novikov E.M. Uproshhenie analiza trass oshibok instrumentov
staticheskogo analiza koda. [Simplification of static verifier traces
analysis]. АPSPI, 2011. (in Russian).

[9] Novikov E.M. Razvitie metoda kontraktnykh spetsifikatsij dlya
verifikatsii modulej yadra operatsionnoj sistemy Linux [Development of
a contract specification method for the verification of Linux kernel
modules]. Dissertatsiya na soiskanie uchenoj stepeni k.f.-m.n. [PhD
thesis], 2013 (in Russian).

39 of 181

Tools Support for Linux Kernel Deductive
Verification Workflow

Denis Efremov
Institute for System Programming of

Russian Academy of Sciences
Moscow, Russia

efremov@ispras.ru

Nikita Komarov
Institute for System Programming of

Russian Academy of Sciences
Moscow, Russia

nkomarov@ispras.ru

Abstract—Errors in critically important systems may
become very expensive. If such systems must provide
confidentiality when working with some critically im-
portant data such as classified information or private
know-how, an error cost may become difficult to eval-
uate. For these systems, formal verification methods
should be used to prove they are error-free. In the
paper, a case of formal verification of such system –
a Linux kernel security module – is considered; the
chosen toolset, the verification process workflow are
reviewed, along with some auxiliary tools required for
this process and developed by the authors.

I. Introduction
With the growth of software systems complexity, new

requirements for their correctness and robustness emerge.
Errors in critically important systems may become very
expensive. For such systems, just a thorough compre-
hensive testing with maximum possible coverage is not
enough; the only way to ensure the system is error-free
is formal verification – mathematical proving of system
correctness and compliance with requirements.

One of the formal verification bases is Hoare logic [1].
Its central part is so-called, Hoare triple, describing how
an execution of code fragment changes the computation
state. Hoare triple looks this way:

{P}C{Q}

where P and Q are predicates and C is a command. P
is called precondition, Q is called postcondition. If the
precondition is true, then running the command makes
postcondition true too. So, the program is divided into
such fragments, and for each of them there is some
precondition and some postcondition. It can be proven
that, if the precondition holds, after the execution of this
code fragment, the postcondition holds too. Examining the
whole program in such a way, it can be proven that, if
the precondition for the whole program holds, after its
execution, the postcondition for the whole program holds.
Robert W. Floyd has also developed a similar to Hoare
logic method at the same time, applied to flowcharts [2].

The seL4 microkernel [3] developers had a task of
performing the formal, machine-checked verification of the
seL4 microkernel. SeL4 is a microkernel of L4 family, and

when it was developed, one of the main requirements for it
were highest security and reliability possible. SeL4 is rela-
tively small (about 8700 lines of code in C language, plus
about 600 lines of code in assembly language). Therefore
formal approach to its verification could have been used,
that allowed to demonstrate design correctness and prove
C language implementation correctness.

SeL4 developers’ approach to kernel development pro-
cess is remarkable. As a first step, abstract kernel spec-
ification is developed. Based on it, high-level kernel pro-
totype is developed, using a subset of Haskell functional
language. This prototype is automatically translated into
a executable specifications, and then compliance between
formal and executable specifications is proven. Executable
specification uses Isabelle/HOL prover language, which
the developers have chosen for kernel correctness proof.
As the next step the prototype was running on hardware
simulator. This allows to evaluate kernel’s design correct-
ness.

Then, based on the aforementioned Haskell executable
prototype, final kernel implementation is developed. C
language was used. Kernel developers don’t use Haskell
code itself, because it would require a Haskell runtime
environment for kernel to function. And this runtime
environment is bigger than C kernel implementation. Also,
because of using the low-level programming language,
some additional optimizations and performance tweaks
can be applied. After the development of the final kernel
implementation, its correctness and compliance with the
executable specification are proven.

There are, of course, some limitations to this approach.
In particular, correctness of the parts of the kernel imple-
mented in assembly language, which include some impor-
tant parts such as MMU, is not proven. Also, correctness
of compiler, boot loader and hardware is not proven either.

From some point of view, we are working on a quite
similar task now. Linux kernel security module based on
formal security model [4] and using standard Linux kernel
security interfaces (LSM, Linux Security Modules) [5] with
some extensions has been developed. This module is a
part of Astra Linux Special Edition distribution, which is
security-enabled and certified for working with confidential

40 of 181

data. The size of security module’s source code is about
4500 lines. The challenge is that the module was in an
active development state at the time when its verification
has started. The code wasn’t stabilized and was a subject
to changes, including not only bugs fixing, but also adding
some new features.

Because of the task’s importance, our team have de-
cided to use formal verification methods. So, the task
is as follows: to formally prove the correctness of Linux
kernel module implementation in C language, and to prove
the compliance of this implementation with the abstract
security model. The correctness of security model has
been verified separately. Also the multi-threaded nature of
Linux kernel environment should be taken into account. In
particular, this means to proof the absence of simultaneous
memory access problems such as race conditions.

The paper is organized as follows: in section II brief
description of instruments used for deductive verification
process is given; in section III some features of the source
code of target module are described; in section IV veri-
fication process workflow is described; in section V some
additional tools which are developed by the authors and
useful in verification process are described.

II. Toolset
There are a number of deductive software verification

tools. All of them are used in a similar way: functions
are annotated with pre- and postconditions; each loop is
annotated with invariant that has to be preserved on each
iteration; one can also specify some lemmas that allow
tools to prove complicated statements. For functions that
aren’t proven, but are used in the code under analysis,
it is necessary to write pre- and postconditions only.
Developing specifications for macros is usually impossible
due to the fact that the tools work with the code already
preprocessed. Let’s consider some of such tools.

A. Verifast
Verifast [6] is a tool for verification of single- and multi-

threaded programs written in C or Java. This tool has
been developed in the Belgian Katholieke Universiteit
Leuven. It uses a modified Hoare logic, function annota-
tions are written in its own original language. To prove
the specification conditions correctness, Z3 SMT solver is
used. There is also an IDE with graphical user interface.
Unfortunately, Verifast is not free software. Its source code
is not open, which might cause some problems to the point
of inability to use the tool in certain situations, given the
task complexity and non-triviality.

B. Boogie
Boogie [7] is an intermediate language (formerly called

BoogiePL) and a tool for verification of programs devel-
oped by Microsoft Research. It is language-independent,
for now there is a translation support available for lan-
guages Spec#, C, Dafny, Eiffel and Java bytecode with

BML. The tool supports verification of multithreaded
programs [8]. Boogie also isn’t free, which might cause
problems similar to those described in paragraph II-A.

C. Frama-C + Why + Jessie
Jessie [16] is designed for deductive program verifica-

tion. It is a plugin for Frama-C, a platform for static
analysis of programs written in C language. Frama-C is
developed jointly by the two French organizations: CEA-
LIST (Software Reliability Laboratory) and INRIA-Saclay
(ProVal team, common with LRI-CNRS and Université
Paris-Sud 11). Jessie is written in OCaml language. Most
importantly, it is a free software, which allows one to fix
quickly its shortcomings revealed during the tool usage.
Specifications for Jessie are written in ACSL language [10].
ACSL gives the ability to develop specifications of different
levels, from more abstract to more specific. Jessie uses the
Why platform [9] for the purpose of verification conditions
translation to the format required by the specific SMT
solver. It supports a wide variety of output formats,
including Coq, PVS, Isabelle/HOL, Simplify, Alt-Ergo,
CVC3, CVC4, Z3 etc. To solve the problem, this particular
toolset has been chosen.

Unfortunately, just the formal verification tool isn’t
enough to solve the kernel module verification problem.
First of all, the tools lack some features needed to verificate
the module; for example, Jessie didn’t support function
pointers and variable-arguments functions at the time of
project start. Secondly, some other auxiliary tools are
needed to simplify the task and to establish a more efficient
collaboration between the specifications developers. For
example, it was found out that time required for Jessie to
start may become unacceptably long when working with
large source code chunks such as the security module with
all the Linux kernel headers it uses.

III. Target module source code analysis

Initially, the security module source code has been devel-
oped without any clear plans of its subsequent verification,
or even the conception of how this can be done. Therefore,
the code hasn’t been limited to any C language subset. The
module has been developed based on the optimal perfor-
mance, not easiness of verifiability. Thus the code uses
some GCC extensions of C standard actively. Moreover,
because the security module is based on the Linux kernel
code base, some of the code design pattern and language
extensions are imposed and not always possible to give up.

So, first of all, the security module source code has
been reviewed in order to identify all the features that
are impossible or very difficult to work with using the
verification tools. This often includes all the extensions
of the C language standard, and also a well-defined set of
language features [11]. This language features set may be
implied by the specific verification tools, but often they
are just restrictions on the possibility to prove the code

41 of 181

compliance with the specifications. Some coding standards
include all of these limitations in advance [13] [12].

All the identified features were analyzed in respect to
the possibility to avoid any usage of them in each case.
Unfortunately, it was not always possible because the
security module code is based on the Linux kernel code.
And if some of these features are found in the kernel header
files, the denial can be impossible at all. (It should be
noted that verification tools often just cannot parse some
unsupported language features and stop working when
encounter them.) In such cases, decisions were made to
add limited support of these features to verification tools.
In particular, such decisions have been made on function
pointers, variable-argument functions, asm goto, Bool
type support etc.

The results of this analysis of the security module source
code were reported to its developers, with the emphasis
on the parts that cannot be verified and need rewriting.
And the parts that need to be simplified, since their
proving is an almost impossible task, as well as some
recommendations on coding style.

Since the verification is performed not for the entire
module, but only for the part of it that is described by the
mathematical model [4], some patches have been added
to the project source code, introducing the preprocessor
directives to make the module conditionally compile. Ini-
tially the module source code has been split into several
subsystems. But no clear distinction between the part
that is based on formal model and the other parts that
provide additional functionality (such as logging or system
calls audit subsystems) was made. These patches make
the module source code easier to work with both for the
verification tools (they work with the preprocessed source
code) and the specifications developer. It should be also
noted that the deductive verification tools are designed
to work with code size of about tens of thousands of lines,
and any reduction of this code base is significant for them.
The security module consists of about 10 thousand lines
of code, but only half of them correspond to the part that
is based on formal model and requires verification.

As a next step, the authors analyzed the security module
source code from the verification works plan development
point of view. As the specifications are just pre- and
post-conditions for functions, the module functions were
analyzed with respect to the frequency of their use, their
call dependency, kernel functions used by them. Although
the kernel functions are not verified, preconditions and
postconditions still have to be developed for them.

Macros were also investigated. Here it is necessary to
provide some additional clarification. Verification tools
work with the preprocessed code only. Therefore, writing
specifications for macros is impossible. However, macros
can be used in the bodies of specifications themselves, if
they do not violate their syntax. For example, such macros
are those replaced by the constants or references to the
structures fields. All the macros in project were classified

into those that can be used in the specifications bodies and
those that can’t. For the second type, a recommendation
was given to the developers to rewrite them as inline
functions.

To collect the aforementioned information on the func-
tions and macros of kernel and security module special
software was developed. Its detailed description is given
in the section V.

Function code can not be proven to comply to its
specifications until all the functions it calls are verified
too. Accordingly, the process of code verification starts
from the bottom up to the top of the call graph. We made
a map (Figure 1) of the module source code based on
the module functions call graph. A special program was
developed for this, a detailed description of which is given
in the section V.

The map shows the amount of work to be done, provides
an opportunity to develop the well-founded verification
plan and helps to coordinate the people involved in ver-
ification process. In addition, it has immediately allowed
to identify several errors in the conditional compilation
directives and to find some sections of code that are most
difficult to verify.

Based on the data that we got after the analysis of
the security module source code, all the module functions
were assigned one of 5 priority levels for specification.
These levels were developed based on the current and
planned language features support by instruments, so
that the functions that use some unsupported features
would be verified later, with respect to functionality and
safety significance of individual sections of code, effort and
functions dependencies.

IV. Verification process workflow
The process of kernel module source code deductive

verification is as follows. As a first step, the specification
for the function is developed. Secondly, the developer
attempts to prove correctness of this function. Then some
errors may be found in the specification and/or the source
code. After that, the specification and the source code
are reworked to the point when the specification can be
proven. It should be also noted that the specification
development, its editing and the proof are carried out in
a different programs.

Currently, the verification tools can not cope with the
full source code of the module (about 4500 lines of code)
along with all the required kernel header files (about 70000
lines of code), because of both their size and the presence
of number of language features that are unsupported for
now. We can state with certainty that in the future the
unsupported language features problem will be solved.
However, launching the tools on the full source code will
still take considerable time, and it greatly complicates
the specifications proof process, because their constant
refinement with external tools and, accordingly, frequent
restarts of proof tools.

42 of 181

To reduce these difficulties, the authors have developed
the following workflow of the verification process:

1) Fetching all the dependencies of the module/kernel
code for the function to be proven. This means
collecting all the data necessary to create a separate
object file, with the inclusion of definitions of all
functions necessary, not just their declarations.

2) Developing and proving the specifications. This work
is carried out with the code obtained on the step 1.

3) Transferring the specifications back to the security
module source code after they have been proven.

4) A full re-proof, carried out on the whole security
module source code. This, for example, is needed if
the specification for one of the functions fetched on
the first step has changed, so that the other functions
in the security module can still be proven. Also, this
is needed to make sure that the preconditions for the
proven functions are held at the points of their calls.

Previously, all the work was conducted manually. Later,
some instruments have been developed to perform the first
and the third steps of the workflow. The last step of the
workflow hasn’t been executed yet, because the verification
tools are now being adapted to run on the full security
module source code.

V. Tools support
A. A tool for source code map building

There is a number of tools that allow a developer to
simplify source code navigation. Some of these tools, such
as doxygen [15] and cscope [14], are also able to build call
graphs. However, in the case of our project, we are faced
with the fact that these tools don’t work correctly with the
source code of the kernel module, because it’s a part of a
bigger project. It is impossible to build a call graph con-
taining only module functions, but not containing kernel
functions, with them. The whole graph including kernel
functions would further complicate the picture, because
the number of nodes and edges in this graph would prevent
it to be displayed with clarity. Furthermore, these tools are
not able to display the entire call graph at once, only in
parts.

Because of the aformentioned tools weaknesses, it was
decided to develop a software for the construction of
function call graphs for Linux kernel modules. You can
see the graphical result of its work on Figure 1.

From the perspective of program algorithm, it may be
noted that the program works with preprocessed source
code. The first step is building an index of all the functions
in the module source code. The second is the analysis of
indexed functions names occurrence in functions bodies
and the constructing of the call graph. The third is setting
some additional attributes to graph vertices (such as
colors marking their belonging to the priority queues). The
fourth stage is the output of the built graph in the DOT
format. To build a graphical representation of the graph,

dot program from the graphviz package [17] is used. The
developed program imposes a restriction of the function
name uniqueness in the source code.

B. A tool to gather the statistics of Linux kernel functions
and macros usage

The second tool, that we use to simplify the coordi-
nation of verification efforts, project planning and man-
agement, is a mean for tracking the kernel functions
and macros used by security module. These dependencies
cannot be displayed on the map, as there are a number of
them and their display only decrease the map’s clearness.

Because the task is quite unusual, our team failed to
find the software which provides a turnkey solution. Thus
another software has been developed.

The software works with an unpreprocessed source code
of the kernel module. It scans the entire source code, that
falls under a template of function call. Then C language
keywords, the security module functions and macros are
removed from the collected data. The list of functions that
kernel exports is created by the kernel’s build system.
The functions that are not in the kernel’s export list,
but remain in the data after filtering, are considered as
static inline functions and are taken into account along
with the others. Kernel’s macros list is created using the
C preprocessor’s ability to dump all the macros definitions
that it encounters during its operation. The software’s final
output is a table of kernel functions and macros ordered
by the frequency of their calls. Also, the functions that
already have a specification developed are labeled in this
table.

The first two tools considered, one for working with
the module source code structure and another for its
external dependencies analysis, have been created as aids
for the verification process. The need to create them arises
from the fact that security module’s source code isn’t
stabilized yet and is under development. This development
also includes regular adaptation to the new Linux kernel
releases. The tools mentioned above allow the developers
to track and observe these changes, and to adapt the
already developed specifications in accordance with them.

C. Slicer
During the specifications development, it’s often needed

to review a large amount of code at once. Constant switch-
ing between different files creates a distraction for a specifi-
cations developer. However, a function, its code and data
dependencies are not always localized and located close
to each other. Additionally, verification tools performance
depend dramatically on the amount of code they are run
on, independently of whether there are specifications for
this code and even whether it’s really in use.

These considerations has encouraged the authors to
use a tool that would extract all the code and data
dependencies for the given function from both the security
module source code and the kernel header files. A study

43 of 181

CRED_SEC

I_SEC

_pdpl_raw_size

pdp_roles_sizecaps_cpy

di_lbl_init

i_lbl_init_from_tsk parsec_di_lbl_from_xattr

pdpl_get

get_task_by_pid

put_task

get_task_cred_parsec

i_getxattrparsec_task_lbl_get

inode_alloc_security

parsec_alloc_inode_security

parsec_capable

parsec_caps_task_get

parsec_current_permission

parsec_task_lbl_get_caps pdp_permission

pdpl_put

pdpl_get_from_raw

parsec_hook_removexattr

parsec_setxattr_perm

parsec_i_get_lbl

parsec_inode_permission

pdpl_duppdpl_cpy_2_user

pdpl_get_new

sys_getlbl

Figure 1. Map sample

of existing open source C code slicing tools such as [18]
and [19] has revealed that these instruments are not useful
when working with the Linux kernel source code because
of some non-standard extensions present in it. However, it
isn’t required for the task to analyze the possible paths of
the program execution. The main requirement is to keep
the original functions code structure, because its change
would significantly complicate the reverse specifications
transfer to the module source code.

The authors have developed a software that works
with an unpreprocessed code without performing its full
parsing. It extracts macros, structures, functions, typedefs
etc. definitions and declarations based on some heuristics.
It builds a global graph of these objects then by searching
each object’s identifier in the code of the other objects.
After the graph cycle resolution procedure, the code corre-
sponding to the graph vertices that are predecessors of the
particular function is output in sorted order. The result is
just one C source file with functions and several C header
files: one for kernel data, one for module data, and one for
the kernel specifications library. Information contained in
these files is enough for the compiler to build an object
file.

Despite the fact that the software is based on a number
of heuristics and the output files may include redundant
data in some cases (for example, if a function and a
structure have the same name, they would be output,
regardless of whether they are both used in the code),
the software lets one to get an adequate result within a
reasonable time.

D. A tool for the specifications transport
Code specifications are written as simple C comments

before function declarations or definitions. After the func-
tion specification has been developed, it is required to
transport it back to the full kernel module source code.
This allows other developers to use this specification for
their specifications development process.

We have created a software that transports the specifi-
cations from one code version to another. The software

processes the two source code collections with function
granularity, so its work doesn’t depend on which file
is which part of code located in. In the case of some
specifications are already present in the old code, they
are replaced with the new ones. The software recognizes
the differences between code versions caused by the con-
ditional compilation directives in the first version of the
code, and automatically takes into account the absence of
this code part in the second version. In the case when there
are some other changes in the second part of the code, they
are automatically transferred to the first. Additionally, the
patch is created in this case, which can then be sent to
the security module developers. When there is a conflict
caused by the too many differences between code versions,
which the program cannot resolve by itself, it starts an
external code merge software (meld, kdiff3) to resolve
them by hand.

This program is used by the authors not only as part of
the verification process workflow, but also when getting a
new release of the security module source code.

VI. Conclusion
The paper considers the organization of Linux module

deductive verification process. Verification is performed
in the conditions of continuing developing process of the
module’s code and in the absence of requirements to code
written in a formal way.

During the verification activities the authors had to face
restrictions of deductive verification tools and an inability
to completely follow certain standards of safe coding.

The success of the code verification depends on clear
organization and coordination of work. The authors have
developed an approach that allows to mitigate a short-
comings of deductive verification tools and facilitate the
development of specifications from the standpoint of ease
of reading and analyzing the structure of the code by the
developer.

Tool support necessity of worked out verification process
workflow and the absence of turnkey solutions led to the
development of additional tools. These tools have been

44 of 181

used successfully by the authors and bring the results in
the form of verification problem solving approach system-
atization and workflow stabilization.

References
[1] C. A. R. Hoare, An Axiomatic Basis for Computer Programming,

Communications of the ACM, Vol. 12, Num. 10, October 1969.
[2] Robert W. Floyd, Assigning Meanings to Programs Proceedings

of Symposia in Applied Mathematics, Vol. 19, 1967.
[3] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andron-

ick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engel-
hardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch, Simon Winwood, seL4: Formal Verification of an OS
Kernel, Proceedings of the 22nd ACM Symposium on Operating
Systems Principles, 2009.

[4] Pyotr Devyanin, The Administration of System in Course of
Mandate Entity-Role DP Access and Data Flow Control Model
within Linux Family OS, Mathematical Basics of Computer Se-
curity, Issue 4 (22) 2013, in Russian.

[5] Chris Wright, Crispin Cowan, James Morris, Stephen Smalley,
Greg Kroah-Hartman, Linux Security Modules: General Security
Support for the Linux Kernel, USENIX Security 2002.

[6] Bart Jacobs, Frank Piessens, The VeriFast Program Verifier,
Technical Report CW-520, Department of Computer Science,
Katholieke Universiteit Leuven, Belgium, August 2008.

[7] K. Rustan, M. Leino, This is Boogie 2, Microsoft Research,
Redmond, WA, USA, June 2008.

[8] Shuvendu K. Lahiri, Shaz Qadeer, Zvonimir Rakamari, Static and
Precise Detection of Concurrency Errors in Systems Code Using
SMT Solvers, Computer Aided Verification ’09, February 2009.

[9] Francois Bobot, Jean-Christophe Filliatre, Claude Marche, An-
drei Paskevich, Why3: Shepherd Your Herd of Provers, Boogie
2011: First International Workshop on Intermediate Verification
Languages, August 2011.

[10] ACSL: ANSI/ISO C Specification Language CEA LIST and
INRIA, 2009-2013.

[11] Gerard J. Holzmann, The Power of Ten – Rules for Developing
Safety Critical Code, IEEE Computer, June 2006, pp. 93-95.

[12] PL Institutional Coding Standard for the C Programming Lan-
guage, Laboratory for Reliable Software (LaRS) at the Jet
Propulsion Laboratory, California Institute of Technology, March
2009.

[13] Guidelines for the use of the C language in critical systems, Mo-
tor Industry Software Reliability Association (MISRA), MISRA-
C: 2012, March 2013.

[14] Cscope – a developer’s tool for browsing source code,
http://cscope.sourceforge.net/

[15] Doxygen – generate documentation from source code,
http://www.stack.nl/ dimitri/doxygen/

[16] Krakatoa and Jessie: verification tools for Java and C programs
http://krakatoa.lri.fr/

[17] Emden R. Gansner and Stephen C. North, An open graph
visualization system and its applications to software engineering,
Software – Practice and Experience, 2000, vol. 30, num. 11, pp.
1203–1233

[18] Frama-C - Slicing plug-in, http://frama-c.com/slicing.html
[19] Wisconsin Program, Slicing Tool 1.1 Reference Manual,

http://www.cs.wisc.edu/wpis/slicing tool/slicing-manual.ps

45 of 181

Dynamically Allocated Memory Verification in
Object-Oriented Programs using Prolog

René Haberland Sergey Ivanovskiy
Department of Software Engineering and Computer Applications

Saint Petersburg Electrotechnical University ”LETI”
Saint Petersburg, Russia

Abstract—A Prolog-based framework for fully automated ver-
ification currently under development for heap-based object-
oriented data is introduced. Dynamically allocated issues are
discussed, recent approaches and criteria are analysed. The
architecture and its components are introduced by example.
Finally, propositions to further and related work are given.

I. INTRODUCTION

The main interest of this work is dedicated to the correctness
of a program according to its memory consumption behaviour.
It may, however, also be extended to performance consider-
ations based on results coming from the dynamic memory
verification, particularly but not only during the alias analysis
[17], [3] or during the garbage collection phase, for instance.
A Prolog-based verifier is suggested.

The structure of this paper is to give a short overview
on current approaches in section 2. Section 3 presents the
languages being used as programming and specification
languages, and introduces the overall architecture. The
architecture is designed to be open. Currently the project is
under progress, the final section gives an outlook on related
and future work.

[9] discusses why the aliasing issue has still not been
solved yet. [16] provides a more detailed mark on the issues
related to aliasing issues in a commercial Unix-environment.
Despite its age [16] and its partial closeness because of the
commercial background, it is still often cited in very recent
publications and numerous technical reports on the same
topic, and in open-source projects, and surprisingly enough
most of the issues found initially are still there almost with
no changes. One key aspect that makes aliasing such a hard
issue is that its local changes in a program listing may effect
other regions unexpectedly – but at the same time this is its
strength, since no additional copying is required. [16] had
particularly analysed previously fixed bugs for a long-term
period over last releases and found out - according to the bug
distribution over time - that undesired memory behaviour is
one of the most expensive bug reasons in terms of time and
efforts to locate and fix.

Object-orientation [1], based on concepts such as
encapsulation, polymorphism and inheritance, has been
one of the most successful and widely adapted programming
paradigms by now for a long time in industry, hence its

combination with pointer structures remains a relevant
research task up to date [14].

Prolog [27] is considered for program verification
for several reasons. First, it is a logical and declarative
programming language which offers a high abstraction in
writing Horn-clauses as they correspond with defined axioms
and rules. A proof tree occasionally insists on a back-tracking
strategy, which Prolog supports for free as one of its core-
language features. The hope is Prolog’s generate-and-test
goal strategy [27] may be found useful in simplifying and
abstracting a proof significantly. Second, programs and
internal states can be represented as terms. Terms can be
easily processed in Prolog. The hope is, abduction and general
symbolic term evaluation will allow generating lemmas more
efficiently and make the reasoning terminate and terminate
earlier. As a previous successful verification attempt, [12]
shall be noted. The authors solved a fairly hard problem from
mathematical numerics using Prolog elegantly and straight.
Since proofs are rule-centric, a proof contradiction will
eventually help generating counter-examples easily by simply
matching terms from the memory and from a rule or axiom.

Example1 – memory leak

MyClass object1=new MyClass();
...
object1=new MyClass();

Example2 — unachievable memory

// object1 has been created
MyClass object2=new MyClass();
object2.ref=object1;

Example3 – invalid memory access

// object1.ref==null
value = (object1.ref).attribute1;

Example4 – data structure with cycle

object1.next=object1;
...
root=object1;
while(root.next!=null){
printf(%d, object.data);

46 of 181

root=root.next;
}

Example 1 demonstrates the case where a fresh mem-
ory region is allocated, and without freeing it, allocates it
again, which may cause the previously created region becom-
ing unachievable. The second example demonstrates where
object2 is linked to an occupied object1, but object2
itself remains unused. A very common problem in practice
might be the third example, when an object reference is not set,
but later referenced causing either an abnormal runtime failure
or continues execution, which might be even worse in realistic
scenarios because the further program execution becomes
totally unpredictable with invalid value settings. The forth
example might not immediately be seen as a problem, but if,
for whatever reason, there is a cycle in root the program will
not terminate. Apart from direct consequences like crashes or
non-termination, one more side effect is there are spontaneous
allocations/deallocations taking place on runtime which may
eventually become a performance bottleneck.

II. CURRENT APPROACHES

One approach to verify correctness of dynamic memory is
to get the program run and to record all memory cells that
will be referenced and allocated/deallocated. This is what
the valgrind tool [29] does. This open-source tool requires
on compilation guarding memory-checking code is injected
to the assembly code. Not only that the enhanced program
runs with huge delays, the general problem underneath this
approach as well as SAFECode [25], which on runtime
checks whether programmer-inserted assertions are fulfilled,
is that only a small subset of all possible execution paths can
be tested and that it requires additional code is inserted. For
this reason, only static approaches are considered further that
analyse the incoming program listing prior to running it.

In order to address the problems mentioned in the introduc-
tion part, several approaches exist: (i) Shape-based Analysis
[26], [22], (ii) Separating heap. For sake of completeness a
heap-free alternative proposed by (iii) Tufte and Talpin [28]
and Meyer [15] shall be mentioned, who both appeal to a
stack-based approach, if any possible, to avoid expensive heap
allocation and deallocation operations. Automatic handling of
stack-based locations is essential for both, where the stack
sizes are determined during compilation. Thus, control passing
which happens during a call will allow to allocate objects
almost for free, since a stack frame needs to be created in
any case, and no more expensive heap operations are needed
in fact, for instance garbage collection. The disadvantage of
(iii) is, however, there is often a platform-dependent restriction
on stack sizes and number of entries, so in practise there are
tough frame restrictions, e.g. a maximum offset, which should
not be exceeded without getting a severe performance penalty
on concrete target architectures at the same time. Meyer [15]
asks to turn garbage collection steadily on during program
execution. This implies for efficient execution runtime critical

parts will not trigger dynamic memory operations and those
operations are opted out as efficiently as it can possibly be
done.

Approaches (i) and (ii) are similar, both describe the mem-
ory state, although (i) describes the entire dynamic heap as an
entire graph, where edges are region dependencies and vertices
are locations. The problem with (i) is locality, because if a
particular function is called, the entire graph has to be specified
before, after and during the call, where approach (ii) allows
to hide all non-affected heaps (framed heaps) this is what is
meant by locality principle in terms of Separation Logic [24].
The most important concept behind Separation Logic [24],
[23], [6] is the specification of two non-interleaving memory
regions. Heaps might be composed, and programs may change
heaps. If two heaps are connected, then the dependency has to
be added explicitly to a current heap’s specification. If a heap
depends on some other heap data, then this is called aliasing
(or big brother property as found in [15]).

The first implementation which makes use of Separation
Logic is Smallfoot [5], [6]. In order to extend deductive
reasoning capabilities, an abductive approach was proposed,
called bi-abduction [7], for Separation Logic, which is a
constructive guess of unchanged heaps by a greedy symbolic
table-construction algorithm that chooses bigger rules first.
The extension of Smallfoot is called SpaceInvader.

Hurlin extends in [10] the classic Separation Logic proposed
in [23] by classes for a Java-like language. He suggests a heap
factorization, an attempt to normalise heaps in order to remove
redundant heap specification fragments which are considered
as noise, even if the main goal of his thesis is focused on multi-
threaded applications. He re-uses the same concept of abstract
predicates as it was introduced by [20], [8], and generates
unchanged parts during deduction with a parallel algorithm.

Parkinson [20] introduces a Java-like language with object-
orientated features. Nevertheless, many problems are not being
addressed yet: abstraction mismatch on encapsulation and in-
heritance, particularly, the problem of expanding specifications
in subclasses seems to be a real hinder in simple and elegant
specifications. The most essential contribution of [20] is the in-
troduction of abstract predicates, although there are currently
tough restrictions concerning expressibility. Super calls, static
fields, reflection, inner classes and quantified predicates, for
example, are currently missing language features.

Verifast [11] is another forward verifier based on Separation
Logic. In comparison to all previously introduced verifiers
which do very similar operations on the heap, all introduced
conventions per tool differ strongly, and it does not
automatically process loop invariants nor predicates - here
it depends entirely on user-interaction or requires explicit
injections within specification annotations inside the program
which are used as internal reorganisation commands.

In [2] objects as class-instances are treated as records,
typing and verification rules are introduced and a soundness
proof is provided. Problems which neither in [2] nor [1] are
addressed are that objects may have references to other objects

47 of 181

and that a lack in abstraction causes a dramatic increase in
specification length which makes it in practice impossible
to read and understand specification to a full extend. The
memory state is specified by temporal predicates and a result-
register for the previous computation step’s result. There is no
general recursive definition allowed, although [13] attempts to
relax this hard restriction by an algebraic ideal-construction.
Still there are hard restrictions, such as no aliasing nor late
binding at all, and object-records only which even may become
unsound for eager type evaluation.

III. ARCHITECTURE AND DESIGN

Before going on with more details on the architecture, the
prerequisites on the architecture shall be summarised. The
proposed architecture may be considered for teaching purposes
in the future:

1) Automatic proof. The program and its annotations shall
be sufficient in order to get the verification run. If there
is an endless cycle in the proof however, there shall be
no mandatory recognition, since termination is beyond
the main focus of this work.

2) Openness. The provided architecture shall be open for
extensions and variability, and the attached models shall
be exportable, so it might eventually be passed through
to another arbitrary model transformer, if needed.

3) Extensibility. The target language shall be fixed but in-
terchangeable with an imperative programming language
in the front-end. The rules and user-defined predicates
shall be designed amendable, so the user may want to
add rules directly to the rule set.

4) Plausibility: There shall be configurable visualisation
facilities, so the incoming annotated program may be
retrospected on each stage of the verification process.
If, for instance, a proof fails or stops abruptly the user
would perhaps like to see the proof tree and a counter-
example.

In figure 1 the architecture of the Prolog-based verification
system is shown. The input is a C-program with object-
orientated extension that is annotated with assertions spec-
ifying the dynamic memory. The shortened syntax can be
described by the Extended Backus-Naur form in figure 2.
Not mentioned definitions as actual parameters, blocks, class
methods, variable declarations have been skipped here for the
sake of readability and follow mostly ANSI C. For readability
purposes the expression sub-grammar has not been expanded
according to its precedence hierarchy nor for optional as-
sertions. new and delete reserve/free new chunks in the
heap associated with previously defined locations. The access
to heap memory is performed by [<location>], where
<location> denotes either a field variable, another object’s
field or a either of those with an offset in order specify non-
aligned memory regions, for instance. The rule <funcall>
denotes the syntax for a method call, which may have a object
specifier optionally and a method name which is required to
exist with the matching total number and types of parameters
being passed as expressions.

Fig. 1. Verification architecture for Prolog-based reasoning on dynamic
memory

C-programs are annotated by assertions which are injected
as usual Prolog terms into blocks. Blocks are encoded as lists
of statement-terms. Assertions are inductively defined and can
be found in figure 3. Keep in mind the expression might
request object references and α(~p) assumes predicate named
α was defined prior to using it, and ~p contains as many actual
parameters as the arity of predicate α require there are.

〈prog〉 ::= 〈class〉 〈id〉 ’{’ { 〈field〉 | 〈method〉 } ’}’

〈location 1〉 ::= 〈id〉 | 〈id〉 ’.’ 〈id〉 | ’this’ ’.’ 〈id〉

〈location〉 ::= 〈location 1〉 [(’+’ | ’-’) 〈int〉]

〈stmt〉 ::= 〈lhs〉 ’=’ { 〈lhs〉 ’=’ } 〈expr〉
| ’if’ 〈cond〉 〈block〉 [’else’ 〈block〉]
| ’while’ 〈cond〉 〈block〉
| ’new’ ’(’ 〈location 1〉 ’)’
| ’delete’ ’(’ 〈location 1〉 ’)’
| 〈func call〉

〈lhs〉 ::= 〈location 1〉 | ’[’ 〈location〉 ’]’

〈cond〉 ::= 〈expr〉 〈rel〉 〈expr〉

〈rel〉 ::= ’&&’ | ’||’ | ’==’ | ’!=’ | ’≤’ | ’≥’ | ’>’ | ’<’

〈expr〉 ::= 〈expr〉 (’+’ | ’-’ | ’*’) 〈expr〉
| ’-’ 〈expr〉
| ’[’ 〈location〉 ’]’
| [(’this’ | 〈id〉) ’.’] 〈id〉 ’(’ 〈act params〉 ’)’
| 〈location〉
| 〈int〉

〈func call〉 ::= [(’this’ | 〈id〉) ’.’] 〈id〉 ’(’ 〈act params〉 ’)’

Fig. 2. Syntax definition of C-programs with object-oriented extension

For example,

48 of 181

int f(int a, int b) @ a<10 @ {
id=2; a=1; b=6;

} @ a->5 * b->c * c->object(myClass1,15) @

is transformed into this Prolog-term:

function(f, int,
[param(a,int), param(b,int)],
[assert(le(a,10)),
assign(id,2), assign(a,1), assign(b,6),
assert(a->5 * b->c *

c->object(myClass1,15))])

An important specification fragment of the intermediate
Prolog-term syntax can be found in figure 4, where the
remaining part is close to the syntax of figure 2. Apart
from ’ite’ which represents a if-then-else-construct with at
least one block for the if-case and one more optional block
for the else-block – as long as it was provided, there are
also while-loops and further constructs, like class definitions,
which will not be mentioned here for simplicity purposes. All
expressions, particularly with binary operators, are encoded
as terms where the literal operator becomes the functor, for
example add(i,7).

H ::= emp | true | false | atomic formulae
x 7→ E | location map
H ∗H | heap separation
H ∨H | H ∧H | conjunction
∃x.H | quantification
α(~p) predicate unfold

where
x is a location
E is a well-defined expression (enumeration)
~p is a comma-separated parameter vector
Fig. 3. Syntax definition of heap and stack assertions

Since the architecture is designed flexible, it allows the user
to interchange the compiler front-end for a different language,
so the user has the possibility to write own Prolog-terms
directly without even having an ordinary C-program. In

〈stm〉 ::= ... | ’new’ ’(’ 〈loc 1〉 ’)’
| ’delete’ ’(’ 〈loc 1〉 ’)’
| ’funcall’ ’(’ 〈id〉 [’,’ 〈act params〉]) | ...
| ’ite’ ’(’ 〈cond〉 ’,’ 〈block〉 [’,’ 〈block〉] ’)’

〈loc 1〉 ::= 〈id〉 | ’oa’ ’(’ 〈id〉 ’.’ 〈id〉 ’)’

〈loc〉 ::= ’offset’ ’(’ 〈loc 1〉 [’,’ 〈offset〉] ’)’

〈offset〉 ::= 〈int〉 | ’minus’ ’(’ ’0’ ’,’ 〈int〉 ’)’

〈expr〉 ::= (’add’ | ’sub’ | ’mul’) ’(’ 〈expr〉 ’,’ 〈expr〉 ’)’
| ’mem’ ’(’ 〈loc〉 ’)’
| 〈loc〉 | 〈int〉
| ’funcall’ ’(’ 〈id〉 [’,’ 〈act params〉] ’)’

Fig. 4. Syntax definition of Prolog-terms

this case syntax and semantic constraints remain on full
responsibility to the user. Prolog-terms are internally checked
and may also be directed to a graphical output, e.g. for
proof tree visualisation. Antlr 4 [21] is currently used as
compilation front-end.

Once the Prolog term is constructed, it can be passed to
the verification. Hereby, the term is now processed while the
internal environment, which has to keep the states of the
memory, needs to be updated after every statement. All locals
are residing in stack, where dynamically allocated memory
locations may remain in memory – even if a stack-based
variable stores a dynamic address it would be freed at the
end of a block.

If we decide to specify a list concatenation of two
lists, we have several opportunities to describe the heap.
If list(s,e) denotes a heap predicate where s is the
location of the beginning root element of a list, and e
denotes the last element in that list, then having two lists
x and y with x->a,b,c and y->d,e,f will concatenate
for instance to either (i) x->a,b,c,d,e,f * y->f or to
(ii) x->a,b,c * y->d,e,f * z->a,b,c,d,e,f. Re-
mark: The ’,’-operator is defined as a list constructor with
variable input amount for all consecutive objects currently in
memory linked together to a simply-linked list [23]. The main
difference between (i) and (ii) is that (i) requires only a single
assignment if the end of x is known, therefore x and y are
no more as they used to be before concatenation. (ii) creates
an entirely new copy of all element from x and y and does
not touch neither x nor y. (ii) is safer from a general reuse
perspective, but it is considerably slower and consumes more
memory due to additional copies to be generated.

Finally, the SMT-solver is required whenever taking out triv-
ial calculations, for instance in basic arithmetics. For instance,
if there is an expression that might be reduced to a value, then
this should in general be tried first before triggering a certain
rule. Beside finding solutions to basic arithmetic and other
theories, re-arrangement needs to be taken into consideration.
Formal rules will usually also not deal too much about heap
permutation, although a strategy must be found and is crucial
in fact for the overall performance.

IV. CONCLUSION

So far the open architecture was presented providing several
suggestions for further research activities. Prolog was pro-
posed as specification and proof platform for memory-specific
research, e.g. on extending the expressibility of abstract predi-
cates or abduction. We believe, questions related to abduction
in Separation Logic with objects still have not been profoundly
investigated yet, as well as some object-oriented features like
polymorphism in Separation Logic.

The platform might be used to incorporate with existing
compiler packages in order to research improvement on code
optimization during the alias analysis phase, but also garbage
collection, based on knowledge obtained during the dynamic
memory verification.

49 of 181

Further rules of normalisation and re-arrangement will be
applied to cover more real world scenarios, particularly in
order to resolve arithmetic equivalency by the integration of
a SMT-solver ([18], [19]).

Related work includes Jacobs [11] who suggests to investi-
gate Banerjee’s Regional Logic approach [4] as substitute for
the Symbolic Execution approach [6].

Moreover, it includes Birkedal’s approach of nesting heap
specifications recursively, and code updating while program
execution – this both might be of interest in a highly dynamic
environment where unknown code needs to be embedded into
a program interpreting external code provided as a string on
runtime hence will not be considered any further in terms of
this work.

REFERENCES

[1] Abadi M., Cardelli L. A. Theory of Objects. New York: Springer, 1996,
396 p.

[2] Abadi M., Leino K. R. M. A Logic of Object-Oriented Programs, Proc. of
the 7th Int. Joint Conf. CAAP/FASE on Theory and Practice of Software
Development, Springer, 1997, pp. 682-696.

[3] Allen R., Kennedy K. Optizing Compilers for Modern Architectures.
2001, 790p.

[4] Banerjee A., Naumann D. A. and Rosenberg S. Regional logic for local
reasoning about global invariants. ECOOP, LNCS 5142, 2008, pp. 387-
411

[5] Berdine J., Calcagno C. and O’Hearn P. W. Smallfoot: Modular Automatic
Assertion Checking with Separation Logic. FMCO, 2005, pp. 115-137.

[6] Berdine J., Calcagno C. and O’Hearn P. W. Symbolic Execution with
Separation Logic. APLAS, 2005, pp. 52-68.

[7] Calcagno C., Distefano D., O’Hearn P. and Yang H. Compositional shape
analysis by means of bi-abduction. Proceedings of the 36th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
2009, 36, pp. 289-300 .

[8] Distefano D., Parkinson M. jStar: Towards practical verification for Java.
OOPSLA, 2008, pp. 213-226.

[9] Hind M., Pointer Analysis: Haven’t We Solved This Problem Yet? ACM,
PASTE’01, 2001, pp. 54-61.

[10] Hurlin C. Specification and Verification of Multithreaded Object-
Oriented Programs with Separation Logic. PhD Thesis, Universit Nice -
Sophia Antipolis, 2009, 195p.

[11] Jacobs B., Piessens F. The VeriFast Program Verifier. Leuven University,
2008, 5p.

[12] Koch H., Schenkel A., Wittwer P. Computer-assisted Proofs in Analysis
and Programming in Logic: A ase Study. SIAM Review, 1996, no.4(38),
pp. 565-604.

[13] Leino K. R. M. Recursive object types in a logic of object-oriented
programs. Nordic J. of Computing, (5), 1998, pp. 330-360.

[14] Meyer B. Proving Pointer Program Properties - Part 1: Context and
Overview, Journal of Object Technology, no.2(2), March-April 2003, pp.
87-108.

[15] Meyer B. Proving Pointer Program Properties - Part 2: The Overall
Object Structure, Journal of Object Technology, no.3(2), May-June 2003,
pp. 77-100.

[16] Miller B. P., Fredriksen L. and So B. An Empirical Study of the
Reliability of UNIX Utilities. Proc. of the Workshop of Parallel and
Distributed Debugging, Digital Equipment Corporation, 1990, pp. 1-22.

[17] Muchnik S. Advanced Compiler Design and Implementation. Morgan
Kaufman, 2007, 856p.

[18] Nanevski A., Morrisett G., Shinnar A., Govereau P. and Birkedal L.
Ynot: Reasoning with the awkward squad, ACM SIGPLAN Int. Conf. on
Functional Programming, 2008, p. 12.

[19] OpenSMT project. http://code.google.com/p/opensmt/
[20] Parkinson M. Local Reasoning for Java. PhD Thesis, Cambridge Uni-

versity, 2005, 169 p.
[21] Parr T. The Definitive ANTLR 4 Reference: Building Domain-Specific

Languages. O’Reilly, 2013, 328p.
[22] Pavlu V. Shape-based Alias Analysis. Computing Alias Sets from Shape

Graphs to Evaluate the Precision of Shape Analyses. VDM Verlag Dr.
Müller, 2010, 117p.

[23] Reynolds J. C. Separation Logic: A Logic for Shared Mutable Data
Structures, Lecture Notes in Computer Science, 2002, pp.55-74.

[24] Reynolds J. C. An Introduction to Separation Logic. Carnegie Mellon
University, 2009, 204p.

[25] SAFECode within LLVM project. http://llvm.org
[26] Sagiv M., Reps T., Wilhelm R. Parametric shape analysis via 3-valued

logic. ACM Trans. Program. Lang. Syst., 2002, 24, pp. 217-298.
[27] Sterling L., Shapiro E. The Art of Prolog (2nd ed.): Advanced Program-

ming Techniques, MIT Press, 1994, 552 p.
[28] Tofte M., Talpin J.-P. Implementation of the typed call-by-value λ-

calculus using a stack of regions. Proc. of the 21st ACM SIGPLAN-
SIGACT. 1994, pp. 188-201.

[29] Valgrind project. http://www.valgrind.org

50 of 181

Energy-Aware Design of Embedded Software
through Modelling and Simulation

José Antonio Esparza Isasa?, Peter Gorm Larsen? and Finn Overgaard Hansen†
Department of Engineering?, Aarhus School of Engineering†

Aarhus University
Aarhus, Denmark

{jaei,pgl}@eng.au.dk?, foh@iha.dk†

Abstract—We present a model-driven engineering approach
that enables to take energy consumption into account during
the development of embedded software. In this approach we
address all the constituents of a typical modern embedded so-
lution (mechanics, communication and computation subsystems)
through the application of different modelling technologies. This
makes it possible to evaluate the implications of different software
and system architectures in the system’s energy consumption.
Additionally it facilitates the exploration of the design space
without having to prototype each candidate solution. We also
provide details on the application of this approach to the
development of a medical grade compression stocking and the
benefits this approach has brought to the project currently
developing this system.

I. INTRODUCTION

Modern embedded solutions are typically a combination
of computing units, communication interfaces and mechanical
subsystems and they can operate both autonomously or as part
of a network. This makes embedded solutions heterogeneous
systems that are very hard to design [1]. In addition many
embedded systems are battery powered and therefore they
present the added complexity of begin energy efficient while
still fulfilling their operational requirements [2].

A possible tool to cope with complexity is the application
of abstract modelling. Modelling can be used to represent
the system at the highest level of abstraction. These abstract
models can be progressively transformed into a concrete
system realization [3]. This approach is known as model-
driven engineering.

This paper presents a model-driven engineering approach
to the design of these complex embedded solutions. This
approach makes use of several modelling paradigms in order
to represent different aspects of the system and makes special
emphasis on the energy performance of different candidate
solutions. The modelling activities proposed under this ap-
proach are conducted early in the development process and
allow design space exploration without requiring physical pro-
totyping. This reduces development time and cost and enables
the repeatability of the experimental simulations. Additionally
it provides a tool to design quality solutions and to make well-
founded design decisions.

The reminder of this article is structured as follows: Sec-
tion II describes the design approach to energy consumption
proposed in this paper. Section III elaborates on HIL and sys-

tem realization following this approach. Section IV describes
how this technique is being applied to a case study and its
preliminary results. Sections V and VI present future and
related work. Finally, Section VII concludes the paper.

II. AN HOLISTIC MODEL-DRIVEN ENGINEERING
APPROACH TO EMBEDDED SYSTEMS DESIGN

The approach proposed in here aims at studying the energy
consumption in the different subsystems that compose typical
embedded solutions. A general representation of such a solu-
tion is presented in the SysML block diagram shown in Fig. 1
and its components described below:
• Embedded Hardware: represents the electronic hard-

ware that supports the execution of software and possibly
other components implementing additional logic in hard-
ware.

• Embedded Software: represents the software that con-
trols the operation of the rest of the components in the
embedded solution.

• Mechanics: represents the mechanical components that
are controlled by the system. Interfacing with the mechan-
ical subsystem and the environment from the embedded
side is conducted through sensors and actuators.

• Communications Interface: represents the communica-
tion hardware that makes it possible to establish links
with other networked systems.

Fig. 1. SysML block representation of a typical embedded solution.

To design an embedded solution comprised by the com-
ponents presented above so it satisfies its operational re-
quirements is already a challenging task. To design it in

51 of 181

such a way that it is low energy consuming is even more
complex. In order to cope with the complexity associated to
the design of this kind of systems we proposed the application
of model driven engineering techniques that apply System-
Level (SL) modelling. SL modelling aims at describing the
system under design at the highest level of abstraction and to
incorporate progressively system details in order to conduct
system analysis. Such a model is gradually transformed into
a final implementation. We propose the application of SL
design taking into consideration all the energy consuming
components in an Embedded Solution in a joint design effort.
Additionally we propose Hardware-In-the-Loop as a way to
combine executable models with partial system realizations
in software and/or hardware running on target. Our approach
is said to be holistic because it takes into consideration
subsystems that, even though could seem to be unrelated at
first sight, they all have an impact in total energy consumption.
Therefore, our approach targets the mechanical subsystem, the
communication interfaces and the computation logic executed
in the embedded software and hardware. All these aspects
are addressed in different specific ways in order to obtain
energy consumption estimates, that can be used to study the
total energy consumption. Additional details on each specific
strategy are provided below.

A. Modelling mechanical subsystems

In order to address the design of mechanical subsystems we
apply a co-modelling approach in which the engineers use a
modelling paradigm able to represent Continuous Time (CT)
phenomena and a second one in order to represent Discrete
Event (DE) logic [4]. Controlled physical processes (plant) are
best represented by using CT abstractions such as differential
equations. On the other hand, the control logic that operates
the plant is best represented by using logical formalisms.

We proposed a particular way of using this co-modelling
approach so it is possible to take into account energy con-
sumption during the design of mechatronic systems [5]. An
overview of this approach is presented in Fig. 2. We take
as starting point a CT-first methodology [6], in which the
modelling starts by focusing on the mechanics of the system
and carrying out the control logic modelling afterwards. The
CT models are focused on the core functionality that has
to be delivered and do not capture heat dissipation due to
the conversion efficiency of the electromechanical devices.
In case part of the system operation depends on its internal
temperature, this could be represented as part of the CT
models, since it is a physical process with impact on energy
consumption.

Once the system operation has been described, the notion
of energy is incorporated into the CT models in a phase
that is called models instrumentation. The notion of energy is
incorporated only in the CT side since the energy consumption
in the DE side is typically negligible if compared with the
first one. This instrumentation consist on basically monitoring
the variables that have an impact on energy consumption and
doing it in a way that does not affect the performance of the

models. After this phase it is possible to co-execute the models
and produce a number of energy consumption estimates, that
can be used to perform trade-off analysis between the different
modelled solutions. In case the energy consumption estima-
tions are fed back to the DE model it is possible to use this
approach to model energy-aware system operation, meaning
that the system can feature different operational models that
are switched among depending on the energy consumed. In
principle this approach could be applied by using any tool
that supports the co-simulation of DE and CT models.

Fig. 2. Overview of the co-simulation based methodology.

In this work we have used the co-execution environment
DESTECS/Crescendo [7], [8]. This environment combines
the tools Overture [9] and 20-Sim1. Overture incorporates
an interpreter for the DE modelling language VDM-RT [10].
This language is best suited to represent the control logic
supervising the mechanical components and therefore it is
used for DE modeling. 20-Sim incorporates a numerical
engine that evaluates differential equations. Additionally it
supports abstractions built on top of differential equations in
the form of bond and block diagrams. This tool is best suited
to represent the mechanical side of the system (CT side).
The DESTECS environment synchronizes the co-execution
of the models providing a common notion of time for both
models. Additionally it allows the specification of a number
of controlled and monitored variables between the VDM-RT
and the 20-sim simulations so the supervision of the plant is
possible. Additional details on how DESTECS and the process
presented above have been applied in a concrete case study
will be provided in Section IV.

B. Modelling computation subsystems

Modern microcontrollers can switch between different oper-
ational modes in order to reduce energy consumption. These
operational modes temporarily disable the CPU and certain
peripherals in order to achieve such a reduction. Switching

120-Sim official website: http://www.20sim.com

52 of 181

between operational modes takes time that might have an
impact in the real-time performance of the system under study.
An example of different power modes can be seen in Fig. 3.
In this case the processor features two low power operational
states: Hibernate and Sleep. Sleep allows a fast CPU wake-up
based on internally or externally generated events. Hibernate
requires additional time to wake-up the CPU and it can react
only on external events. However it can lower the energy
consumption even further. The CPU controls from software
how to switch between these modes.

Fig. 3. CPU states in an implementation of a Cortex M3 ARM processor.

In order to explore the application of the different sleep
modes, software strategies and architectures required for low
power operation we propose the application of the modelling
language VDM-RT. This language incorporates the abstraction
CPU that represents an execution environment in which parts
of the model can be deployed. Besides representing the com-
putational support it also incorporates a real-time operating
system layer. Logic running in VDM-RT CPUs can represent
single or multi-threaded software implementations as well
as dedicated hardware blocks depending on how they are
configured [11]. However, VDM-RT CPUs do not feature the
notion of low power consuming states since they are always
active and therefore able to perform computations. An initial
approach to overcome this limitation was a design pattern
structure that regulated the access to the CPU as a resource by
the logic running on it depending on the state of a flag [12].

As a way to overcome this situation we have extended the
VDM-RT language by adding two new constructs to manage
CPU states: CPU.sleep() and CPU.active() [13]. The
addition of these two new constructs implied the modification
of the VDM-RT interpreter and the scheduler built into the
Overture platform. In addition to these extensions we proposed
specific ways to use the sleep and active operation so
the models can represent accurately the low power operation
of real platforms. These templates show how to model a
CPU wake-up based on an interrupt triggered by externally
generated events and based on internal sleep timers. Model
simulation produces a log file that registers in which states the
CPU has been operating and for how long. This information
together with the electrical characteristics of the CPU under
consideration allows to represent the power consumption of
the device over time. The integration of this curve over time

results on the total energy consumption on the computational
side.

The application of a modelling-based approach to the com-
putational side of the system brings a number of advantages
to the design of the software. Besides the obvious case of
exploring different sleeping policies for a single CPU without
having to protototype them, more complex cases in which
several CPUs are involved can be explored. This is especially
relevant if the CPUs have to communicate in order to satisfy
system requirements.

C. Modelling communication subsystems

The VDM-RT modelling language incorporates the abstrac-
tion BUS that allows to communicate the CPU processing
nodes introduced in the previous section. This abstraction can
be used to represent point-to-point communication between
CPUs in a static way. Communication performed over VDM-
RT BUSes is assumed to be error-less, so any kind of com-
munication problems such as information (packet) loss has
to be modelled on top. At this point the BUS abstraction
does not incorporate any notion of energy consumption during
communication.

1) Modelling network topologies: We propose the appli-
cation of a design pattern structure to overcome some of
these limitations. Our initial approach takes as an example
the communication in a wireless context but it could easily be
extended to a different one. In Fig. 4 this structure is presented
through a UML diagram. The general idea behind this pattern
is to create a star topology network in which each networked
embedded system is connected to a central component, that
runs a simulated transmission medium. This structure is ap-
plied in VDM-RT by using CPUs to represent each networked
device as well as a central component simulating the medium.
Finally buses are communicating each device model with the
medium model. In this way there is no direct connection
between the individual CPUs representing the devices and any
transmission goes through the simulated wireless medium. By
using some of the VDM abstractions one can easily establish
relations between the CPUs in the simulated wireless medium
to represent whether a communication between two nodes is
possible or not. Analyzing these “connection maps” during
model execution is especially easy due to the expressiveness
of the VDM language and it can be accomplished by using
map comprehensions. If model simulation time is a concern
the connection maps can be translated into a look-up file
in which it is explicitly stated the relation between all the
networked elements. This structure solves the initial problem
of representing a realistic topology of a small scale embedded
network in VDM-RT.

2) Introducing the notion of energy consumption: In order
to represent the energy consumption we focus on modelling
the operational state of the communications interface of the
embedded device. We consider operational states the different
modes in which the communication interface can be working,
typically: transmitting, receiving or deactivated. For each mode
the manufacturer provides an average power consumption

53 of 181

Fig. 4. Design pattern structure to represent wireless communication.

figure that can be used in the VDM-RT models. Changes
among these operational modes are logged during model
simulation and analyzed when it has been completed. Based on
the transitions between the states and for how long the device
has stayed on those states one can calculate the evolution of
the power consumption over time and hence the total energy
consumption during system operation.

Once the notion of energy consumption and the possibility
of modelling different network topologies have been facili-
tated, it is possible to conduct the analysis of communication
related problems. Some of these include but are not limited
to, routing algorithms, network services, latencies or time
synchronization between nodes. All these factors could be
analyzed against energy consumption in order to get estimates
that would allow an energy aware design of the communication
subsystem, including communication software as well as, to
some extent, hardware.

One of the advantages of using this structure is the clear
separation between the connection map representing the net-
work topology and conditions and the individual networked
elements, even though the simulation of both is conducted in
the same modelling environment. The main disadvantage of
this approach at first sight are the limitations regarding the
number of networked elements. We consider this approach
valid only for small scale networks. However additional work
is necessary to establish its practical limitations.

The approach to communications modelling proposed in this
section is conducted only in VDM-RT without involving any
other modelling paradigm. A co-simulation approach could
be interesting to represent mobile communication nodes or a
changes in the environment in which the network is deployed.

III. SYSTEM REALIZATION AND HARDWARE IN THE LOOP

The approach presented above aims at tackling the design
problems through modelling and simulation however, at some
point, the system has to be realized. Given the fact that a
strong emphasis has been placed on the modelling of the
system it is desirable that the models created are used as
much as possible during the system realization phase. This
could include the combination of partial system realizations
with models, allowing the co-execution of models with system
realizations. The approach that we propose in this work is

exemplified in Fig 5. In this diagram we show an initial VDM
model of a system that executes a three phases algorithm in
which data is acquired, processed and finally an output is
provided.

Fig. 5. Overview of the co-simulation based methodology.

We have applied this principle allowing the combination of
VDM executable models running in a Workstation with actual
components implemented in a Device Under Test (DUT) [14].
These components can be both hardware and software com-
ponents. An overview of this Hardware In the Loop setup is
presented in Fig. 6. In addition to the components mentioned
above the system incorporates a Stimuli Provider able to
simulate external inputs and a Logic Analyzer able to monitor
the evolution of different logical signals. The VDM execution
environment is able to interface the Logic Analyzer that
can measure the time it takes to execute system realizations
running on the DUT. This time figures can be manually
incorporated into the VDM model and therefore increasing
the fidelity of the model simulation results.

Serial Bus
Duration

Pin
Serial Bus

Logical

Bus

Logical

Bus
PWM

USB

ibd HIL System

«block»

DUT

«block»

Stimuli provider

«block»

Logic Analyzer

«block»

Workstation

Fig. 6. SysML Internal Block Diagram showing the hardware connections to
the DUT.

IV. APPLICATION AND PRELIMINARY RESULTS

The approach proposed in this work is applied to the
development of an intelligent compression stocking to treat
leg venous insufficiency. This stocking is shown in Fig. 7
and it is composed of: an inner stocking (1), an inflatable
stocking responsible for delivering the required compression
levels (2), a pneumatical circuit composed of valves, pumps
and a manometer (3), and an embedded system implementing
the control logic and interfacing hardware and integrating a
Bluetooth-based communication interface (4). This portable
device is battery-operated and it is required to work for at
least 14 hours. A complete description of this device can
be found in [15]. As it is explained above this device is

54 of 181

composed of mechanical, computational and communication
subsystems that have to be energy efficient so the device
autonomy requirements can be met.

Fig. 7. The medical grade compression stocking.

A. Modelling of the Compression Principle

In order to study the mechanical subsystem we have ap-
plied the modelling process presented in Section II-A. The
modelling of the mechanical system by itself was already
beneficial for the project since it allowed us to gain a thorough
understanding of the pneumatics and the physics behind the
compression principle. Based on these models we were able to
determine that a certain compression strategy was not feasible
without having to prototype it. Additionally we were able to
model different control software in VDM-RT and co-simulate
its performance together with the mechanical models.

The analysis on both control strategies and mechanical
pneumatic configurations, provided a number of energy con-
sumption estimates that helped on deciding which system
configuration was optimal. These suggestions had an impact
on the system realization and introduced improvements on the
software that increased its energy efficiency.

B. Modelling of the Embedded Software

We have applied the modelling techniques presented in
Section II-B in order to explore two different embedded archi-
tectures in a concrete scenario: the regulation. The air pressure
level in the air bladders have to be monitored periodically and
kept at certain levels so proper compression is delivered to
the limb. Through the regulation process the controller reads a
manometer, compares the value retrieved against the expected
one and depending on this triggers the pump or vents the
bladders accordingly. This logic is implemented as a software
component and requires the CPU to be active. However and
depending on the kind of sensors that are used the CPU can be
sleeping for a longer period of time. We have used VDM-RT
modelling to study the energy consumption of two different
kind of sensor configurations: the first one uses smart sensors
that wake up the CPU in case an overpressure event occurs and
the second one uses passive sensors that require a poll from the
CPU in order to provide a reading. In the first case the CPU
presented a lower power consumption than in the second case,
since the sensors could run independently from the CPU. In the
second case the CPU power consumption was higher because
it required periodic wake-ups in order to check the sensors,
which were not running independently. These results were

expected since this was a simple case, however the purpose of
applying the technique in this case was to show the modelling
principle in a simple case study.

The predictions provided by these simulations where con-
firmed by measurements conducted on system realizations for
both architectures with a fidelity of up to 95% [13].

C. Modelling of Communication

The modelling of the communication system remains as
future work. A complete overview of the different communica-
tion scenarios in which this device can operate is presented in
[16]. The intention is to model the critical scenarios in which
the device is running on batteries. Based on these models we
aim at making energy consumption estimations and evaluating
computation vs. communication trade-offs.

V. FUTURE WORK

We are planning to extend the work presented in here so
the energy consumption analysis of the communication is also
possible. Additionally we are planning to apply the analysis
of energy consumption in computation in a more complex
situation and possibly combining it with the communication,
therefore being able to represent and analyze computation vs.
communication trade-offs. We are also aiming at applying
some of the modelling techniques presented in here to a second
system so it is possible to make a stronger case for the SL
energy-aware design approach for embedded solutions.

VI. RELATED WORK

The energy consumption problem in todays embedded
solutions is well recognized and one of the top research
priorities [2]. System Level design is also a well established
technique especially in the hardware world, that it is seeing its
expansion to other non-computing domains [3]. However and
to our knowledge the application of System Level design with
the particular intention of addressing the energy consumption
problem during the development process through modelling
and prototyping has not been formulated previously. Even
though energy consumption in all subsystems has not been
addressed in a single design effort previously significant
work has been conducted in the individual fields of energy
consumption in computation, communication and mechatronic
systems.

Regarding energy consumption in computation, extensive
work has been carried out in order to characterized different
layers of abstraction. Some authors propose very accurate
characterization of concrete computing platforms by taking
into account energy consumption at the micro-architectural
and the instruction level [17], [18]. This differs from the work
presented in here in the fact that we consider an average power
consumption figure within the active state of the CPU in order
to obtain a coarse grained estimation over time. Other authors
focus on the characterization of energy consumption at the
service level [19]. In this case the authors consider the energy
consumption at the OS level when the CPU is active. In our
work we consider a single energy consumption figure for all

55 of 181

the services provided by the OS, however, in case some of
the OS operations result in a longer time having the CPU
active, this will be considered under our approach as well even
though the services have not been individually characterized.
A more comprehensive review of techniques to study power
consumption in computation can be found in [20].

As in the computation case, modelling of communication
has been conducted at different levels of abstraction, ranging
from energy consumption at the communications interface
level to higher layers such as routing or application [21], [22].
Our work makes use of more simple power consumption mod-
els that, even though they are based on fixed average power
consumption estimates are expected to provide sufficient detail
to enable trade-off analysis of network algorithms.

Energy consumption in mechatronic systems is typically
addressed as a particular application of well-established mod-
elling platforms such as Matlab, Ptolomy or Modellica. Energy
consumption has been typically considered just as any other
design factor of industrial grade equipment and mechatronic
components have not been traditionally considered together
with embedded devices. However this situation is changing
due to the increasing relevance of Cyber-Physical Systems [2].

VII. CONCLUSIONS

This paper has presented a modelling approach to energy-
aware design of embedded systems. The preliminary applica-
tion of this approach to a case study has enabled the explo-
ration of different control algorithms, different hardware and
software architectures and different mechanical configurations.
This has made it possible to evaluate system performance
against energy consumption early during the development
process without needing a physical prototype. This work will
be complemented in the near future with a study of energy
consumption from the communication point of view. A more
in-depth description of this work can be found in [24].

We hope that the approach proposed can inspire other
researchers working with modelling applied to embedded
system development and, to some extent, enact the application
of modelling in the design of real embedded solutions.

REFERENCES

[1] Thomas A. Henzinger and Joseph Sifakis, “The Embedded Systems
Design Challenge,” in FM 2006: Formal Methods, 14th International
Symposium on Formal Methods, Hamilton, Canada, August 21-27, 2006,
Proceedings, 2006, pp. 1–15.

[2] Banerjee, A. and Venkatasubramanian, K.K. and Mukherjee, T. and
Gupta, S. K S, “Ensuring Safety, Security, and Sustainability of Mission-
Critical Cyber-Physical Systems,” Proceedings of the IEEE, vol. 100,
no. 1, pp. 283–299, 2012.

[3] S. K. Gupta, T. Mukherjee, G. Varsamopoulos, and A. Banerjee,
“Research Directions in Energy-Sustainable CyberPhysical Systems,”
Sustainable Computing: Informatics and Systems, vol. 1, no. 1, pp. 57
– 74, 2011.

[4] J. Fitzgerald, K. Pierce, and P. G. Larsen, Industry and Research
Perspectives on Embedded System Design. IGI Global, 2014, ch.
Collaborative Development of Dependable Cyber-Physical Systems by
Co-modelling and Co-simulation.

[5] J. A. E. Isasa, F. O. Hansen, and P. G. Larsen, “Embedded Systems
Energy Consumption Analysis Through Co-modelling and Simulation,”
in Proceedings of the International Conference on Modeling and Sim-
ulation, ICMS 2013. World Academy of Science, Engineering and
Technology, June 2013.

[6] J. F. Broenink and Y. Ni, “Model-Driven Robot-Software Design using
Integrated Models and Co-Simulation,” in Proceedings of SAMOS XII,
J. McAllister and S. Bhattacharyya, Eds., jul 2012, pp. 339 – 344.

[7] J. F. Broenink, P. G. Larsen, M. Verhoef, C. Kleijn, D. Jovanovic,
K. Pierce, and W. F., “Design Support and Tooling for Dependable Em-
bedded Control Software,” in Proceedings of Serene 2010 International
Workshop on Software Engineering for Resilient Systems. ACM, April
2010, pp. 77–82.

[8] J. Fitzgerald, P. G. Larsen, and M. Verhoef, Eds., Collaborative Design
for Embedded Systems – Co-modelling and Co-simulation. Springer,
2014, in press.

[9] P. G. Larsen, N. Battle, M. Ferreira, J. Fitzgerald, K. Lausdahl, and
M. Verhoef, “The Overture Initiative – Integrating Tools for VDM,”
SIGSOFT Softw. Eng. Notes, vol. 35, no. 1, pp. 1–6, January 2010.
[Online]. Available: http://doi.acm.org/10.1145/1668862.1668864

[10] K. Lausdahl, P. G. Larsen, and N. Battle, “A Deterministic Interpreter
Simulating A Distributed real time system using VDM,” in Proceedings
of the 13th international conference on Formal methods and software
engineering, ser. Lecture Notes in Computer Science, S. Qin and
Z. Qiu, Eds., vol. 6991. Berlin, Heidelberg: Springer-Verlag, October
2011, pp. 179–194, ISBN 978-3-642-24558-9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2075089.2075107

[11] J. A. E. Isasa, P. G. Larsen, and K. Bjerge, “Supporting the Partitioning
Process in Hardware/Software Co-design with VDM-RT,” in Proceed-
ings of the 10th Overture Workshop 2012, ser. School of Computing
Science, Newcastle University, 2012.

[12] J. A. E. Isasa and P. G. Larsen, “Modelling Different CPU Power States
in VDM-RT,” in Proceedings of the 11th Overture Workshop 2013, ser.
Aarhus University, June 2013.

[13] J. A. E. Isasa, P. W. Jørgensen, and C. Ballegaard, “Modelling Energy
Consumption in Embedded Systems with VDM-RT,” in Proceedings of
the 4th International ABZ conference., July 2014.

[14] J. A. E. Isasa, P. W. Jørgensen, and P. G. Larsen, “Hardware In
the Loop for VDM-Real Time Modelling of Embedded Systems,” in
MODELSWARD 2014, Second International Conference on Model-
Driven Engineering and Software Development, January 2014.

[15] T. F. Jensen, F. O. Hansen, and J. A. E. et al., “ICT-Enabled Medical
Compression Stocking for Treatment of Leg-Venous Insufficiency.”
in International Conference on Biomedical Electronics and Devices
(BIODEVICES 2014), March 2014.

[16] F. O. Hansen, T. F. Jensen, and J. A. Esparza, “Distributed ICT Archi-
tecture for Developing, Configuring and Monitoring Mobile Embedded
Healthcare Systems.” in International Conference on Health Informatics
(HEALTHINF 2014), March 2014.

[17] Mostafa E.A. Ibrahim and Markus Rupp and Hossam A. H. Fahmy, “A
Precise High-Level Power Consumption Model for Embedded Systems
Software,” EURASIP Journal on Embedded Systems, vol. Volume 2011,
no. 1, January 2011.

[18] Sheayun Lee and Andreas Ermedahl and Sang Lyul Min, “An Accurate
Instruction-Level Energy Consumption Model for Embedded RISC
Processors,” 2001.

[19] B. Ouni, C. Belleudy, and E. Senn, “Accurate energy characterization
of os services in embedded systems,” EURASIP Journal on Embedded
Systems, vol. 2012, no. 1, p. 6, 2012.

[20] Unsal, O.S. and Koren, I., “System-Level Power-aware Design Tech-
niques in Real-Time Systems,” Proceedings of the IEEE, vol. 91, no. 7,
pp. 1055–1069, 2003.

[21] E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and
A. Chandrakasan, “Physical layer driven protocol and algorithm design
for energy-efficient wireless sensor networks,” in Proceedings of the 7th
Annual International Conference on Mobile Computing and Networking,
ser. MobiCom ’01. New York, NY, USA: ACM, 2001, pp. 272–287.

[22] R. Min and A. Chandrakasan, “A framework for energy-scalable com-
munication in high-density wireless networks,” in Proceedings of the
2002 International Symposium on Low Power Electronics and Design,
ser. ISLPED ’02. New York, NY, USA: ACM, 2002, pp. 36–41.

[23] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava, “Energy-
Aware Wireless Microsensor Networks,” signa Processing Magazine,
vol. 19, no. 2, pp. 40–50, March 2002.

[24] J. A. E. Isasa, “System-Level Energy Aware Design of Cyber-
Physical Systems,” Department of Engineering, Aarhus University,
Finlandsgade 22, Aarnus N, 8200, Tech. Rep., October 2013, avail-
able on-line at http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske
rapporter/ECE-TC-16-samlet.pdf.

56 of 181

Energy Aware Congestion Management in Dynamic
Wireless Mesh Network

S.P.Shiva Prakash
Research Scholar

JSS Research Foundation
Mysore, Karnataka, India

Email: shivasp26@gmail.com

T.N.Nagabhushan
JSS Academy of Technical Education

Noida, India
Email: tnnagabhushan@gmail.com

Kirill Krinkin, Olga Sholokhova
Saint-Petersburg Electrotechnical University ”LETI”

Saint Petersburg, Russia
Kirill.krinkin@fruct.org, sholokhova.olya@gmail.com

Abstract—Wireless Mesh Network(WMN) has emerged as
most widely used popular network due to its self discovering, self
organizing and self healing characteristics. However, WMNbased
on Time Division Multiple Access(TDMA) Medium Access Con-
trol(MAC) protocol suffer from poor Quality of Service(QoS) due
to low throughput and high network overhead. Using different
rate control mechanisms in such networks can further increase
problems during mobility of nodes. Efficient slot allocation and
scheduling is needed in congestion control algorithms to improve
the performance of such networks. Towards this context, IEEE
802.11s standard introduced a mechanism called local congestion
monitoring (LCM) that considers the amount of incoming and
outgoing traffic to control congestion for a single hop network.
Further many researchers have proposed algorithms to control
congestion keeping nodes as static. The drawback of existing
protocols is that it neglects the importance of energy resource
during slot allocation which plays a major role in network
performance. Also considering mobility of a node which results
in high congestion due to frequent link breakages and high
energy consumption due to re-establishment of route during
routing process. Hence to overcome the problem, In this work
we propose a novel congestion control protocol called Energy
aware congestion management protocol (EDMA) in TDMA MAC
under mobility. The proposed model consists of four modules
namely, Energy Aware Routing, Node Position Identifier, Energy
Evaluator and Congestion Control TDMA slot allocator. The slot
allocation in TDMA MAC works in two sub phases: Energy-
aware Slot Allocator and Energy-aware Slot Scheduler that
allocates and schedules slot in TDMA MAC considering both
energy status and mobility metrics. The working of proposed
model is presented and analysis shows that proposed model
results in congestion free network thus improving QoS in WMN.

I. I NTRODUCTION

In WMN each mobile host acts as a router and helps to
route the information for a desired host. It supports peer to
peer communication and easy to deploy. Congestion refers
to a network state where a node or link carries loads of data
that it may deteriorate network service quality and resulting
in queuing delay, frame or data packet loss and the blocking
of new connections. IEEE 802.11s standard introduced a
mechanism called local congestion monitoring considering
based on amount of incoming and outgoing traffic to control
congestion for a single hop network [11].

In general, congestion is a number of packets being sent
through the network is greater than the number of packets the
network can handle. Figure 1 depicts occurrence of congestion
in wireless mesh network due to limitation of queue size and

Fig. 1: Congestion in network

incoming and outgoing capacity of a data rate and also lack of
awareness of energy resource at a node during slot allocation.
In wireless mesh network nodes can move independently with
different velocity and pause time. A mobility of a node results
in high energy consumption due to the link breakages consid-
ering relative mobility between two nodes, this results in link
failure during mobility of node as node changes its positionand
results in node being out of transmission connectivity range.
Congestion is basically caused at two layers:

• MAC layer

• Network layer

At MAC layer during the allocation of data slots to the
nodes i.e., when two nodes simultaneously access the same
data slots. Here in above fig node n1 and n2 are requesting

Fig. 2: Collision leads to Congestion

slots s1 and s2 for communication and slots are allocated
successfully to node n1 and node n2 but at next slot allocation
time two node i.e. n3 and n4 are accessing the same slot for
communication this leads to collision.

At Network layer congestion occurs when the incoming
link data rate is greater than outgoing link which results inlong

57 of 181

delay. Consider figure 3 as an example, source is transmitting
the packets to destination via relay node 3,5,and 7 using the
data rate at 6 Mbps but the relay node 3 can provide the
data rate of 3 Mbps. Hence, the data packet needs to wait
in queue for longer time; when the capacity of buffer exceeds,
next incoming packets are discarded; there is a possibilityfor
unexpected delay or packet loss in transmission. In WMN,
congestion may occur in any intermediate node due to limited
resources, when data packets are being transmitted from source
to the destination.

Fig. 3: Collision leads to Congestion

The mobility of nodes is also a major role within WMN’s
due to limited transmission range; this can cause link failure
that lead to recalculate their routing information; this consumes
processing time as well as battery power.
In general, packet loss occurs due to congestion where as in
WMN, packet loss may occur due to node mobility too.

Figure 4(a). shows that there is transmission occurs within
range and successful packet transmission. Three source nodes
are requesting at same relay node5. The communication range
between node5 and node2 are within range and node5 and
node7 too att0 . Since nodes are within transmission range,
the packets successfully forwarded but at the timet1 in Figure
4(b). the transmission range between node5 and node2 are
exceeds the range threshold value due to mobility this lead
to link breakage and caused packet loss at node5 and node2.
This may lead to high energy consumption due.

In conventional congestion control mechanism installed
with TDMA MAC, slots will be allocated to the requested
node based on the arrival time of nodes. This works well in
static nature of a node as no frequent change in slot allocation
is required. It may results in congestion due to the unaware
of energy source at a node. Hence, there is a need to consider
the dynamic nature and energy resource of a node during slot
allocation in TDMA MAC protocol.

The rest of the paper is organized as follows: Section 2
define the problem statement and Section 3 discuss related
previous works. Section 4 presents the proposed model and
Section 5 define the mathematical model while Section 6 depict
the algorithm for proposed model. Result and observations are
discussed in Section 7. Section 8 presents the Conclusion and
scope for future work.

(a) Transmission occurs within range

(b) Link breakage

Fig. 4: Change in position of the nodes due to mobility, causing
the link breakage

II. RELATED WORKS

In this section we present the related works carried out by
various researchers to control congestion in WMN.

Focusing on the scheduling of a single multicast session
where each receiver gets the same throughput, authors [5]
proposed an interference-aware fair scheduling algorithm
named LOF for multicast in wireless mesh network. It
guarantees that different receivers of a single session get
the same throughput. Authors of [6] have proposed the
Bellman-Ford TDMA scheduling algorithm. It takes the
scheduling delay into consideration while taking advantages
of spatial reuse. Authors of [7] have discussed about the
benefits of a centralized implementation of the NUM based
rate allocation. Authors of [8] proposed a model in order
to avoid secondary queuing delay (i.e delay occurred in
multi hop network when two or more nodes requesting
for the same channel) for multiple hops in a network. A
separate slots will be allocated based on the arrival time so
that further communication can takes place through same
allocated slot. Authors of [9] have proposed an algorithm for
the draft standard outlines an optional hop-by-hop congestion
control mechanism. Each MP observes the level of congestion
based on the amount of incoming and outgoing traffic (local
congestion monitoring). When the traffic increases to a point

58 of 181

such that the MP is unable to forward and source data
upstream as fast as the incoming rate, congestion occurs,
and the MP must notify one-hop neighbors (local congestion
control signalling). These neighbors respond by limiting the
rate at which they are sending to the congested MP (local
rate control). Authors of [4] have proposed a mechanism in
which nodes in the network are first labelled either even or
odd. Then, while determining paths, only those paths that
go through nodes having alternate labelling are considered.
Using sub-channelization of OFDMA, secondary interference
between two links in the same slot is prevented by assigning
different channels to the links. Once the slot requirements
and routing paths are determined, each node employs a local
(wireline-type) scheduling policy. The scheduling policy
determines the order in which packets leave the buffer at each
node,and the authors show that such a mechanism provides
two-approximation bounds for the end-to-end delay. The
authors of [10] have proposed a routing heuristic model in
which first, the shortest-hop algorithm is used to determine
a path. If one or more edges on the path are blocked, those
are removed from the graph and the heuristic is applied
again to find a suitable path. In the literature [3], [1], and
[2] several TDMA broadcast scheduling algorithms can be
found. These algorithms use several heuristic approaches,
graph coloring , in order to solve the Broadcast Scheduling
Problem (BSP). The optimum frame length is obtained and
the network throughput maximization is achieved in all the
previous algorithms.

Most of the related works have focused on controlling
congestion keeping nodes in static position. However, nodes
in mobility are proven to undergo several issues in connection
with congestion due to frequent change in direction. As a
result it reconstructs route which may further lead to more
energy consumption. Hence congestion may occur due to
lack of sufficient energy at relay node to process the rested
node especially during mobility. This also causes delay in
forwarding packets from relay node after the allocation of slot
to the requested nodes. So we propose a protocol that manages
congestion control considering both energy constraints and
mobility metrics.

III. PROBLEM STATEMENT

Consider a network ofn nodes where n1,n2,n3 are request-
ing nodes. LetR be the relay node. In conventional TDMA
based slot allocation, the slot will be allocated based on the
arrival time of a request. Also, considering the dynamic nature
of a node due to the mobility there are possibility of link
failure which results in route re-establishment, this may also
results in high energy consumption compared to static nature
of a node. This may lead to packet loss due to the lack of
sufficient energy at a node n to perform transmission operation
such as packet forwarding at a particular interval of time and
results in congestion of a network. Hence, there is a need to
define a protocol which considers the energy status of a node
during slot allocation in TDMA which results in congestion
free network.
Factors affecting congestion

1) Packet arrival rate exceeds the outgoing link capacity

2) Buffer size exceeds to store arriving packets
3) Degradation battery below the pre-defined threshold
4) Link breakage due to mobility

IV. PROPOSEDMODEL

In this section we present our proposed model to control
congestion. The proposed EDMA model is shown in Figure 5.

Fig. 5: Proposed model

The proposed model consists of four phases namely,
1. Energy Aware Routing
2. Node Position Identifier
3. Energy Evaluator
4. Congestion Control TDMA slot allocator

1. Energy Aware Routing: The proposed model begins
by routing, this is a initial phase and routing of packets takes
place based on the energy criteria. When source broadcast
the message to its neighbor nodes to reach the destination.
Multiple reply from the neighbor nodes will be generated.
The selection process of relay node takes palace based on
energy i.e., required energy threshold will be defined for
relay node. The remaining energy of the reply nodes must be
greater than or equal to the defined threshold and the nodes
having highest energy will be selected. Each relay node that
is selected acts as a source node and the same process takes
place until its reach to the destination node.
2. Node Position Identifier: It identifies the position of a
node based on static or dynamic nature. In static, packet
size and data rate used as parameters to calculate the static
remaining energy of a node. In dynamic, Random Way Point
model is used as a mobility model considering velocity, pause
time, packet size and data rate as a parameters to calculate
the dynamic remaining energy of a node.
3. Energy Evaluator: It calculates the energy consumption
of a node considering the parameters in static or dynamic
nature. It sets the required energy threshold for a requested
node. It also calculates the remaining energy of a node at a
regular interval of time.
4. Congestion Control TDMA slot allocator: It has two sub
phases such as,
A.Slot allocator : It allocates the TDMA slots of a node by
comparing the required energy of a requested node and the

59 of 181

remaining energy of its own node. The slot will be allocated
if the remaining energy of a node is greater than the requested
node energy threshold. Otherwise, it will be rejected.
B.Slot Scheduling :After Slot allocation within a node, the
requested node will be scheduled in TDMA based on velocity
and pause time. The node with minimum velocity and pause
time is given higher priority during slot scheduling.

A. Packet formats used

In this section we present the different packet formats used.

Routing Table Format:

Fig. 6: Routing Table

Where,
SourceID: Address of Source node(constant).
OriginatID: Address of Originating source

node(changeable).
Next Hop: Address of next neighbor node.
DestinationID: Address of Destination.
Energy: Energy of corresponding node.
Slot Allocation ID: ID of the allocated slot.

RREQ(Route Request) Packet Format :

Fig. 7: RREQ Format

Where,
OriginID: Address of originator.
Next Hop: Address of next neighbor node.

RREP(Route Replay)Packet Format:

Fig. 8: RREP Format

Where,
DestinationID: Address of Destination.
OriginatorID: Address of originator.
Hop Count: Total number of hop count.

Slot Allocator Format:

Fig. 9: Slot Allocator Format

Where,
Node ID: Address of the node.
Slot Allocation ID: Address of the allocated slot.

V. A LGORITHMS

In this section we present the algorithms used in our
proposed model.

Algorithm 1 Energy Determiner

SetInitialEnergy = 10J
Ec(ps, dr) =N

∑
(Ectx,Ecrx,Ecrel, Ecidle)

Eci& =
I×V ×Tp×Ps

dr
RE =InitialEnergy−Eci

Where,
I: Current

I = 330 mA (for tx)
I = 220 mA (for rx)

V: voltage (V=5)
Tp: time taken to transmit the packet p
Ps: Packet size
dr: Data rate in Mbps

The Algorithm 1 calculates the energy consumption of a
node and set the initial energy for all the nodes in a network.
Remaining energy will be calculated based on the transmission
modes with help of data rate and packet size in static nature
of a node where as in dynamic it considers data rate, packet
size and also velocity and pause time. It also sets the required
threshold.

Algorithm 2 Slot allocation

for each nodeN do
Call Energy Determiner
if RE ≥ ReqE then

Slot Allocated
end if

end for

Where,
N: Requested nodes
ReqE: Required Energy
RE: Remaining Energy

Algorithm 2 allocates the TDMA slots of a node by comparing
the required energy of a requested node and the remaining
energy of its own node. The slot will be allocated if the
remaining energy of a node is greater than the requested node
energy threshold. Otherwise, it will be rejected.

Algorithm 3 Slot Scheduler

for each nodeN do
SlotAllocator = min(V, P)

end for

60 of 181

Where,
N: Requested nodes
V: Velocity
P: Pause time

The slot scheduler algorithm 3 is executed after algorithm 2
with in a slot allocated node. It schedules slot for the requested
node in TDMA based on velocity and pause time. The node
with minimum velocity and pause time is given higher priority
during slot scheduling.

Algorithm 4 Energy-aware Congestion-management Protocol

for each nodeN do
Broadcast RREQ message
Send RREP message
Call Energy Determiner
Call ESS

end for
if path existsthen

choose the path based on energy parameter with minimum
hop
packet transmission
if link breakagethen

send RERR to source
Re- discover the path

end if
end if

Algorithm 3 depicts the energy aware congestion man-
agement algorithm in which a broadcast RREQ message is
sent by source nodes to its neighbor nodes during routing.
In congestion control mechanism relay nodes plays a major
role when there is multiple request to forward the packets.
Hence relay node utilizes the Energy Determiner algorithm
to calculate the remaining energy and set the required energy
threshold value to allocate the slot for a requested node.

VI. A NALYSIS OF PROPOSEDEDMA MODEL

Consider a network of 10 nodes as an example. Each node
maintains an array of 5 slots in TDMA MAC. Let S1,S2,S3
be the source nodes and D1,D2,D3 be the destination nodes
respectively. R1,R2 and R3 be the Relay nodes. Let a packet
of size P with data rate Dr is sent from S1,S2 and S3 to
D1,D2 and D3 respectively. The source nodes s1 move with
a velocity=15,pause time=10, s2 move with a velocity 10 and
a pause time 5 and S3 move with a velocity=5, pause time
= 0. Energy consumption for single packet is 0.12 at source
node and 0.18 at relay node and also energy consumption for
a RREQ and RREP message is 0.05J. Figure 10 depicts the
example network.

TABLE I: Analysis Table

Node RequiredThreshold

S1 5J
S2 5.5J
S3 1.35J

Fig. 10: Initial network

TABLE II: Initial Routing Table

Node SrcID OriginID Nexthop DestID Energy SlotAllID

s1 s1 10

s2 s2 10

s3 s3 10

R1 R1 25

R2 R2 25

R3 R3 25

R4 R4 25

The Table II depicts the initial routing table for all nodes in
a given network and its remaining energy before transmission
takes place.

A. Conventional TDMA

Fig. 11: Conventional TDMA Allocation

Iteration 1: Figure 11 shows the slot allocation mechanism
in conventional TDMA. A slot will be allocated for each
requested source node at node relay 1 based on the request
arrival time and packet will be forwarded to relay R2 node
which further allocates the slots to forward the packet to the
destination node. Since at the beginning each relay node will
have a sufficient energy to forward the packet the packet will
be successfully transmitted to the destination.

TABLE III: Routing Table

Node SrcID OriginID Nexthop DestID Energy SlotAllID

s1 s1 s1 R1 D1 9.9

s2 s2 s2 R1 D2 9.9

s3 s3 s3 R1 D3 9.9

R1 s1,s2,s3 R1 R2,R3 D1,D2,D3 24.6 s1,s3,s2

R2 s1,s2,s3 R2 R4 D1,D2,D3 24.8 s3,s2,s1

R3 s1,s2,s3 R3 R4 D1,D2,D3 24.9

61 of 181

The table III shows energy consumption for RREQ and
RREP message at nodes. Nodes satisfied Required threshold
value and allocated data slot for requested node based on the
arrival time.

Source node s1 wants to communicate with destination D1
through its neighbor R1 and it requires 5J of energy to packet
transmission.

At source node S2, it wishes to communicate with desti-
nation D2 with 10J of energy required and source node S3
requires 5.5J to transmits the packets to its destination D3.

Since allocation of data slots takes place at the relay nodes
due to mobility, slot allocation id field of the source node S1,
S2 and S3 contains null value.

At Relay node R1, it contains the source id S1,S2 and S3.
The data slot for S1, S2 and S3 allocated according to its
arrival time and R1 forwards the slot requests to its nexthop
R2s.

Relay node R2, contains the source id as S1, S2 and S3,
based on the arrival time R2 allocates the slots for source nodes
and it has 25J of energy. At relay node R3, same process is
continued.

Relay node R4, it contains the source id S1,S2 and S3. It
has 25J and its neighbor node are the destination D1, D2 and
D3. Allocation of data slots takes place based on the arrival
time.

Iteration 2: In routing table IV, source node S1 wishes to
send 35 packets, S2 has 25 packets and S3 has 30 packets.
All Packets will be transmitted successfully to the relay node
R1 and also to relay node R2. We can notice that R2 has
allocated slots for S1,S2 and S3.

TABLE IV: Routing Table

Node SrcID OriginID Nexthop DestID Energy SlotAllID

s1 s1 s1 R1 D1 5.7

s2 s2 s2 R1 D2 6.9

s3 s3 s3 R1 D3 6.3

R1 s1,s2,s3 R1 R2,R3 D1,D2,D3 8.4 s1,s3,s2

R2 s1,s2,s3 R2 R4 D1,D2,D3 8.4 s3,s2,s1

R3 s1,s2,s3 R3 R4 D1,D2,D3 24.9

R4 s1,s2,s3 R4 D1,D2,D3 D1,D2,D3 8.4 s3,s2,s1

Iteration 3: Figure 12shows the slot allocation of TDMA
at relay node R1 and R2 respectively. Node S1 energy exceeds
required threshold value for next 10 packets. Since slot S1 does
not have sufficient energy to transmit packet to relay R4 the
packet get dropped. This results in low packet delivery ratio
and it will result in congestion.

Fig. 12: packet drop at R4 due to insufficient energy

TABLE V: Routing Table

Node SrcID OriginID Nexthop DestID Energy SlotAllID

s1 s1 s1 R1 D1 4.5*

s2 s2 s2 R1 D2 5.7

s3 s3 s3 R1 D3 5.1

R1 s1,s2,s3 R1 R2,R3 D1,D2,D3 6.6 s1,s3,s2

R2 s1,s2,s3 R2 R4 D1,D2,D3 6.6 s3,s2,s1

R3 s1,s2,s3 R3 R4 D1,D2,D3 6.6

R4 s1,s2,s3 R4 D1,D2,D3 D1,D2,D3 6.6 s3,s2
* s1 exceeds its threshold value

Iteration n: Figure 13 shows the slot allocation of TDMA
at relay node R1 , R2 and R4 respectively. We can notice that
R2 has allocated slots for S1,S2 and S3. Since slot S1 does not
have sufficient energy to forward packet to relay R2 the packets
get dropped and also slot S2 does not have sufficient energy
to forward packet to relay R2 the packets get dropped after
2 packets have sent. Both of S1 and S2 packets are dropped
this results in low packet delivery ratio and it will result in
congestion.

Fig. 13: Packet drop at R4 due to insufficient energy

62 of 181

TABLE VI: Routing Table

Node SrcID OriginID Nexthop DestID Energy SlotAllID

s1 s1 s1 R1 D1 4.5*

s2 s2 s2 R1 D2 5.46**

s3 s3 s3 R1 D3 7.03

R1 s1,s2,s3 R1 R2,R3 D1,D2,D3 6.6 s1,s3,s2

R2 s1,s2,s3 R2 R4 D1,D2,D3 5.88 s3

R4 s1,s2,s3 R3 R4 D1,D2,D3 5.88 s3,s2

*s1 exceeds its threshold value, **s2 exceeds its threshold
value
Relay node R1 allocated slots for s1,s2 and s3 but at node R2
the s2 energy degraded below threshold. Hence, R2 allocate
slots only for s3 and s1. Slot allocation for s2 packets are get
dropped due to insufficient energy this leads to congestion.

B. Proposed MODEL

Fig. 14: Broadcasting request message

Iteration 1: Figure 14 depicts the proposed model which
allocate the slots for each source node in relay R1 based on the
required energy threshold parameter. Firstly the source nodes
S1,S2 and S3 broadcasts the RREQ to the one hop neighbor
node.

Fig. 15: Slot allocation at relay node R1

TABLE VII: Routing Table

Node SrcID OriginID Nexthop DestID Energy SlotAllID

s1 s1 s1 R1 D1 9.9

s2 s2 s2 R1 D2 9.9

s3 s3 s3 R1 D3 9.9

R1 s1,s2,s3 R1 R2,R3 D1,D2,D3 24.6 s1,s2,s3

The slot allocation of node is depicted in VIII

TABLE VIII: Slot Allocation

s1 s2 s3

The slot scheduling of node is depicted in IX

TABLE IX: Slot Scheduling

s3 s1 s2

Iteration 2: Figure 15 depicts the proposed model which
allocate the slots for each source node in relay R1 based
on the required energy threshold parameter. It calculates the
remaining energy of the relay node and the source node.
Since the remaining energy of a relay node is greater than the
requesting source node it allocates the slot. Further it schedules
the slots based on the minimum pause time and velocity. Since
source S3 has minimum velocity slot 1 will be allocated to it
and Slot 2 is allocated to source S1 and slot 3 will be allocated
to source S2.

Fig. 16: Slot allocation at relay node R2

TABLE X: Routing Table

Node SrcID OriginID Nexthop DestID Energy SlotAllID

s1 s1 s1 R1 D1 9.64

s2 s2 s2 R1 D2 8.05

s3 s3 s3 R1 D3 8.58

R1 s1,s2,s3 R1 R2,R3 D1,D2,D3 23.21 s1,s3,s2

R2 s1,s2,s3 R2 R4 D1 23.21 s3,s2,s1

The slot allocation of node is depicted in XI

TABLE XI: Slot Allocation

s3 s2 s1

The slot scheduling of node is depicted in XII

TABLE XII: Slot Scheduling

s1 s2 s3

63 of 181

Iteration 3: Figure 16 shows the allocation of the slots for
each source node in relay R2 based on the required energy
threshold parameter. It calculates the remaining energy ofthe
relay node and the source node. Since the remaining energy
of a relay node is greater than the requesting source node
it allocates the slot. Further it schedules the slots based on
the minimum pause time and velocity. Since source S1 has
minimum velocity slot 1 will be allocated to it and Slot 2 is
allocated to source S2 and slot 3 will be allocated to source
S3.

Fig. 17: Slot allocation at relay node R4 and successful
transmission

Figure 17 shows the allocation of the slots for each source
node in relay R4 based on the required energy threshold
parameter. It calculates the remaining energy of the relay node
and the source node. Since the remaining energy of a relay
node is greater than the requesting source node it allocatesthe
slot and also this results in successful transmission of packets.
The routing table of node R4 is depicted in Table XIII.

TABLE XIII: Node R4 Routing Table

SrcID OriginID Nexthop DestID Energy SlotAllID

S1,S2,S3 R4 D1,D2,D3 D1,D2,D3 23.21 S2,S1,S3

The slot allocation of node is depicted in XIV

TABLE XIV: Slot Allocation

s2 s1 s3

The slot scheduling of node is depicted in XV

TABLE XV: Slot Scheduling

s3 s2 s1

Figure XIV shows the allocation of the slots for each
source node in relay R4 based on the required energy threshold
parameter. It calculates the remaining energy of the relay node
and the source node. Since the remaining energy of a relay
node is greater than the requesting source node it allocatesthe
slot and also this results in successful transmission of packets.

VII. C ONCLUSION FUTURE WORK

In this work we have presented a congestion control model
that schedules the TDMA MAC slot based on the remaining
energy and velocity, pause time during mobility of nodes. Since
it considers the important energy resource of a node during
the allocation of slot to relay node based on the incoming
packet rate and amount of energy required to it, It guarantee
the improvement in throughput of a network in mobility. The
working of proposed model shows that proposed model results
in congestion free network and 100% packet delivery ratio
which further improves QoS in WMN. The model will be
implemented, tested in network simulator NS3 and behaviour
of network will observed in future.

REFERENCES

[1] Yeo, J., Lee, H., and Kim S,An efficient broadcast scheduling algorithm
for TDMA ad-hoc networks. Computer and Operations Research, 29(13),
pp. 17931806, 2002.

[2] Vergados, D. J., Vergados, D. D. and Douligeris, C,A new approach for
TDMA scheduling in ad-hoc networks, In Proc. 10th IFIP international
conference on personal wireless communications (PWC05), Colmar,
France, August, pp. 279286, 2005

[3] Vergados, D. D., Vergados, D. J., Douligeris, C. and Tombros, S.L,oS-
aware TDMA for end-to-end traffic scheduling in ad-hoc networks, IEEE
Wireless Communications, 13(5), pp. 6874. 2006

[4] G Narlikar, G Wilfong, L Zhang,Designing multihop wireless backhaul
networks with delay guaranteesin, In Proc. INFOCOM. Catalunya,
SPAIN, pp. 112, 2006.

[5] D. Koutsonikolas, S. M. Das, and Y. C. Hu,An interference-aware fair
scheduling for multicast in wireless mesh networks, Journal of Parallel
and Distributed Computing, 2007.

[6] Petar Djukic and Shahrokh Valaee,Link scheduling for minimum delay
in spatial re-use TDMA, In Proc. 26th IEEE International Conference on
Computer Communications, INFOCOM, pp. 28-36, 2007.

[7] B. Wang and M. Mutka,QoS-aware fair rate allocation in wirelss
mesh networks, Computer Communications (Special Issue: Resource
Management and routing in Wireless Mesh Networks), vol. 31,no. 7,
2008

[8] Jae-Hyun Kim, Jae-Ryong Cha and Han-Joon Park,New delay-efficient
TDMA-based distributed schedule in wireless mesh networks, EURASIP
Journal on Wireless Communi-cations and Networking, 2012.2012:369.

[9] Joseph D. Camp and Edward W. Knightly,The IEEE 802.11s Extended
Service Set Mesh Networking Standard, IEEE Communications Maga-
zine, 2008

[10] A Sahoo, P Goyal,A scheduling and call admission control algorithm
for wimax mesh network with strict qos guaranteein Proc. COMSNETS,
Bangalore, India, pp. 2029,2010.

[11] IEEE, ”Draft amendment: ESS mesh networking,”IEEE P802.11s Draft
12.00, Jun 2011.

64 of 181

An architecture of effective discrete-event simulation

engine for early validation of avionics systems

Denis Buzdalov

Institute for System Programming
of the Russian Academy of Sciences

Moscow, Russia
Email: buzdalov@ispras.ru

Abstract—Nowadays models which are used in the
avionics (aviation electronics) development are large
and can contain complex behaviour specifications, espe-
cially on early stages. This leads to high requirements
to simulators which are used for such models analyses.
Existing open-source simulators are not applicable or
not effective in application on such models. An archi-
tecture of a discrete-event simulator using continuations
approach for avionics models analysis is suggested.

Keywords—discrete-event simulation, avionics, early
validation

I. Introduction

An area of creation and verification of avionics (avia-
tion electronics) and other responsible systems is consid-
ered.

Nowadays design processes of such systems cannot
be performed without modelling techniques usage. Such
models are used not only for creation of systems but
also for analysis and validation of them (including early
validation). Such analyses are usually performed in an
automated way because of the great size of analyzed
models. That is why we consider only automated ways of
the model analysis.

There are a lot of kinds of analysis. One of division
aspects of functional characteristics analyses is a division
to static and dynamic analyses. Both types are important
but each one has features that doesn’t allow a type to oust
another one.

So, static analyses usually give guaranteed estimation
of model characteristics. Because such estimations are
given for the model in general, they usually are pretty
pessimistic. Also, new type of estimated characteristic
often leads developing of new static analysis method.

Dynamic analyses are used to determine more opti-
mistic estimations. But important feature of such methods
is that such estimations are determined only for particular
cases. This means that estimated characteristics are not
guaranteed to be the same in different environments (input
data and non-determinism resolution). This does not allow
to use dynamic analysis to reason about a model in general.

A lot of kinds of dynamic analysis exist. They can
differ in data, prerequisites and aspects that system can
be analyzed with.

Simulation is a widely used type of dynamic analysis.
This approach allows to estimate both timing and func-
tional properties of designed systems in different cases.

One of particular kind of simulation — discrete-event
simulation — is considered in this work. This kind of
simulation is naturally suitable for the computer systems
modelling. In this approach the work of the modelled
system is represented as a sequence of discrete events. Each
discrete event is an atomic action of internal state change
and interaction with outer world and other components.
All actions of a single discrete event are performed in a
single moment of the simulation time.

This paper considers a problem of having or building of
an effective and convenient simulation system for avionics
systems analysis.

II. Simulation system requirements analysis

There are a lot of ways how discrete-event simulation
can be performed. They can differ in both which charac-
teristics are taken into account and which input data is
required for the simulation system.

A. Events source

One of differences between the discrete-event simula-
tion approaches is in the events source. Some of them
consider only periodic events which are caused by the time.
Also sporadic events can be considered. Such events are
caused by some internal or external events which have to
be modelled appropriately. Also, hybrid approaches which
can consider the both event sources types, exist.

B. Model time

Another difference between approaches is in how accu-
rate the time is modelled.

In some approaches time can be only a source of cause-
and-effect relationships between discrete events.

Duration of events and processes have to be taken
into account for more accurate modelling. This allows to
retrieve estimations of timing properties as a result of the
model analysis.

65 of 181

C. How behaviour is modelled

Approaches of the discrete-event simulation can differ
in the ways of how behaviour of model components is
modelled.

Model can, for example, be represented as a randomized
events flow with given probability characteristics and de-
scription of how the component reacts to external events.
Model also can be imperative. For example, it can be rep-
resented as either a finite state machine (FSM), extensions
of FSM which work with extended memory state and time,
or some other transition systems. Also the behaviour can
be modelled as a program model, when model is a code in
some programming language.

Finite state machines (in particular, extended and
timed) and specialized transition systems are usually nat-
urally suit for describing of a behaviour of small compo-
nents. Also, some of such models are studied well and can
be analyzed in some other way except the execution. Such
analyses can be used during the whole system analysis.
But still, usage of such models is a bad idea for modelling
of complicated behaviours (in particular, requiring a lot of
internal states and events).

Program models are vice versa: they can pretty conve-
niently used for modelling of very complicated behaviour
but they usually can be used only for execution.

But program models have an additional advantage: any
simpler model (e. g. FSM and other transition systems)
can be translated automatically to a program model. This
means that if a simulation system supports program mod-
els, simpler model types can be supported automatically.

Randomized events flow is sometimes a really good
behavioural model type for some types of components.
And in most cases this model representation also can be
translated to a program model automatically.

D. Abstractness

Two independent metrics of abstractness of the system
models can be distinguished.

One of them is a structural abstractness. Structurally
abstract models have components which are going to be
refined in the future development but at the moment their
structure, number and properties of its subcomponents are
not known.

Another factor is a behavioural abstractness: the way
how accurate behaviour is modelled. This influences on
how accurate different aspects are reflected:

• internal state of a component;

• influence of a component to the other ones;

• data which components are working with;

• time intervals between events.

Which model characteristics can be retrieved during the
analysis process depend on the behaviour abstractness of
a model.

Relative complexity of behavioural models are more or
less the same in case when model is accurate by both fac-
tors and in case when model is abstract by both factors. If
structurally abstract model is built behaviourally accurate,
behavioural models of each model component can be very
complex (both by internal state and by interaction with
environment).

E. General requirements

Support of working with models represented in different
abstraction levels is essential for the early model analysis
and validation. In particular, it is really important to
analyze structurally abstract and behaviourally accurate
models. This allows to check single structure refinements
and to find out incorrect ones.

To provide this, the way of how behaviour is modelled
have to be convenient for complex behaviours. But still,
simple behaviours in structurally accurate models have to
be able to be defined in a simple way (which is convenient
to be done using some formalisms like transition systems).

That’s why we consider that in a context of early
analysis and validation it is important for a simulation
system to support program models. But still, support of
translation of other representations is really important too.

The very important aspect of usability of such simula-
tion systems is their main users — designing engineers and
integrators — familiarity to program tools and languages
or at least to used paradigms.

Moreover it is important to be able to conveniently
represent an internal state of a component and to work
with it in a behavioural model in a convenient way. Con-
sidering ideas from above the best candidate for that is
some imperative high-level language which has libraries of
collections, basic algorithms and other useful features.

Models of avionics systems can be very big. But nev-
ertheless simulation of such systems have to be performed
relatively fast.

Such models usually can be divided into some parts
that rarely interact with each other. This makes to think
that parallel simulation (with correct distribution of com-
ponents to nodes) can be performed with an acceptable
performance.

Nowadays it is important for a simulation system to
be portable. This is good both for users and for the
organization process of a parallel simulation. But this
requirement can add some restrictions to the way how
behaviour is modelled.

III. Related work

There are some work and open-source instruments
related to the discrete-event simulation.

Some instruments are based on formalisms that require
explicit declaration of all finite states of the modelled
component and all transitions between those states (in-
cluding the timing properties of transitions). For example,
instruments adevs [1], PowerDEVS [2] and DEVSimPy

66 of 181

[3] use pretty popular formalism DEVS (Discrete Event
System Specification) [4]. Galatea [5] is based on a similar
formalism. There are discrete-event simulation systems
based on the Petri net, for example CPN Tools [6]. As
it is said above, such models can be successfully used in
accurate models but do not suit for describing complex
behaviours in structurally abstract models.

There are some instruments that are using seldom used
in avionics area functional languages (for example, Scala
and Haskell used by Facsimile [7] and Aivika [8], [9])
or specific custom languages (for example, jEQN [10] for
SimArch [11]).

Some instruments which are not in classes above (for
example Tortuga [12], MASON [13], DESMO-J [14] and
SimPy [15]) architecturally cannot be parallelized.

JaamSim instrument [16] is aimed only to graphical
simulation and that’s why it hardly can be used in the
automated model analysis.

Thus, for fitting all requirements it is needed to design
an architecture of discrete-event simulation which supports
program models (using imperative high-level language)
with parallel simulation support.

IV. Architecture

A. Interaction with simulation environment

The first question was how to organize interaction be-
tween a behaviour model and its environment: simulation
time and other model components.

We will call a basis a set of action types in a code
of a program model which can be used to describe a
behavior. A basis has a part intended for an interaction
with environment.

Two fundamentally different approaches were consid-
ered.

1) Synchronous interaction: Originally a synchronous
basis was chosen. This approach is used in a number of
discrete-event simulation libraries.

The main idea of the approach is that the code of
a behaviour model determines moments of time when it
is ready in get information from outside. In that case
behaviour model can contain the following types of actions
(besides actions on the internal state):

• non-blocking data sending to some other model
component;

• notification a simulator about the end of the cur-
rent discrete event with the next event starting at:

◦ given moment of the simulation time;
◦ external event receiving (with ability to set

a timeout).

Program models designed for this approach are linear.
Such program model can be defined as a description of
an internal state and a single function containing all
behaviour. Such way of modelling seems to be natural

because a component life-cycle exists explicitly in a model
as a single entity (function mentioned above).

Moreover, simulator providing such basis can be imple-
mented to be very effective. In particular, such modelling
approach allows to simulate independently rarely interact-
ing parts of a model: until some parts do not send some
data to each other they can be simulated in their own
simulation time without violation of consistency and with
no need of saving and storing of internal states.

But this approach has some problems.

Lets consider a situation when basis of interaction
allows ending of a discrete event for receiving external
data with a zero timeout. This is used, in particular, to
implement a logical expression of kind "if at the current
moment there was an external event X we should do one
thing else another one". Such kind of expressions are widely
used in behaviour modelling when using synchronous basis.

In the considered case results of a simulation really
depends on the order of execution of discrete events which
are scheduled to the same simulation time. In other words,
some messages from one to another model component can
be non-deterministically delayed. Obviously, simulation
that allows such case cannot be used for accurate analysis
of latency and other timing characteristics of models.

Basis can be changed in the following way to not
to allow this. Behaviour model have to set a delta —
positive time which is the minimal time to wait before the
next event can arise — each time the external events are
processed. The problem of using of such basis can raise
when such delta have to be null or depends on external
data. In that case delta cannot be given correctly.

One more problem of this basis was discovered. The
problem is that the code of behaviour model have to
manage external data in the order of their coming. This
is not always possible (or, at least, convenient) because
sometimes component have to manage some concrete data
to make a decision. This leads a basis to have methods for
incoming data filtering.

2) Asynchronous interaction: An asynchronous basis is
an alternative to a synchronous one. The behaviour model
have to react somehow to an external data in the very
moment it comes. But still, one of the variant of such
reaction is ignoring.

It is important that a model represented in such basis is
not linear. This leads a rethinking of what the component
behaviour model is. Also it influences on an internal state
of a component.

It is stated that any model represented in a synchronous
basis can be represented in an asynchronous one. This
means that the class of possible behaviours described in
an asynchronous basic is not smaller (and, in fact, bigger)
that class of synchronous ones.

Such basis allows to consider all incoming data and to
interrogate other components each moment of time. This
makes behaviour modelling much easier comparing to the
synchronous approach.

67 of 181

Fig. 1. Threaded approach on a single node

Ability of interrogation allows to model a continuous
process initiation in an easy way. One component can
initiate a continuous process in another component and
is able to retrieve a result of this process as soon as it
finishes.

Thus, asynchronous basis contains the following actions
list:

• non-blocking data sending to some other model
component;

• notification a simulator about the end of the cur-
rent discrete event with beginning of the next event
starting not later than the given moment of time;

• interrogation of the internal state of other compo-
nent or initiation of a continuous process in it (in
that case the current discrete event ending is also
performed).

Simulator providing such basis is harder to implement
in an effective way (comparing to the synchronous one).
Nevertheless, the class of behaviours that can be modelled
becomes adequate to requirements. That’s why is was
decided to use the asynchronous basis.

B. Execution architecture

It is important to consider that program model code
execution have to be suspended at the end of discrete
events to make other components to able to execute their
own events at the same moment of the model time.

One of the simplest and obvious ways of organization
of such alternating execution is the usage of a multiple
threads. One thread is created for each component and
they are suspended by a simulation system when a function
of the end of discrete event is called. Thread is suspended
until new event is raised for the corresponding component.

This approach is practical and pretty easy to imple-
ment. But it has some remarkable drawbacks.

One of them is that a behaviour model writer can easily
create a deadlock. This situation can be preserved by using
of some conventions for the behaviour model code but
these conventions cannot be checked automatically by a
simulation system.

But the main drawback, as it is seen from practise, is
a high load to the threading subsystem of an operating
system: models can have tens of thousands of active com-
ponents so there are the same count of threads (fig. 1). This

worked well for Linux-based operating systems. But some
operating systems cannot manage with such load which
leads to inability of simulation using them. This approach
made the portability to be a problem.

One way of how this problem can be solved is a parallel
simulation. This means that if we have enough count of
nodes each of them would have small enough count of
threads to be managed by any multithreaded operating
system (fig. 2).

But having the size of a model as tens of thousands of
components and limitation of operating systems to about
a hundred of threads we have to use hundreds of nodes.
Sometimes it is not really possible to have such count of
nodes. Nevertheless usually models cannot be divided to
hundreds of parts which rarely interact. This means that
overhead of such simulation will be very big.

However, another way of such models execution organi-
zation execution exists. This way does not have drawbacks
mentioned above but still requires some effort to apply it.
This approach is called continuations or coroutines in the
computer science [17], [18].

The continuations approach allows to execute several
different program models in a single system thread. This
means that program model code can be suspended and
after that it can be resumed from the very point is was
suspended. In other words, the program model code can be
run at the beginning of the current discrete event handling
point.

This approach runs into a problem of correct error
tracing because control flow changes vastly and some effort
is needed to make error traces (including stack traces) to
look as if control flow was unchanged. Storing of additional
information for that leads having some overheads.

Some modern and progressive programming languages
which are using virtual machines for program execution,
have the continuations approach built in. Classic languages
have libraries implementing this approach but these li-
braries require an after-compilation program instrumen-
tation.

Instrumentation of library program models is not a
hard problem. But instrumentation of user program mod-
els can be a problem and require additional organization
of the simulation process start.

Nevertheless, applying this approach (fig. 3) allows to
increase maximal count of model components running a
single node. This count becomes operating system inde-
pendent. This means that more optimal division of a model
to simulation nodes can be achieved. Thereby simulation
effectiveness increases.

V. Integration

Simulator having architecture described above has been
implemented and integrated as a part of an instrument
MASIW [19], [20]. This instrument is dedicated to de-
veloping and analysis of avionics models using AADL
[21] (architecture analysis and design language), which is

68 of 181

Fig. 2. Threaded approach on multiple nodes

Fig. 3. Continuations approach on multiple nodes

widely used in creation of different responsible systems
including avionics systems.

MASIW is a platform of developing of AADL-based
models. It supports different representations and analysis
of developed systems. The framework of this instrument is
an open source.

This instrument has several static and dynamic model
analysers. One of its analyzers is a discrete-event simula-
tor. It is based on an architecture above and is used for a
general dynamic analysis of AADL-models’ behaviour.

VI. Conclusion

The main contribution is the architecture of the
discrete-event simulation system that allows to simulate
large systems (containing tens of thousands of compo-
nents) using program behaviour models.

Also interaction of a program model with a simulation
environment was investigated. It was shown that some
approaches of interaction used in simulation libraries are
inapplicable in some cases. An alternative way was sug-
gested.

These architecture solutions were applied in a powerful
avionics model design and analysis tool. This allowed
to perform pretty fast and accurate analysis of avionics
models (including models for the early validation). The
architecture allowed to not to require a lot of simulation
nodes for such analysis.

References

[1] Adevs library, http://web.ornl.gov/~1qn/adevs/.

[2] PowerDEVS, http://sourceforge.net/projects/powerdevs/.

[3] DEVSimPy, https://code.google.com/p/devsimpy/.

[4] B. Zeigler, Theory of modeling and simulation: integrating
discrete event and continuous complex dynamic systems. San
Diego: Academic Press, 2000.

[5] Galatea, http://galatea.sourceforge.net/.

[6] CPN Tools, http://cpntools.org/.

[7] Facsimile, http://facsim.org/.

[8] D. Sorokin, An Introduction to Aivika Simulation Library, 2013,
https://github.com/dsorokin/aivika.

[9] A scala port of the Aivika simulation library,
https://github.com/dsorokin/scala-aivika.

[10] A. D’Ambrogio, D. Gianni, and G. Iazeolla, “jEQN a java-
based language for the distributed simulation of queueing
networks,” in Computer and Information Sciences — ISCIS
2006, ser. Lecture Notes in Computer Science, A. Levi,
E. Savaş, H. Yenigün, S. Balcısoy, and Y. Saygın, Eds.
Springer Berlin Heidelberg, 2006, vol. 4263, pp. 854–865.
[Online]. Available: http://dx.doi.org/10.1007/11902140_89

[11] D. Gianni, A. D’Ambrogio, and G. Iazeolla, “SimArch: A
layered architectural approach to reduce the development effort
of distributed simulation systems,” in Proceedings of the 11th
International Workshop on Simulation & EGSE Facilities for
Space Programmes (SESP10), Noordwijk, The Netherlands,
sep 2010.

[12] Tortuga, https://code.google.com/p/tortugades/.

[13] MASON Multiagent Simulation Tool,
http://cs.gmu.edu/~eclab/projects/mason/.

[14] DESMO-J, http://desmoj.sourceforge.net/home.html.

[15] SimPy, http://simpy.readthedocs.org/en/latest/.

69 of 181

http://web.ornl.gov/~1qn/adevs/
http://sourceforge.net/projects/powerdevs/
https://code.google.com/p/devsimpy/
http://galatea.sourceforge.net/
http://cpntools.org/
http://facsim.org/
https://github.com/dsorokin/aivika
https://github.com/dsorokin/scala-aivika
http://dx.doi.org/10.1007/11902140_89
https://code.google.com/p/tortugades/
http://cs.gmu.edu/~eclab/projects/mason/
http://desmoj.sourceforge.net/home.html
http://simpy.readthedocs.org/en/latest/

[16] JaamSim, http://jaamsim.com/.

[17] D. E. Knuth, The Art of Computer Programming vol. 1: Fun-
damental Algorithms, 3rd ed. Addison-Wesley, 1997, pp. 193–
200.

[18] J. C. Reynolds, “The discoveries of continuations,” Lisp and
Symbolic Computation, vol. 6, no. 3-4, pp. 233–248, 1993.

[19] A. Khoroshilov, D. Albitskiy, I. Koverninskiy, M. Olshanskiy,
A. Petrenko, and A. Ugnenko, “AADL-based toolset for IMA
system design and integration,” in SAE 2012 Aerospace Elec-
tronics and Avionics Systems Conference, vol. 5, no. 2. SAE

Int., 2012, pp. 294–299.

[20] D. Buzdalov, S. Zelenov, E. Kornykhin, A. Petrenko, A. Strakh,
A. Ugnenko, and A. Khoroshilov, “Tools for system design of
integrated modular avionics,” in Proceedings of the Institute for
System Programming of RAS, vol. 26, no. 1, 2014, pp. 201–230.

[21] Architecture Analysis & Design Language (AADL), SAE
International standard AS5506B, SAE International, 2012,
http://standards.sae.org/as5506b/.

70 of 181

http://jaamsim.com/
http://standards.sae.org/as5506b/

Protecting Applications from Highly Privileged

Malware Using Bare-metal Hypervisor

Kurbanmagomed Mallachiev

Institute for System Programming

of the Russian Academy of Sciences

Moscow, Russian Federation

mallachiev@ispras.ru

Nikolay Pakulin

Institute for System Programming

of the Russian Academy of Sciences

Moscow, Russian Federation

npak@ispras.ru

Abstract—The paper presents a work-in-progress project on

construction of a security facility that protects trusted application

from malware residing at any privilege level of an OS, including

OS kernel. The approach is based on the Sevigator project that

used KVM to protect applications running in QEMU. The

presented project is a port of Sevigator to much smaller trusted

computing base of a bare-metal hypervisor.

Keywords—security, virtualization, confidentiality, hypervisor,

protection, virtual machine monitor, Sevigator

I. INTRODUCTION

The purpose of the project is to develop a security facility,
that protects data confidentiality on a computer connected to
the Internet and managed by an untrusted operating system. We
assume that malicious code can get unlimited access to all
hardware and software system resources through vulnerability
or backdoors in system software.

Modern widespread operating systems (such as Linux or
Windows) are based on monolithic kernel, where all
components of kernel have equal privileges. When malicious
code penetrates OS kernel there is a risk of losing control over
any OS resources including application in-memory data,
confidential information in file storage, etc. Integrity and
confidentiality of data transmitted over the network are also
threatened, even in the case when cryptography is used.

There are several channels for malicious code to penetrate
OS kernel. It could be vulnerability of the system applications
and kernel vulnerabilities, and backdoors in the drivers. Also
there is a risk of theft of private keys from companies,
supplying software or hardware, to sign malicious code; as a
result OS trusts the signature and installs such code in the
kernel.

Multiple approaches to securing workstations were
proposed, including new more secure operating systems,
specific hardware extensions, new application architectures.
Still those approaches require massive investments in new
products and significant changes in the user experience.

The question is whether it is possible to protect unmodified
applications that run under unmodified commodity OS like
Windows or Linux on a commodity workstation with x86
CPU. Protection systems located in kernel, such as antivirus,
firewall, intrusion detection, can themselves be attacked by

privileged malicious code. Possible way of protection from
those attacks is the transfer of protection to more privileged
level.

The answer is “probably yes”: a prototype called Sevigator
[3, 4, 5, 6] protects applications in Linux from malware and
comprised kernel. It uses hardware-assisted virtualization [1] to
secure operating memory of applications and control access to
communication hardware (network interface card). It allows to
launch OS under control of virtual machine monitor (VMM,
also called hypervisor). Hypervisor is much smaller than OS,
fully isolated from it, and has higher privilege than OS.
Hardware virtualization is supported by most modern
processors, which suggests the possibility of widespread use of
security systems based on hypervisors

One of the first examples of the use of virtualization to
protect against untrusted OS is Overshadow project of memory
protection developed by researchers in Stanford and Princeton
Universities, MIT и VMware, Inc [2]. This technology does
not require modification of the operating system or application.
All memory of running processes is encrypted when a context
switches. So, if the operating system or another program tries
to read data from the memory of the process, they will receive
only encrypted data, while the trusted process, referring to own
data, receives it in the original form. However this approach
limits cases when trusted application needs to pass some data
to other processes by means, for example, of shared memory.
Also in this approach all data are encrypted, even those that
require no protection, and that is overkill.

Another reliable way to prevent data leakage, under the
assumption that malicious code in the OS kernel, is the
physical isolation of the computer from the network
connection. However in this case all legitimate applications,
which require access to the network, would suffer.

Sevigator isolates untrusted OS from network, but keeps
operability of trusted application. For them, and only for them,
an access to network resources is granted. An important feature
of this approach is that there is no need to recompile any
applications or OS

Within Sevigator approach OS resides in a virtual machine,
while protection system is located in type 2 (hosted)
hypervisor. It provides facilities to isolate untrusted
applications from network access; to prevent data leaks due to

71 of 181

code intrusion or memory attacks it controls memory integrity
of the applications under protection. Description of security
algorithms can be found in [3, 4, 5, 6]. Sevigator system is
based on hypervisor KVM (Kernel-based Virtual Machine)

Hypervisor KVM is type 2 hypervisor. Type 2(hosted)
hypervisors runs like a module inside the host OS kernel,
which handles interrupts, provides an abstraction of hardware
and management of computer resources. Virtual machines with
guest OS run like application in the host OS. Implementation
based on this hypervisor is relatively simple, since such
hypervisor allows you to develop and test on the same machine
without rebooting, provides an opportunity to use debuggers
and monitoring tools to find errors.

However, in this case, the hypervisor reliability depends on
the operating system, which runs the hypervisor; in the KVM
case it is Linux. The OS architecture is based on the principle
of a monolithic kernel, so the hypervisor is vulnerable to attack
by drivers and models of devices in the OS kernel. These
defects do not exist in the decision based on type 1 hypervisor.

Type 1 hypervisors (native hypervisor, bare-metal
hypervisor) run directly on the host's hardware. This hypervisor
contain microkernel for interrupt processing, memory
management, input-output, etc. Bare-metal hypervisors run at a
higher privilege level than the OS kernel. A guest operating-
system runs on the same privilege level as in the absence of the
hypervisor.

Building protection systems based on type 1 hypervisor
requires considerably less trusted computing base, than in the
case of type 2 hypervisor. In addition, the microkernel allows
you to split device drivers, virtual machines and memory
manager. Thereby compromising individual component will
not lead to compromise the entire system.

In this paper we present adaptation of part of Sevigator’s
protection algorithms, implemented in the type 2 hypervisor
KVM, for type 1 hypervisor. Functionality of isolation OS and
untrusted applications from network was adapted; currently
being adapted security algorithms protecting process address
space from unauthorized modification through the mechanism
of direct memory access

II. CHOISE OF HYPERVISOR

When designing an adaptation to the type 1 hypervisor the
idea to develop a hypervisor from scratch was immediately
rejected: the development of a hypervisor is a very laborious
task. It was necessary to compare existing type 1 hypervisors
for x86 and select one to adapt functionality in it.

There are several requirements to hypervisors:

1. Open source. It is the base requirement to implement
security mechanisms in the hypervisor code.

2. Support AMD x86 architecture, because, when we
start adaptation, Sevigator used AMD virtualization

3. The presence of a virtual machine monitor to create
and manage virtual machines and support of arbitrary
unmodified guest operating systems.

4. Support for multiple virtual machines. Sevigator
architecture assumes that at least two virtual machines run
simultaneously.

5. Virtualization of hardware resources to separate the
hardware between multiple virtual machines.

6. Small source code to allow verification.

 The following hypervisors were considered: BitVisor[7],
NOVA[8], Xen[9], XtratuM[10]. All of them are distributed
under open source licenses and don't require existence of a host
operating system.

BitVisor is hypervisor and virtual machine monitor,
designed to ensure security of computer systems. BitVisor
provides encryption of network connections and data on disk.
Ensuring confidentiality of network and disk data is transparent
to the operating system. BitVisor designed to create minimal
overhead on encryption and decryption of data. BitVisor
distributed under an open source license.

Virtual machine monitor is integrated into the hypervisor
and performed at the same privilege level as the hypervisor.
BitVisor supports exactly one virtual machine - this is done in
order to minimize the overhead on the interaction of the guest
OS with the devices, primarily input and output devices.
BitVisor intercepts access to certain devices (eg, SATA
controller, ie, hard disk), while the rest of the devices OS
accesses directly.

BitVisor was rejected because it does not support multiple
virtual machines.

NOVA is a hypervisor, built on microkernel architecture.
Microkernel is performed at the highest level of privileges, and
the environment, including resource monitor, device drivers
and monitors virtual machines run at lower privilege levels.
Thanks to microkernel architecture NOVA has well isolated
code: components communicate with each other via messages,
and with the kernel through hypercalls, only microkernel is
performed with the highest privilege level, this provides
improved security system as a whole.

Strictly speaking, the abbreviation NOVA used to refer to
NOVA microkernel. In addition to the kernel running guest
operating systems requires additional components developed in
the project NUL (NOVA UserLand). NUL includes a virtual
machine monitor Vancouver, memory and hardware resources
monitor Sigma, external devices’ drivers. Further in the text of
this paper we will refer to NOVA bundled with NUL
environment as just NOVA.

Originally the microkernel was developed at the Dresden
University of Technology, now the main development of the
kernel is in the research center of Intel.

NOVA is developed in C++, distributed under open source
license. Using of microkernel architecture allows for
simultaneous execution of an arbitrary number of virtual
machines that can run unmodified guest operating systems.
NOVA supports virtualization devices: Vancouver provides to
guest OS virtual devices, which are served in the NUL. NOVA
currently provides limited support for direct access to the

72 of 181

computer hardware, and limited support through separation
devices IOMMU.

Xen is a very popular virtualization platform, which is
widely used to build cloud services.

Xen virtualization platform includes a hypervisor, virtual
machine monitor for guest OS, dedicated virtual machine dom0
to work with devices and specialized drivers to access the
device via the dom0. These drivers are called paravirtualized as
they "know" that the OS is running under Xen and effectively
interact with the hypervisor and dom0.

Xen hypervisor implements the minimum set of operations:
management of RAM, processor status, real time clock,
interrupt processing and control of DMA (IOMMU). All other
functions, such as the implementation of virtual devices, create
and delete virtual machines, moving VMs between servers in
the cloud, etc. is implemented in a dedicated virtual machine
dom0.

All functions related to ensuring network performance, disk
drives, video cards emulation and other devices placed outside
the hypervisor. Typically, the request handling devices consist
of two parts. Driver in the guest operating system translates
requests from the OS to program handler in dom0. To increase
the security of the system servers, virtualize devices run as
separate processes in OS dom0. Failure in such a program
leads to a denial of only one virtual device in one VM and does
not affect the work of other copies of the server.

Xen hypervisor supports virtualization even on platforms
where there is no hardware virtualization. As a result, the
hypervisor code is quite large - on the order more microkernel
NOVA - and convoluted. In addition, Xen does not support
running unmodified guest OS: it requires specialized drivers to
run the OS under Xen supervision.

XtratuM is hypervisor to separate computer resources into
multiple virtual real time machines. XtratuM hypervisor
provides real-time guarantees for the service interruptions
hypercall, memory operations. XtratuM provides mechanisms
isolation of virtual machines, the minimum software interface
to run real-time applications without the guest OS, the means
of communication between VMs. Developers claim support of
x86 architecture, but the official website of the project
distributes documentation for LEON processor family only –
specialized clones if SPARC architecture.

XtratuM hypervisor is supported by several real time
operating systems. Guest OS requires paravirtualized drivers,
XtratuM does not support execution of arbitrary unmodified
guest OS.

On the basis of requirements to the hypervisor we selected
NOVA as the platform for bare metal hypervisor with security
functions ported from Sevigator hypervisor.

III. SEVIGATOR ARCHITECTURE

Among the applications running in the operating system,
the protection system identifies several applications that are
considered trusted. The specific mode of functioning is
provided to these applications. All other applications are
considered as untrusted, the security problem is to prevent the

leakage or compromising of confidential data of trusted
applications. In particular, trusted applications for the normal
functioning may require access to the public network. This
network connection in the absence of external control can be
used by malicious code in the kernel of the operating system
for the leakage of sensitive data. The task of the security is to
prevent data leakage.

The solution is based on use of hardware virtualization
technology, execution of an operating system and all software
in the virtual machine, and implementation protection system
in the body of a virtual machine monitor (hypervisor) [3]. The
hypervisor provides simultaneous execution of two completely
isolated from each other virtual machines (fig. 1). Both are
running the same untrusted operating system. The first virtual
machine, we will call it private, is the primary one. It is there
where critical data resides, applications are executed (both
trusted and untrusted), processing those data. When the private
virtual machine starts hypervisor blocks access to the network
interface. The operating system, which runs in the VM,
believes that the network adapter is physically absent.
Therefore, any attempt to establish a network connection from
within the virtual machine and transmit the data to a remote
computer will inevitably lead to error. Thus, the malicious code
running on any hardware privileges inside the private virtual
machine, even if it managed to gain access to critical data, will
not be able to transfer them to the outer world.

Fig. 1. Sevigator architecture

Network access for trusted applications is supplied by the
second virtual machine. From here on we will refer to it as
public. Public virtual machine has free access to the network
interface, and any program in this virtual machine can interact
with remote computers on the network. However, due to virtual
machines isolation provided by the hypervisor the software in
the public virtual machine (including Linux kernel) cannot gain
access to data residing within the private virtual machine.

Network support for trusted processes is implemented
through remote execution of required (limited) set of system
calls to the public virtual machine. The hypervisor intercepts
system calls invoked by a trusted process, analyzes the data
and, when necessary, transmits them to the public virtual.
System calls of other processes as well as the rest of the system
calls of trusted processes are serviced locally in the private
virtual machine.

The only information transmitted outside the private virtual
machine is explicitly specified by a trusted process as
parameters of system calls, and besides transfer the information
outside of the virtual machine is serviced by trusted code

73 of 181

(hypervisor). Note that the remote execution of the system call
is made transparent for a trusted process and an operating
system for a virtual computing machine.

Trusted processes are executing under the control of an
untrusted operating system. In-memory data of trusted
applications are not encrypted, stored in clear (unencrypted)
form, and protection system does not restrict the access (both
system and user) to these data. Since untrusted components,
including the kernel, do not have access to the network, they
are not able to disclose sensitive information.

However, in untrusted OS environment it is necessary to
take into account the risk of injecting code into trusted
applications: malicious code in the operating system kernel can
load into the address space of a trusted process necessary code,
then pass control to it, and trusted process on its behalf will
take all necessary actions for the delivery critical information
to a remote computer, which is controlled by the attacker. To
prevent these harmful effects security system protects context
of a trusted process against unauthorized modification by any
program in private virtual machine, including privileged.

IV. ADDAPTATION FROM KVM TO NOVA

So, as mentioned above, open source NOVA hypervisor
has been selected as the hypervisor. At the moment it is being
actively developed in the Intel Research laboratory.

By the arguments in favor of NOVA, above, may be added
that the hypervisor much less than all popular hypervisors
therefore potentially more secure. Also its kernel code has been
verified [11]. On the Fig. 2 you can see a comparison of the
sizes of popular hypervisors and NOVA.

Fig. 2. comparison of the sizes of popular hypervisors

 NOVA is built on microkernel architecture. Microkernel,
which size is less than 10,000 lines of C ++, launches virtual
machines and routes interrupts and system calls. In addition to
the core NOVA includes the “Nova UserLand” NUL, which
includes a virtual machine monitor (Vancouver), memory and
hardware resources monitor (Sigma0) and drivers of external
devices. The total size of NOVA and NUL is less than 50
thousand lines.

Sevigator was buit on top of KVM kernel module that
provides hardware virtualization in QEMU environment.
Intercepting calls of the virtual machines, it entrusts to
processing of many functions host OS kernel, under which it is
launched. Moreover KVM is included as a module in the host
OS kernel, and therefore has the highest level of privilege.
There is no division of privilege levels in KVM. The size of
KVM is over 300 thousand lines of code. In the prototype
Sevigator based on KVM interaction was through the address
space and virtual interrupt of pci device, which emulated by
qemu.

During transferring Sevigator to NOVA platform most of
Sevigator’s algorithms have been implemented in components
of NUL.

This section briefly describes the changes made to the
NOVA and NUL, to implement algorithms from Sevigator.

After transfer Sevigator to NOVA a remote service system
call will appear as diagram in Fig. 3

Fig. 3. Architecture of Sevigator in NOVA.

At system start the virtual machine monitor, controlling
user (private) VM, is configured so that it does not have a
network card emulator. That is, when the OS at boot
enumerates PCI bus, it lacks the class of device "network
device". So, operating system has no access to the network, and
all untrusted components, including the kernel, cannot transmit
and receive data from the outside.

However, when a trusted application performs a system call
related to network access, the system call is intercepted by the
hypervisor. System call parameters are copied into an internal
ring buffer, which is not accessible by guest OS in virtual
machines. VM monitor service receives notification of a new
data, reads data from the ring buffer and transmits to the public
VM for handling. Transferring the data from the public VM to
the private VM is implemented similarly.

System calls are intercepted by the hypervisor, but the
processing parameters of the call, the data transmission
between the VM, return control to the VM implemented in
virtual machine monitor. This is done to improve the security
of the system: if the query processing network has vulnerability
then only one VM has been compromised, all other processes

74 of 181

are executed as a microkernel’s process and isolated from each
other.

Functions that implement algorithms of Sevigator were
added to the virtual machine manager Vancouver, which runs
as an application process in NOVA. This protects hypervisor
itself from compromising by the security system. Even if
malicious code can take control over Sevigator, in a single VM,
it will not be able to subdue other virtual machines.

V. MODIFICATION OF NOVA AND NUL

А number of changes to the core components of NOVA
and NUL was required to properly implement the Sevigator.

1. Sevigator’s components, working in the OS kernel and
user space (trusted applications launcher), interact with the
hypervisor through the vmmcall instruction. It was necessary to
implement handlers of vmmcall in NUL. For this, interception
vmmcall instruction has been activated in the NOVA’s kernel
and implemented handler for instruction in virtual machines
manager Vancouver. On AMD platform instructions
interception implemented by setting to 1 the bit, responsible for
this instruction in a control block of the virtual machine
(VMCB). The analysis showed that by the default NOVA set to
1 bits responsible for intercept vmload, vmsave, clgi, skinit. In
order not to break code integrity the special flag has been
added and the specific mask has been changed.

2. To trace action of the operating system, primarily context
switching, Sevigator intercepts specific x86 instructions. These
are system calls, software interrupts, returns from the interrupt,
and others. To support it special handlers, embedded in KVM
code, are implemented in the prototype. When moved to
NOVA it is necessary to implement these instructions
interception means of Sevigator. While intercepting instruction,
you must be able to emulate, as the interception occurs before
running the instruction [12]. Currently Vancouver does not
have complete emulation necessary instructions (iret, int n,
syscall, sysexit), but the implementation of the emulation is
planned by the developers. Since emulation instructions was
not included in the plan of this work, we decided to temporarily
inserted into the core of the guest virtual machine vmmcall
calls immediately after a system call and before returning from
the system call. This decision violates the initial concept of
protection without making changes to the OS, but it is
temporary and it will be replaced as soon as Vancouver
developers implement a full emulation of instructions.

3. To implement memory protection, we need to be able to
access to the virtual machine memory. In Vancouver there is a
subsystem, responsible for emulation instructions that work
with memory. It has no external interfaces through which the
other subsystem (in particular Sevigator) can work with
memory. To access the virtual machine's memory by virtual
address have been added a special message for reading and
writing to the memory of virtual machines. Recall that the
interaction between the components of NUL is given by
messaging. Accordingly, new types of message for reading and
writing were added, as well as handlers of these messages to
the subsystem operating with the memory.

4. To implement the algorithms of the Sevigator‘s network
subsystem should be developed mechanism and implemented

software interface of communication subsystem between
virtual machines NUL. We implemented a ring buffer between
managers of virtual machines, and notification of arrival a new
data signaled through interruption to the virtual machine. In
order to do this, special messages (OP_SVG_WRITE,
OP_SVG_READ) handlers were added to operation memory
monitor. And for notification, during initialization both
Vancouvers initialize its own portals, and send its addresses to
the NOVA kernel; NOVA has handler of the specific system
call, which sends a signal to the desired portal. After storing
data to ring buffer Vancouver needs to send a special system
call to the kernel NOVA, which will notify the other
Vancouver about recording.

5. Sevigator assumes access to the network card. In NUL
possibility of direct access to the pci-devices are implemented
only partially. NOVA has a feature to be the network provider
for the virtual machine, but to use it you need to write a driver
for the network card. We based our driver on the driver, which
was included to the NUL to work with a network card family
ne2000 that emulated by qemu. This driver has been slightly
modified to work with a specific physical card of the ne2000
family. The changes are minimal – we added a missing flag
and reduced the size of the buffer.

VI. CONCLUSION

In this paper we presented an implementation of privacy
protection of network connection of trusted Linux processes in
bare-metal hypervisor. We have conducted a study of open
source bare-metal hypervisors: we have formulated certain
requirements to the type 1 hypervisor, analyzed the available
open hypervisors and by comparing have selected hypervisor
NOVA.

Porting Sevigator from KVM to NOVA is in progress, we
have partly ported confidentiality protecting mechanisms. We
have conducted a study of architecture and mechanisms of
components interaction within NOVA. We have identified and
implemented changes in NOVA, necessary for the functioning
of Sevigator. This allowed:

● to port mechanisms of remote service of system calls;

● to port mechanisms to control trusted application
context;

● to port mechanisms to control memory integrity of
trusted applications;

● implement a prototype of network boot mechanism.

Thus, the outcome of the project is a prototype of security
system that protects the integrity and confidentiality of
information stored and processed on a computer connected to
the network and controlled by potentially malicious operating
system.

Developed prototype provides protection of information
systems from the injection of malicious code by modifying the
memory, images of executable files or script files, protect the
integrity and confidentiality of data while transiting over the
network.

75 of 181

[1] Intel® 64 and IA-32 Architectures Software Developer's Manual
Combined Volumes 3A, 3B, and 3C: System Programming Guide
 [Online]. Available:
http://www.intel.com/content/dam/www/public/us/en/documents/manual
s/64-ia-32-architectures-software-developer-system-programming-
manual-325384.pdf)

[2] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C.
A.Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow:a
virtualization-based approach to retrofitting protection in
commodityoperating systems,” SIGOPS Oper. Syst. Rev., vol. 42, pp. 2–
13, March 2008. [Online]. Available:
http://doi.acm.org/10.1145/1353535.1346284

[3] Burdonov I., Kosachev A., Iakovenko P. Virtualization-based separation
of privilege: working with sensitive data in untrusted environment. //1st
Eurosys Workshop on Virtualization Technology for Dependable
Systems, New York, NY, USA, ACM. 2009. P. 1-6.

[4] D.V. Silakov. Using Hardware-assisted Virtualization in the Information
Security Area. pp. 25-36. Proceedings of the Institute for System
Programming of RAS, volume 20, 2011. ISSN 2220-6426 (Online),
ISSN 2079-8156 (Print)

[5] P. Iakovenko. Transparent mechanism for remote system call execution.
pp. 221-242. Proceedings of the Institute for System Programming of
RAS, volume 18, 2010. ISSN 2220-6426 (Online), ISSN 2079-8156
(Print)

[6] P. Iakovenko. Ensuring confidentiality of information processed on a
computer with a network connection. Information security problems.
Computer Systems. №4. 2009. pp. 23-41. (In russian)

[7] Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa
Omote, Shoichi Hasegawa, Takashi Horie, Manabu Hirano, Kenichi
Kourai, Yoshihiro Oyama, Eiji Kawai, Kenji Kono, Shigeru Chiba,
Yasushi Shinjo, and Kazuhiko Kato. 2009. BitVisor: a thin hypervisor
for enforcing i/o device security. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution
environments (VEE '09). ACM, New York, NY, USA, 121-130.

[8] Udo Steinberg and Bernhard Kauer. 2010. NOVA: a microhypervisor-
based secure virtualization architecture. In Proceedings of the 5th
European conference on Computer systems (EuroSys '10). ACM, New
York, NY, USA, 209-222.

[9] Chris Takemura and Luke S. Crawford. The Book of Xen. No Starch
Press. October 2009, 312 pp. ISBN-13 978-1-59327-186-2,

[10] A. Crespo, I. Ripoll, and M. Masmano. 2010. Partitioned Embedded
Architecture Based on Hypervisor: The XtratuM Approach. In
Proceedings of the 2010 European Dependable Computing Conference
(EDCC '10). IEEE Computer Society, Washington, DC, USA

[11] Nova Micro-Hypervisor Verification http://os.inf.tu-
dresden.de/papers_ps/tr-tews-vnova-2008.pdf

[12] AMD64 Architecture Programmer’s Manual Volume 2: System
Programming
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.p
df

76 of 181

Checking Conformance of High-Level Business
Process Models to Event Logs

Antonina K. Begicheva
National Research University

Higher School of Economics (HSE)
33 Kirpichnaya Str., Moscow, Russia

Email: be-ton@yandex.ru

Irina A. Lomazova
National Research University

Higher School of Economics (HSE)
33 Kirpichnaya Str., Moscow, Russia

Email: ilomazova@hse.ru

I. INTRODUCTION

Process mining [1] is a new technology, providing a variety
of methods to discover, monitor and improve real processes by
extracting knowledge from event logs. The two most prominent
process mining tasks are: (i) process discovery: constructing
a process model from example behavior recorded in an event
log, and (ii) conformance checking: diagnosing and quanti-
fying discrepancies between observed behavior and modeled
behavior. There are many software products which allow us to
use methods of Process Mining. ProM [4] is an open-source
tool supporting many techniques of Process Mining, which are
represented as plug-ins. Due to a flexibility of this environment
it can be used both for reserch and applications.

This paper studies conformance checking [1], [3], [6], [7].
Conformance checking uses both an event log and a model,
and compares observed behavior written in the log with the
behavior produced by the model. The general goal is to find
discrepancies between them to improve a model. Conformance
checking techniques can also be used for measuring the
performance of process discovery algorithms (that restores a
model on the basis of a known log) and to repair models that
have no a well alignment with the real behavior of the process.

There are four model’s evaluation criteria: fitness, pre-
cision, generalization and simplicity. Fitness measures ”the
proportion of behavior in the event log possible according to
the model”. Among the four quality criteria, fitness is the most
related to the conformance. Several methods of conformance
checking were developed. We consider methods based on
replay approach [3]. Replaying a log on a model can help
to measure fitness.

An obvious approach to measure fitness would be just to
count the fraction of cases that can be ”parsed completely”
(i.e. the proportion of cases corresponding to firing sequences
leading from [start] to [end]). Fitness can range from 0 to 1. It
is supposed that fitness is equal to 1, if the log perfectly fits the
model. When measuring fitness by replaying, we could stop
replaying a trace when we face a problem and mark this trace
as unsuitable. We get more information about conformance if
we continue replaying the trace on the model, and record a
count of all missing tokens and all tokens that are pending at
the end.

Let us denote the number of produced tokens by p, the
number of consumed tokens by c, the number of missing
tokens by m and the number of remaining tokens by r. Initially,

when all places are empty, p = c = 0. Then the environment
produces a token for the place [start]. Therefore, the p counter
is incremented: p ← p + 1. A log is replayed by consecutive
firings of transitions, corresponding to activities of the process.
Each transition consumes and produces several tokens and we
increase the corresponding variables. If we need an extra token
in a place to continue replaying (when the next transition is
not enabled), then the m counter must be incremented and the
place, that lacks a token, is marked as a place where a token
was missed. If by the time of consuming a token from the
place [end] there were tokens pending in some other places,
the r counter must be increased by the number of the remained
tokens, and the places with tokens must be tagged.

The fitness of a trace σ of a workflow process model N is
defined as follows:

fitness(σ,N) = 1
2 (1−

m
c) +

1
2 (1−

r
p)

When working with business processes we typically use
detailed logs, which present the full report about sequentially
executed activities. Since in most information systems logs
are generated automatically, keeping detailed records is not a
problem. However, large and detailed models are not good
to deal with. Such models are not clear and readable for
experts. Experts prefer to work with more abstract (high-
level) models. More abstract models are easier to construct,
understand and analyze. Process models developed by people
are, as a rule, not very large and abstract from technical details.
So, checking conformance of an abstract model and a low-level
event log, generated by an information system, is an important
and challenging problem. However, as far as we know, this
problem was not studied in the literature.

In this paper we consider an abstract model in which each
separate activity represents a subprocess built from a set of
smaller activities. A history of a detailed process behavior
is recorded in low-level logs. Process models are represented
by workflow nets — a special subclass of Petri nets [2]. We
present a method for checking conformance of an abstract
model and a low-level event log.

The paper is organized as follows. Section II contains some
basic definitions and notions, including Petri nets, event log,
perfect fits and refinement. In Section III we give a motivating
example of handling a request for a compensation within
airline in terms of Petri nets. In Section IV we present a
method for checking conformance between an abstract model
and a low-level log. We also give a justification of this method

77 of 181

by proving its correctness in the case of perfect fitness. An
implementation of our algorithm is described in Section V.
Section VI contains some conclusions.

II. PRELIMINARIES

We start with recalling some basic notions from the set
theory. Let S be a set. By S∗ we denote the set of all finite
sequences (words) over S.

S = S1∪S2∪ . . .∪Sn is a partition of S iff ∀i, j ∈ [1, n] :
Si ⊆ S and Si ∩ Sj = ∅.

A multiset m over a set S is a mapping m : S → Nat,
where Nat is the set of natural numbers (including zero), i.e.
a multiset may contain several copies of the same element.

For two multisets m,m′ we write m ⊆ m′ iff ∀s ∈ S :
m(s) ≤ m′(s) (the inclusion relation). The sum of two mul-
tisets m and m′ is defined as usual: ∀s ∈ S : (m+m′)(s) =
m(s)+m′(s), the difference is a partial function: ∀s ∈ S such
that m(s) ≥ m(s′) : (m−m′)(s) = m(s)−m′(s). By M(S)
we denote the set of all finite multisets over S. Non-negative
integer vectors are often used to encode finite multisets.

Definition 1 (Petri net). Let P and T be disjoint finite sets
of places and transitions and F : (P × T) ∪ (T × P)→ Nat.
Then N = (P, T, F) is a Petri net. Let A be a finite set of
activities. A labeled Petri net is a Petri net with a labeling
function λ : T → A ∪ {ε} which maps every transition to
an activity (a transition label) from A, or a special label ε,
corresponding to an invisible action.

A marking in a Petri net is a function m : P → Nat,
mapping each place to some natural number (possibly zero).
Thus a marking may be considered as a multiset over the set of
places. Pictorially, P -elements are represented by circles, T -
elements by boxes, and the flow relation F by directed arcs.
Places may carry tokens represented by filled circles. A current
marking m is designated by putting m(p) tokens into each
place p ∈ P .

For a transition t ∈ T an arc (x, t) is called an input arc,
and an arc (t, x) — an output arc; the preset •t and the postset
t• are defined as the multisets over P such that •t(p) = F (p, t)
and t•(p) = F (t, p) for each p ∈ P .

A transition t ∈ T is enabled in a marking m iff ∀p ∈
P m(p) ≥ F (p, t). An enabled transition t may fire yielding
a new marking m′ =def m − •t + t•, i. e. m′(p) = m(p) −
F (p, t)+F (t, p) for each p ∈ P (denoted m t→ m′, m

λ(t)→ m′,
or just m→ m′).

A Workflow-net is a (labeled) Petri net with two special
places: i and f . These places are used to mark the beginning
and the ending of a workflow process.

Definition 2 (Workflow net). A (labeled) Petri net N =
(P, T, F, λ) is called a workflow net (WF-net) iff

1) There is one source place i ∈ P and one sink place
f ∈ P s. t. •i = f• = ∅;

2) Every node from P ∪ T is on a path from i to f .
3) The initial marking in N contains the only token in

its source place.

nn nn
i if f

Extended WF-net t+(N)WF-net N

- -

ti tf

s

Fig. 1. Extending a WF net with initial and final transitions

By abuse of notation we denote by i both the source place
and the initial marking in a WF-net. Similarly, we use f to
denote the final marking in a WF-net N , defined as a marking
containing the only token in the sink place f .

Let N = (P, T, F, λ) be a WF-net. The extended WF
net (EWF-net) N ′ = (P ′, T ′, F ′, λ′) is defined as follows:
P ′ = P, T ′ = T ∪ {ti, tf}, and F ′ = F ∪ {〈ti, i〉, 〈f, tf 〉},
where ti, tf are new (not occurring in P, T) nodes. The new
transitions ti, tf are labeled with invisible activity ε in N ′, all
other transitions in N ′ have the same labels as in N . In the
remainder we will denote such an extended WF net of N as
t+(N). The initial marking in an extended WF net contains
no tokens. Thus an extended WF net may start a new case at
any moment (cf. Fig.1).

Event logs keep a history of process executions.

Definition 3 (Event log). Let A be a finite set of activities.
A trace σ is a finite sequence of activities, i.e., σ ∈ A∗. An
event log L is a finite multiset of traces, i.e., L ∈M(A∗).

In this paper we study conformance checking. Given a
model and an event log we would like to compare the process
model behavior and the behavior recorded in the event log.
Several metrics for conformance checking were defined in the
literature [1]. Among the most important metrics is fitness. In-
formally speaking, fitness measures the proportion of behavior
in the event log possible according to the model.

Definition 4 (Perfect fit). Let N be a WF-net with transition
labels from A, an initial marking i, and a final marking f . Let
σ be a trace over A. We say that a trace σ = a1, . . . , ak
perfectly fits N iff there exists a sequence of firings i =

m0
t1→ . . .

tk→ mk+1 = f in N , s.t. the sequence of activities
λ(t1), λ(t2), . . . , λ(tk) after deleting all invisible activities ε
coincides with σ. A log L perfectly fits N iff every trace from
L perfectly fits N .

Petri nets can be extended with hierarchy and it is done
e.g. in Colored Petri nets (CPN) [8]. Hierarchy allows to
develop more compact models with a compositional network
structure. In the case of two-level hierarchy there are two
models of one process: a high-level (abstract) model and a
low-level (refined) model. The high-level model is a model
with abstract transitions. An abstract transition refers to a
Petri net subprocess model refining the activity represented by
this transition. The low-level model can be obtained from an
abstract model by substituting subprocess models for abstract
transitions.

Definition 5 (Substitution). Let N1 = (P1, T1, F1, λ1) be
a WF-net, t ∈ T be a transition in N1. Let also N2 =

78 of 181

p0

p1 p2

p3 p4

p5 p6

register
request

examine
thoroughly

examine
casually

check ticket

decide

pay
compensation

reject
request

reinitiate
request

Fig. 2. An abstract model for handling compensation requests

t0

t1

t2

t3

t13 t14 t15 t16

t17 t18

t25 t26 t27

t24 t23

t21t19 t20

t22

t10t11t12

t4t5
t6

t7
t8t9

p0

p1

p2

p3

p4

p5
p6

register request
check ticket

decide

reject request

reinitiate request

pay compensation

examine thoroughly

examine casually

Fig. 3. A refined model for handling compensation requests, which refines the model in Fig. 2

(P2, T2, F2, λ2) be an EWF-net with the initial and final
transitions ti, tf correspondingly. We say that a WF-net N3 =
(P3, T3, F3, λ) is obtained by a substitution [t → N2] of
N2 for t in N1 iff P3 = P1 ∪ P2, T3 = T1 ∪ T2 \ {t},
F3 = F1 ∪ F2 \ {(p, t) | p ∈ •t} \ {(t, p) | p ∈ t•} ∪ {(p, ti) |
p ∈ •t} ∪ {(tf , p) | p ∈ t•},
Definition 6 (Refinement). Let Na, Nr be two WF-nets
with sets of activities Aa, Ar correspondingly. Let Aa =
a1, a2, . . . , an, and Ar = A1

r ∪ A2
r ∪ . . . ∪ Anr be a partition

of Ar into n subsets, and N1, N2, . . . Nn be EWF-nets with
sets of activities A1

r, . . . , A
n
r correspondingly. We say that Nr

is a refinement of Na via substitutions [a1 → N1
r , a2 →

N2
r , . . . an → Nn

r] iff Nr can be obtained from Na by
simultaneous substitutions of N i

r for all t s.t. λ(t) = ai.

III. MOTIVATING EXAMPLE

Let us consider a toy model from [1], which describes
handling a request for a compensation within airline. Here
customers may request compensations for various reasons. An
abstract model of this process (expressed in terms of a Petri
net) is presented in Fig.2. Fig.3 presents a refined model of
the same process. To avoid congestion of activities’ names in
the low-level model in Fig.3 only places inherited from the
abstract model are labeled in the picture.

Let us explain the correspondence between the two
models. Let N0, N1, N2, N3, N4, N5, N6, N7 be EWF-

nets with sets of activities A0 = {t0, t1, t2, t3}, A1 =
{t4, t5, t6, t7, t8, t9}, A2 = {t10, t11, t12}, A3 =
{t13, t14, t15}, A4 = {t16, t17, t18, }, A5 =
{t19, t20, t21}, A6 = {t22, t23, t24}, A7 = {t25, t26, t27}
correspondingly. The refined model in Fig. 3 is the refinement
of the abstract model in Fig. 2 via the substitutions
[register request → N1, examine thoroughly →
N2, examine casually → N3, check ticket →
N3, decide → N4, reinitiate request →
N5, pay compensation → N6, reject request → N7]. A
sample of an event log obtained for the refined model Lr
is shown in Fig.4. Note that for the log Lr (Fig.4) and the
refined model (Fig.3) we have fitness = 1, since the log Lr
is generated by the model.

So, we have an abstract model (as a more simple to
understand and analyse) and we want to check conformance
of this model to a low-level log. It is obvious that we cannot
do it straightforward, since the model is defined in terms of
abstract activities, and the log contains low-level activities.

IV. CHECKING CONFORMANCE BETWEEN AN ABSTRACT
MODEL AND A REFINED EVENT LOG

To check conformance between an abstract model and a
low-level log, we first transform the given log into a log over
abstract activities. For this purpose, each low-level activity in
the log is replaced by a name of the subprocess (an abstract

79 of 181

L = { < t0, t1, t3, t4, t5, t6, t13, t14, t7, t8, t15, t9, t16, t17, t18, t25, t26, t27 >,

< t0, t1, t3, t4, t13, t14, t5, t7, t15, t6, t8, t9, t16, t17, t18, t24, t23, t22 >,

< t0, t1, t3, t13, t10, t11, t14, t15, t12, t16, t17, t18, t24, t23, t22 >,

< t0, t2, t3, t13, t4, t14, t15, t5, t6, t7, t8, t9, t16, t17, t18, t25, t26, t27 >,

< t0, t2, t3, t4, t13, t14, t15, t5, t7, t6, t8, t9, t16, t17, t18, t24, t23, t22 >,

< t0, t1, t3, t10, t11, t13, t12, t14, t15, t16, t17, t18, t19, t20, t21, t10, t11, t13, t14, t15, t12, t16, t17, t18, t25, t26, t27 >,

< t0, t2, t3, t13, t10, t14, t15, t11, t12, t16, t17, t18, t24, t23, t22 >,

< t0, t2, t3, t13, t10, t11, t12, t14, t15, t16, t17, t18, t19, t20, t21, t10, t13, t14, t11, t15, t12, t16, t17, t18, t24, t23, t22 >,

< t0, t2, t3, t13, t14, t10, t11, t15, t12, t16, t17, t18, t25, t26, t27 >}.

Fig. 4. An event log for the refined model in Fig. 3

activity) it belongs to. Hence we get a log with ”stuttering”
abstract activities. This transformation is implemented by the
method toHighLevel(), schematically presented in Algorithm 1.

Data: lowlevellog — a list of low-level activities,
hlaction — a set of high-level activities, where
for each high-level activity is stored information
about its partition into subsets of low-level
activities.

Result: highlevellog — a high-level event log.
i←− 0;
highlevellog ←− ∅;
currentLowAction←− lowlevellog[i] while i <
lowlevellog.size do

// search of high-level activity,
// subsets of which contains this
// low-level activity
currentHighAction←−
search(hlaction, currentLowAction);
if currentHighAction 6= ∅ then

// check of condition that
// low-level activity is included
// to partition of the current
// high-level action
while i < lowlevellog.size and
currentHighAction.contains(currentLowAction)
do

i←− i+ 1;
end
highlevellog.add(currentHighAction);

end
end
return highlevellog;

Algorithm 1: Method toHighLevel(), transforming a low-
level log into a log over abstract activities

After converting the refined log into notations of the
abstract model we get a new log, which is a multiset of
sequences of abstract activities. But this still can not be used
for the conformance checking because of stuttering actions.
Moreover, when we have two concurrent subprocesses, rep-
resented by two concurrent abstract activities in an abstract
model, stuttering sequences may interleave. To overcome this
problem we transform an abstract model into a model allowing
stuttering of each abstract activity. For this purpose we add

... ai
...

...p

transition a in PN

... ai
...

...p

transition a after
adding loop

pextra ai

i

i

Fig. 5. Extending a transition by adding loop.

loops to transitions in the abstract model.

Algorithm 2 schematically describes the method
addLoops() for transforming an abstract model by adding
loops to abstract transitions (cf . Fig.5).

Now we describe the general algorithm of conformance
checking between and abstract model and a low-level log in
more details.

Main Algorithm (Converting a refined log to an abstract
one and transforming the high-level model for working with
result of this conversion).
Let Na = (P, T, F, λ) be a Petri-net corresponding to an
abstract model of a process over a set of activities Aa. Let
also Lr be a low-level event log (a finite multiset of traces)
over a set Ar of low-level activities.

Let Aa, Ar be the set of activities in the abstract model and
a set of activities in a refined model correspondingly. Denote
by and denote trace from it by σjr ∈ Lr where j is a number
of trace.

1) Convert Lr to a high-level event log (denote it La)
using data about the partition of Ar. Replace each
ak ∈ σjr (where k is a number of activities in the
trace) to the corresponding activity from Aa for all j
and k.

2) Use a rule introduced by us about repetitive activities
in La. Replace every sequences of identical activities

80 of 181

Data: Petri net as petrinet, trace from event log as trace
Result: modified Petri net
trace←− sort(trace);
// index of current activity
index←− 0;
currentActivity ←− trace[index];
while index < trace.size - 1 do

indexOfNext←− index+ 1;
nextActivity ←− trace[indexOfNext];
if currentActivity==nextActivity then

// check count of transition
// with this name in Petri net
if countInNet(petrinet, currentActivity) == 1
then

// add loop to Petri net
// for current activity
addLoop(petrinet, currentActivity);

end
indexOfNext←− indexOfNext+ 1;
while indexOfNextActivity < trace.size and
currentActivity=nextActivity do

indexOfNext←− indexOfNext+ 1;
end
index←− indexOfNext− 1;
currentActivity ←− trace[index] ;

end
return petrinet;

end
Algorithm 2: Method addLoops() for model’s transforma-
tion by adding loops

in σjr (for all j) to one instance of this activity, i.e.
[{aka . . . aka} → aka].

3) If the result obtained in the previous steps (La)
does not contain traces with repetitive activities (un-
like the previous step, they are non-consecutive like
{a1r, . . . , aka, ak+1

a , . . . , aka, . . . , a
n
a}), then stop, other-

wise proceed to the next step.
4) Working with each trace individually find all aa,

which have repeats in the same trace (see the previous
step) and transitions in Na, which correspond to these
actions.

5) Add a loop to Na for all transitions from the previous
step (denote the current transition by t):

a) Choose one place among pi ∈ P and pi ∈ t•
(denote it by p′).

b) Add to Na a new transition (denote it by t′).
c) Add to Na a new place (denote it by p′′).
d) Add to Na a new arcs:

{(p′, t′); (t′, p′′), (p′′, t)}
6) Apply any known algorithm for conformance check-

ing of La to Na.

We illustrate the algorithm by applying it to the example
that was presented above in Fig. 2 and 4.

First, we convert the event log Lr to a high-level log by
applying Algorithm 1. The log obtained as the result of this
is denoted by La and is shown in Fig. 6. Then we apply
Algorithm 2 to the abstract model Na and obtain the new
model N ′a, shown in Fig. 7. The model N ′a is a stuttering model

over abstract activities. And finally we check conformance
between the model N ′a and the log La by replaying traces
from La in N ′a. It turns out, that all traces from La can be
replayed in N ′a, i.e. the log La perfectly fits N ′a. This is not
by chance. The following theorem states, that the proposed
conformance checking method is stable under perfect fitness.
Theorem 1. Let Nr be a refinement of Na and Lr be an event
log over the set of activities Ar, i.e. Lr ∈ M(A∗r). If Lr
perfectly fits Nr, then the main algorithm return 1, which is
interpreted as Lr perfectly fits Na.

We omit the proof of the theorem, since it is rather
technical and straightforward.

V. IMPLEMENTATION

The proposed method for checking conformance of high-
level business model to low-level event log is implemented as
a plug-in for ProM.

Our tool consists of six main classes:

1) TransformerForConformanceChecking class is re-
sponsible for interaction with framework and GUI.

2) HighLevelTransition class represents a high-level
transition. Each object of this type have a name of
appropriate abstract activity and an array of low-level
activities, corresponding to this object.

3) Activity class represents an activity and implements
forming of activity with data from event log.

4) ConvertorForLowLevelLog class is responsible for
implementation of Algorithm 1, i.e. it transforms a
low-level event log to an abstract event log.

5) ConvertorForModel class is responsible for imple-
mentation of Algorithm 2, i.e. it transforms an ab-
stract model by adding the requisite loops.

VI. CONCLUSION

Abstract models are much more clear and more easily
understood than low-level models. But in practice we have
only low-level logs, which cannot be used for direct confor-
mance checking. Hence checking conformance of a high-level
business model to a low-level event log is an important task
to facilitate the expert’s work. In this paper we have presented
a method for solving this problem. Also we had developed a
ProM plug-in which implements the proposed algorithm.

We have proved, that our method recognizes perfect fitness
between an abstract model and a low-level log correctly. This
can be considered as a justification of the proposed approach.
However, this is not enough. It is very important to check the
method on logs with deviations. In the further research we plan
experiments with different logs (logs with noise and different
kinds of deviations), as well as real application logs, and we
shall work on improving the algorithms through the use of
found heuristics.

ACKNOWLEDGMENT

This study was carried out within the National Research
University Higher School of Economics’ Academic Fund.

81 of 181

L = { < register request, examine thoroughly, check ticket, examine thoroughly, check ticket,

examine thoroughly, decide, reject request >,

< register request, examine thoroughly, check ticket, examine thoroughly, check ticket,

examine thoroughly, decide, pay compensation >,

< register request, check ticket, examine casually, check ticket, examine casually, decide, pay compensation >,

< register request, check ticket, examine thoroughly, check ticket, examine thoroughly,

decide, reject request >,

< register request, examine thoroughly, check ticket, examine thoroughly, decide, pay compensation >,

< register request, examine casually, check ticket, examine casually, check ticket,

decide, reinitiate request, examine casually, check ticket, examine casually, decide,

reject request >,

< register request, check ticket, examine casually, check ticket, examine casually,

decide, pay compensation >,

< register request, check ticket, examine casually, check ticket, decide, reinitiate request,

examine casually, check ticket, examine casually, check ticket, examine casually, decide, pay compensation >,

< register request, check ticket, examine casually, check ticket, examine casually,

decide, reject request >}.

Fig. 6. The abstract event log obtained by applying Algorithm 1 to the initial event log in Fig. 4

p0

p1
p2

p3 p4
p5

p6

register
request

examine
thoroughly

examine
casually

check ticket

decide

pay
compensation

reject
request

renitiate
request

examine
thoroughly

examine
casually

check ticket

p1'

p2'

p3'

decidep4'

Fig. 7. The abstract model after adding loops (by applying Algorithm 2 to the model in Fig. 2)

REFERENCES

[1] W.M.P. van der Aalst. Discovery, Conformance and Enhancement of
Business Processes. Springer-Verlag, Berlin, 2011.

[2] W.M.P. van der Aalst, K.M. van Hee. Workflow Management: Models,
Methods and Systems. MIT Press, 2002.

[3] A. Rozinat, and W.M.P. van der Aalst. Conformance Testing: Measuring
the Alignment Between Event Logs and Process Models. BETA Working
Paper Series, WP 144, Eindhoven University of Technology, Eindhoven,
2005.

[4] B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M.
Weijters, and W.M.P. van der Aalst. The ProM framework: A New Era in
Process Mining Tool Support. Vol. 3536 of Lecture Notes in Computer

Science, pp. 444-454, Springer, 2005.
[5] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, and W. M.

P. van der Aalst. Prom 6: The process mining toolkit. Proc. of BPM
Demonstration Track, vol. 615, pp. 3439, 2010.

[6] A. Rozinat. Process mining: conformance and extension. TU Eindhoven,
Diss, Eindhoven, 2010.

[7] A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst.
Conformance Checking Using Cost-Based Fitness Analysis. IEEE 15th
International Enterprise Distributed Object Computing Conference, pp.
55-64, 2011.

[8] K. Jensen, and L. M. Kristensen. Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Springer, 2009.

82 of 181

Applying graph grammars for the generation of

process models and their logs

Valeriia Kataeva

School of Software Engineering
Software Management Department

NRU – Higher School of Economics
Moscow, Russian Federation

lerileri25@gmail.com

Dr. Anna A. Kalenkova
School of Software Engineering

Software Management Department
NRU – Higher School of Economics

Moscow, Russian Federation
akalenkova@hse.ru

Abstract - This work is dedicated to one of the most urgent

problems in the field of process mining. Process mining is a

technique that offers plenty of methods for the discovery and

analysis of business processes based on event logs. However,

there is a lack of real process models and event logs, which can be

used to verify the methods developed to achieve process mining

goals. Hence, there is a need in an instrument that would

generate process models and logs, thus allowing verification of

the process mining discovery algorithms. This aim can be

reached by the creation of a model and log generator.

In this paper a possible solution for the creation of such a

generator will be proposed. Namely, it is the generation of

process models and event logs using the rules of graph grammars

on the example of structured workflow nets. The approach

proposed is based on the creation of grammar rules to generate a

model and an event log, which fits this model. The evaluation of

the process discovery algorithms will be available due to the

presence of initial models and event logs generated on the basis of

these models. The tools used to perform this work are publicly

available.

This paper is the research-in-progress, which is conducted in

frame of master’s thesis in the field of software engineering.

Keyword: process mining, discovery algorithms, conformance

checking, graph rewriting rules, graph grammar, event logs.

I. INTRODUCTION

Process mining [1] is a process management technique that
allows the analysis of business processes based on event logs.
The basic idea is to extract knowledge from event logs
recorded by an information system. Process mining aims at
improving this by providing techniques and tools for
discovering process, control, data, organizational, and social
structures from event logs. Moreover, process mining is an
approach to compare the analyzed events with preferred or
predefined models or rules. The key point here is that the
model has to be evaluated according to the criteria of how well
it matches to the real-life process. This evaluation requires as
many as it is possible event logs.

Event logs can be used to conduct three types of process
mining:

• Discovery. A discovery algorithm takes an event log
and produces a model. This can be demonstrated on the
example of α-algorithm [1]. The algorithm takes an event log
and produces a Petri net explaining the behavior recorded in
the log.

• Conformance checking. In this method, an existing
process model is compared with an event log (or with a model)
of the same process. The conformance checking is used to
check whether information recorded in the log (or in the
model) corresponds to the model discovered.

• Enhancement. The idea here is to extend or improve
existing process model using additional information about the
process recorded in the event log.

The area of our research is presented in Figure 1. First, we
will generate an initial model, as far as there is a lack of real
examples from the business. After, we will extract logs from
the model. The logs, further, will be used for applying
discovery algorithms and hence a creation of a new model.
Finally, the initial and a new model will serve as an input data
for conformance checking.

Figure 1. The graphical representation of research area.

83 of 181

We will start the research with the problem definition. The
problem is that only a small amount of logs are available. This
is caused by the fact that many industries are uncomplying to
make their private data public. And this appears to be a serious
obstacle for the reconstruction and developing more effective
process discovery algorithms.

In this paper, we will present a possible solution to the
problem stated above. The solution is based on the GROOVE –
a graph transformation tool set, which allows for creating and
applying graph grammars [7].

In this work we will use workflow nets (WF-nets). WF-nets

are the subclass of Petri nets. A Petri net is a triple (P,T,F) :

- P is a finite set of places,

- T is a finite set of transitions, such that P T∪ =∅ ,

- F (P T) (T P)⊆ × ∪ × is a set of arcs (flow relation).

A place p is called an input place of a transition t iff there

exists a directed arc from p to t . Place p is called an output

place of transition t iff there exists a directed arc from t to p .

t• is used to denote the set of input places for a transition t .

The notations t • , p• and p • have similar meanings, e.g.

p • is the set of transitions sharing p • as an input place.

At any time a place contains zero or more tokens, drawn as
black dots. The state, often referred to as marking, is the
distribution of tokens over places, i.e. M P N∈ → . The
number of tokens may change during the execution of the net.
Transitions are the active components in a Petri net: they
change the state of the net according to the following firing
rule:

(1) A transition t is said to be enabled iff each input place

p of t contains at least one token.

(2) An enabled transition may fire. If transition t fires, then

t consumes one token from each input place p of t and

produces one token for each output place p of t [3].

A Petri net PN (P,T,F)= is a WF-net (Workflow net) iff:

(i) PN has two special places: i and o . Place i is a

source place, such that i• = ∅ . Place o is a sink place, such

that o• = ∅ .

(ii) If the transition *
t is added to PN , which connects

place o with i (i.e. { }t o• = and {i}t• =), then the resulting

Petri net is strongly connected.

The second requirement (ii) (the Petri net extended with
*
t should be strongly connected), states that for each transition

t (place p) there should be directed path from place i to o via

t (p). This requirement has been added to avoid dangling

nodes, i.e. tasks and conditions which do not contribute to the
processing of cases [1].

Business processes in the particular sphere or a company
can be formalized via WF-nets, which define their semantics.

The WF-net specifies a set of tasks required to process the
business cases. Also, it defines the order in which these tasks
have to be executed. However, as it was already mentioned,
there is an urgent lack of the models and event logs that can be
analyzed according to the reluctance of the companies.

To piece out the lack of such model graph grammar rules
can be applied. Graph rewriting technique is one that allows
creating a new graph out of an original graph algorithmically.
The definition of grammar is based on well-known process
patterns, particularly in this case, patterns for WF-nets [8]. The
general idea is to use the basic patterns for the generation of the
process via grammar. Note that an approach for generating
models using grammars was already presented in [6]. The main
advantage of the approach presented in this paper is that we use
an external tool to generate models, which allows working with
arbitrary graph grammars. Thus, we are not bounded to the
concrete processes models. Moreover, we propose an approach
for a log generation based on graph grammars as well.

II. GRAPH GRAMMAR

Graph grammars are used for graphs generation. The
grammar is specified by a start graph and a set of production
rules. The aim of production rules is to replace one part of a
graph by another (these parts of graphs are highlighted in blue
and green respectively in the figures below) [4]. Moreover, as
it will be seen from the examples below, each production rule
is applicable under the specified conditions, which take into
account the types of nodes. These conditions could be also
formalized and each node can modify its attribute value
according to the rules [3]. Here we would like to show an
example of the generation of a structured WF-net [3], which
could be defined as a hierarchy of subprocesses, based on a
graph grammar. First, an initial or start graph was set and a
transition counter was initialized. This is demonstrated in
Figure 2.

Figure 2. Start graph for applying graph grammar.

According to this image, there are two nodes of type place
that denote the beginning and the end of the model. The node
of type SUB(the SUB block) is defined as the subgraph that has
to be modified according to the grammar rules. Below the
graph in Figure 2 there is a node of type Identifier that is used
for a transition identifier generation. Initially, we’ve put zero
number.

Further, the rules applying for the graph generation were
created. They contain four rules. They are:

• Transition

• Sequence

84 of 181

• AND-joint

• XOR-joint

R1. The rule removes the SUB block and sets the transition.
Meanwhile, the number for the transition is incremented. The
identifier for the transition is put into the newly created
container which is connected with the particular, newly created
transition (Figure 3).

Figure 3. Rule#1 for generation WF-net.

R2. This rule replaces the SUB block according to the
following rule that is demonstrated in Fig.2. The rule creates
the sequence of nodes with the types SUB, place, SUB. Further,
other rules can be applied to the SUB block .

Figure 4. Rule#2 for generation WF-net.

R3. The rule is used for the replacement of SUB block with
AND-joint combination (Figure 5).

Figure 5. Rule#3 for generation WF-net.

 R4. The last rule is used for the creation of OR-joint
(Figure 6).

In this chapter, we have demonstrated the key principles of
applying graph grammar for model creation. Note that more
rules for the expansion of nodes with type SUB can be added,
such as loop, inclusive join and others.

However, our main aim is not only about to create a model.
Model is just a raw material. Further we have to extract the

execution log from this model in order to apply a discovery
algorithm.

The idea of a log generation is presented in the next
chapter.

Figure 6. Rule#4 for generation WF-net.

III. LOG GENERATION

 As it was already mentioned event logs allow analyzing,
detecting problems and finding the solutions for process
optimization.

 Let A be the set of activities, which could be recorded in

the event log, then the set of pairs (or records) A Tσ ⊆ × , such

that there are no two pairs with the same timestamp, where
T is a set of timestamps, denotes a trace. An event log

*()L A∈Β is a multiset of such traces.

 So, every trace in a real-life event log is considered a set
of event identifiers and corresponding timestamps.

After creating a model, containing no nodes, which could
be expanded, as it was demonstrated above, we use this model
as a start graph for the log generation. The start graph is
pictured in Figure 7.

 Figure 7. Start graph for the Petri net.

 By moving a token through the model each trace is to be
built. Turning to the same example of a WF-net, we will put a
token on the start position in an attempt to keep track on what
transition is executed, when we move.

85 of 181

In order to capture the log a time node is created, it serves
as a counter, so that after the execution of every transition the
value of its attribute is incremented.

For this realization the following rules were created:

• Time initialization

• Putting token on start position

• Firing rule

Time initialization. This rule as a default is executed first.
It sets the value of the counter as 1 (Figure 8).

Figire 8. Time initialization rule.

Putting token on start position. The next rule puts an initial
token on the start position. This is needed because the start
graph does not contain it (Figure 9).

Figure 9. Initialization of token on start position.

Firing rule. This rule moves tokens according to their
positions and quantity, meanwhile creating nodes with the time

and identifier of the executed transition (Figure 10).

Figure 10. Firing rule for Petri Net.

After applying of firing rules and creating the final,
already-executed model we can obtain the set of elements with
the time and identifier of every transition fired. Namely this set
can further be used as a trace.

The log created due to applying the rules has to be
converted into the proper format. The proper format depends
on the software that is planned to be used for the log analysis.
According to this, the next chapter will describe the destination

software and give additional information on the realization of
the general idea.

IV. APPLYING THE APPROACH IN FRAMES OF PROCESS

MINING

In this section, we will put the main technical principles
that were used for the creation of the graph grammars and the
description of software. Then, we will present an idea of how
these grammars can be applied for the possible solution for
extracting logs [6] from the models generated and how this
approach can be applied for the integration with another
framework that supports a wide variety of process mining
techniques in a form of plug-ins.

First we will start with the technology and software that
were used for graph grammar creation. For this purpose we
have chosen the tool called Groove Simulator [7].

The GROOVE tool is an instrument that is aimed on the
use of simple graphs for modelling different structures of
object-oriented systems and graph transformations as a basis
for model transformation and operational semantics. The
GROOVE tool contains:

• an editor for creating graph production rules;

• a simulator for visualization of the graph transformations;

• a generator for automatic search of state spaces and a
model checker.

The GROOVE tool set was used to create WF-net
generation rules, which were demonstrated above. Using the
generator it became possible to produce a numerous quantity of
models for the further log extraction. The WF-nets were
obtained using different exploration strategies that are
predefined in GROOVE and rules priorities as well. However,
in the majority of cases the Random strategy was used. This
strategy allows applying all the rules with an equal probability
of 50 %. Other strategies were tested as well in an experimental
mode.

A grammar for a log generation from a given WF-net was
created. The generation of a log was constructed in such a way
that after the execution of every firing rule a new node,
containing time and event identifier was created.

All the generated WF-nets and corresponding event logs
were saved in one of the XML-formats for the further
integration with ProM tool [1].

ProM is an open source Java- framework that offers a
variety of process mining techniques, which are represented by
the plug-ins. Currently, ProM supports import of Petri nets and
event logs in specially developed XML-formats.

It is planned to implement the integration with ProM on the
basis of XML-documents conversion. One possible and more
probable solution for the integration is the utilization of
Extensible Stylesheet Language Transformations (XSLT) -
language XML-documents transformations. Based on this the
plug-in for ProM that will allow importing of models and logs
will be created and namely now the work is in progress.

86 of 181

V. CONCLUSION

The basic idea of this paper was to investigate and present
the possible usage of graph grammars in solving the problem of
shortage of models and logs for verifying process mining
methods.

In frames of this study graph grammars for structured WF-
nets and log generation were developed. We have started the
research with only these types of models; however, it is
important to notice that these grammars can be adapted to other
more difficult and advanced process models such as causal
nets, process trees and BPMN models.

Now it is possible to generate a variety of models and logs
for applying discovery and further conformance checking
algorithms. The generation of models can be organized via
built-in extraction algorithms of GROOVE Simulator.

For the further research we are planning to develop an
algorithm for conversion and a convertor itself, that will allow
integrate the GROOVE models with ProM tool. The
integration will be investigated due to the development of
model and log import plug-in for ProM.

This paper is considered to be a part of a more complex
research that will be conducted further and be expressed in the
master thesis. This research will be dedicated to the
development of process model and log generator based on the

appliances of graph grammars. Now it is planned to create a
program that will allow defining various process models and
rules for logs generation.

REFERENCES

[1] W.M.P. van der Aalst, Process Mining - Discovery, Conformance and
Enhancement of Business Processes. Springer, 2011.

[2] W.M.P. van der Aalst. “Verification of Workflow Nets”, Lecture Notes
in Computer Science , vol. 1248, pp. 407-426, 1997 [Application and
Theory of Petri Nets 1997].

[3] I. A. Lomazova, I. V. Romanov. “Analyzing Compatibility of Services
via Resource Conformance”. Fundamenta Informaticae, No. 1-2,
vol. 128, 2013, pp. 129-141.

[4] F. Hermann, H. Kastenberg, T. Modica. “ Towards Translating Graph
Transformation Approaches by Model Transformations”, Electronic
Communications of the EASST, vol.4, 2006 [Proceedings of the Second
International Workshop on Graph and Model Transformation, 2006].

[5] A. Cavalheiro, “Relational approach of graph grammars,” Ph.D.
dissertation, INF, UFRGS, Brazil, 2010.

[6] A. Burattin, A. Sperduti. “PLG: a Framework for the Generation of
usiness Process Models and their Execution Logs”, Lecture Notes in
Business Information Processing, vol. 66, 2011, pp 214-219 [Business
Process Management Workshops 2011].

[7] A. Rensink, I. Boneva, H. Kastenberg, T. Staijen. “User Manual for
the GROOVE Tool Set”, Department of Computer Science, University
of Twente, 2012.

[8] N. Russell1, A. H. M. ter Hofstedel, W. M.P. van der Aalst, N.Mulyar.
“Workflow control-flow patterns”, BPM Center Report BPM-06-22,
BPMcenter.org , 2006.

87 of 181

Generation of a Set of Event Logs with Noise

Ivan Shugurov
International Laboratory of

Process-Aware Information Systems
National Research University
Higher School of Economics

33 Kirpichnaya Str., Moscow, Russia
Email: shugurov94@gmail.com

Alexey A. Mitsyuk
International Laboratory of

Process-Aware Information Systems
National Research University
Higher School of Economics

33 Kirpichnaya Str., Moscow, Russia
Email: amitsyuk@hse.ru

Abstract—Process mining is a relatively new research area
aiming to extract process models from event logs of real systems.
A lot of new approaches and algorithms are developed in this
field. Researches and developers usually have a need to test
end evaluate the newly constructed algorithms. In this paper
we propose a new approach for generation of event logs. It
serves to facilitate the process of evaluation and testing. Presented
approach allows to generate event logs, and sets of event logs
to support a large scale testing in a more automated manner.
Another feature of the approach is a generation of event logs with
noise. This feature allows to simulate real-life system execution
with inefficiencies, drawbacks, and crashes. In this work we also
consider other existing approaches. Their forces and weaknesses
are shown. The approach presented as well as the corresponding
tool can be widely used in the research and development process.

Keywords—Process mining, Petri net, event log, event log
generation, ProM.

I. INTRODUCTION

In this paper we present the approach for generation of a
set of event logs. This work has been done within the bigger
project related to a process mining research.

Process mining is a research area which aims to discover,
monitor and improve real processes by extracting knowledge
from event logs available in today’s information systems [1],
[2].

Two main fields of process mining are: process discovery
and conformance checking. Process discovery [3] aims to
solve the following problem: Given an event log consisting
of a collection of traces, construct a Petri net that adequately
describes the observed behaviour [1]. Conformance checking
[4] aims to solve the problem as follows: Given an event log
and a Petri net, diagnose the differences between the observed
behaviour (i.e., traces in the event log) and the modelled
behaviour [1].

Process models have applications in different fields of a
modern industry. Banking, insurance, software engineering,
and production management are examples of such fields.

Enormous work has been done for developing the process
mining algorithms. ProM tool is a framework which gathers the
majority of approach implementations for process mining [5],
[6]. Core part of the ProM has been developed using Java over
the last years by the process mining group at the Eindhoven
University of Technology. This tool is open-source and it can
be downloaded from the Internet.

ProM contains a wide variety of plug-ins. However re-
searchers are continuously inventing new and more sophis-
ticated methods for process mining. Every new method should
be tested and evaluated in different ways. The first step of
evaluation for every process mining method are tests using
with artificial event logs. In this work we propose the new
tool which allows to generate artificial event log with defined
properties.

Researchers describe the incredible growth of data [7].
Big data is a new field of research which aims to process
huge amounts of data in different industry sectors. One of
the main challenges of modern process mining is to turn
torrents of event data (Big Data) into valuable insights related
to performance and compliance [8]. A lot of work being done
now explores this direction.

In order to support these research we enrich capabilities of
our tool to generate sets of event logs with defined properties.
This is the first main feature of our method for log generation.
Another feature serves to add noise. Real data often contains
noise and inefficiencies which should be filtered (or processed)
by an evaluated algorithm. Researchers have a need to evaluate
new algorithms using event logs containing noise with special
characteristics. In this paper we propose approach for noise
adding in generated event logs.

All the ideas and approaches considered in this paper are
implemented as a plug-in for ProM tool. We used standard
data structures and approaches accepted in ProM community
[5], [6]. Thus, our implementation can be easily used and
integrated.

The remainder of this work is organized as follows. In
section II we analyse other works in which log generation
is considered. Section III gives a description of the tool,
approaches and algorithms. Section IV concludes the paper.

II. RELATED WORK

When creating new algorithms or improving the already
known in the young area of process mining it is crucial to
have the possibility of multiple generation of process log for
a specific model. Developments in this area help researchers
not only to verify concepts of algorithms but also to improve
them based on model behaviour. When we provide a researcher
an opportunity to manipulate a big number of behavioural
examples of a model, it leads to higher quality of products
being developed. Several tools have been developed to handle

88 of 181

this task. In this section we will take a look at existing tools
for creation of event logs. We consider their main features,
strengths and weaknesses.

a) CPN Tools (see [10]): CPN Tools is a widely used
program to work with colored Petri nets.It supports the visual
editing of Petri nets, simulation and analyses. This specific
extension of CPN tools provides the possibility to generate
random events log based on a given Petri net and produce the
result log in MXML considering that the log will be used by
ProM. CPN Tools has more or less usable GUI, but it is not
intuitive. The main difficulty of a log creation is that it implies
writing scripts in rarely used Standard ML language which
leads to problems with extension of the tool and adapting it
for a specific task. A user has to learn additional functional
language. At the same time, the tool has a lot of applications
in the field of colored Petri nets analysis and simulation.

b) Process Log Generator (see [11]): Process Log Gen-
erator (PLG) is a plug-in for ProM framework which enables to
create random BPMN models from common workflow patterns
and to simulate execution of these processes. PLG implements
models customization by changing basic pattern percentages:
loop percentage, single activity percentage, sequence percent-
age, AND split-join percentage, XOR split-join percentage.
Furthermore, it gives users an opportunity to select distribution
from Standard Normal, Beta and Uniform which is used to
choose between random methods designated to decide which
activity will be used. Noise log records can be generated
throughout simulation of execution and it is possible to choose
noise level. This tool is very useful for big scale brute force
testing of an algorithm. The plug-in generates a set of models
and an execution log for each model. Unfortunately, a user can
not use existing model for logs generation. Thus, one can not
make a fine adjustment of an experiment.

c) SecSy Tool (see [12]): Another instrument for a
generation of event logs is SecSy tool. SecSy has been devel-
oped in a form of a standalone application allowing flexible
settings of process models and their executions. It can create
sets of logs per one run and add some deviations from the
original model. The results can be produced in both MXML
and XES formats. This tool is made to run experiments with
security-oriented information systems. It allows to generate
special event logs with particular parameters useful for security
analysis of processes. Unfortunately, this orientation imposes
restrictions on models which can be used by tool. Resulting
event logs are also hardly useful when testing non-security-
oriented algorithms.

d) Manual generation: Manual generation of logs has
evident limitations and disadvantages including the necessity
of learning XES or MXML standard. Creation of a big number
of logs through manual generation is extremely tedious and
inevitably leads to a tremendous quantity of mistakes. It is also
very time-consuming activity even if a researcher has enough
experience.

As we’ve seen, all of these tools have inconveniences.
Using PLG user cannot use any existent models, because
they are generated automatically. These tools do not provide
possibility to change probabilities of outputs to be fired. None
of them apart from CPN Tools do not support visual editing of
models. When running some tools even a small mistake may

cause significant deviation of results and give false view about
correctness of algorithms.

III. TOOL OVERVIEW

A. Functionality

In this paper we present the tool that intended to help
researchers to generate sets of event logs by a Petri net replay.
Petri net is a mathematical modelling language also known as
a place/transition net. It is commonly used for modelling and
representation of processes and systems. Petri net is a directed
bipartite graph constructed from the following elements:

• Transitions signified by bars. They serve as events
which may occur.

• Places signified by circles. They serve as conditions
and connectivity elements.

• Directed arcs signified by arrows.

Out tool uses a Petri net as a model for event logs generation.
We use this modelling language because of its prevalence
among researchers who work on business process management
[1]. Formally, an event log is a multiset of traces, where
each trace is a sequence of events describing the life-cycle
of a particular process instance [1]. Each event is a record
representing some activity of a system (or model of a system).
In figure 1 the example of a Petri net is shown.

Fig. 1. An example of a Petri net

Table I shows an event log corresponding to a model from
figure 1.

TABLE I. AN EXAMPLE EVENT LOG

Case Events
0 A,B,D
1 A,B,C,D
2 A,C,D
3 A,B,D
4 A,C,D

Places in a Petri net may contain a number of tokens.
Marking of a net is a distribution of tokens over the places.
Marking represents a state of a Petri net. Any transition in
a Petri net may fire if it is enabled, i.e. there are sufficient
tokens in all of its input places. A firing of a transition is a
single step in a modelled process, i.e. execution of an activity.
When transition fires, it consumes tokens from input places,
and produces token in its output places. Simultaneously with
the transition firing an event record is added to a log. For a
Petri net one can consider initial (starting) and final (ending)
markings.

Process miners and developers of new algorithms for
process discovering and analysis are interested in example-
generation instrument. These people are core users for the

89 of 181

presented approach. Our tool has been developed as a plug-
in for ProM 6 framework using Java 7 Standard Edition. The
main features of the presented plug-in are:

• A user can easily generate a set of event logs with
additional noise.

• Generation settings allow users to decide how many
event logs will be generated, how many traces will
these logs include. In order to prevent loops which will
not terminate, user is asked about a maximum number
of steps during algorithm execution. All event logs will
be generated within one execution of the plug-in. By
default the tool generates 5 event logs while every log
consists of 10 traces and it does at most 100 steps.

• In cases when several outputs from one place are
available it gives the possibility for flexible modifi-
cations of simulated behaviour which bring the higher
accuracy of model behaviour describing the real world
processes.

• It is possible to separate the start of a transition and
the termination of a transition in event log records.
Furthermore, in such cases users can define time of
execution for every transition and how punctual they
are executed by defining deviations bounds.

• The tool can create both event logs which completely
fit the given model, and the logs with noise added.

We decided to implement our approach in the form of
ProM 6 framework plug-in. The framework already has plug-
ins which take care of visualization for Petri nets, event logs
import and export, compatibility of logs with miner plug-ins,
and provide further opportunities to work with resulting data.
It was not necessary to develop additional supporting software.

B. Approach

This section describes an approach for log generation
proposed in this work. Our approach contains three main parts:
(1) simple log generation, (2) generation of a set of event logs,
and (3) adding of an artificial noise. In the following we will
consider all these parts.

1) Generation of an event log: This subsection describes
simple log generation process. In order to generate a case in
an event log the tool does the following steps:

(a) Adds tokens to all places from the initial marking.

(b) Creates an empty set which will be used to store the
places with tokens. At this step only initial places have already
obtained a token so they are added to the set.

(c) Next step is to select from which place we will try to
fire a transition. It is handled by randomly picking a place from
the set of places with tokens. Our algorithm does it without
looking whether this place has outputs which could be fired or
not. We do it in a way that prevents the looping in a situation
when a place has a token, available outputs, but these outputs
eventually lead to the same place without any other possible
ways.

(d) The chosen place checks whether it has available
outputs. If this is the case, an output will be chosen and fired

Data: Initial marking as initialMarking,
Final marking as finalMarking,
Settings as settings.
Result: Event log
log = ∅;
time = getCurrentTime();
index = 1;
while index ≤ settings.numberOfTraces do

trace = ∅;
initialPlaces = initialMarking.getPlaces();
finalPlaces = finalMarking.getPlaces();
foreach place in initialPlace do

place.addToken();
end
placesWithTokens = ∅;
placesWithTokens.addAll(initialPlaces);
step = 0;
hasFinished = false;
while step < settings.numberOfSteps AND NOT
hasFinished do

// Chooses place using random number
currentPlace = choosePlace(placesWithTokens);
// Tries to move from this place, if it is possible
// moves, makes record about it in the trace
// and returns set of places which got tokens
newPlacesWithTokens =
currentPlace.move(trace, time);
removePlacesWithoutTokens(placesWithTokens);
foreach place in finalPlaces do

if place.getNumberOfTokens() > 0 then
hasFinished = true;
break;

end
end
placesWithTokens.addAll(newPlacesWithTokens);

step = step + 1;
end
foreach place in placesWithTokens do

place.deleteAllTokens();
end
log.add(trace);
index= index + 1;

end
return log;

Algorithm 1: An event log generation method

according to priorities of available outputs. Looking for the
place available is done in the following way: (1) we iterate
through inputs and try to hold one token from every input;
(2) if we meet an input from which we cannot hold a token, it
means that this output is not available; (3) otherwise, an output
is available; (4) in both cases we release held tokens.

(e) Firing of a transition implies the following steps: (1)
information about the event is recorded into an event log
(according to the chosen settings of noise generation and
timing mode); (2) tokens are added to all places which are
located as outputs for this transition; (3) a set of places which
got tokens is returned.

(f) Then we check if any of final places got a token. In

90 of 181

this case we finish the evaluation, otherwise we do the next
two steps: (1) places from the original set which have no more
tokens are eliminated, and (2) two sets of places are joined.

(g) Evaluation ends with deleting tokens from places which
have them.

Algorithm 1 shows more precise and formal schema of the
general log generation method.

Data: Initial marking as initialMarking, Final marking
as finalMarking, Settings as settings.

Result: Event Log Array
i = 0;
eventLogArray = ∅;
while i < settings.numberOfLogs do

log = generateLog(initialMarking, finalMarking,
settings);
eventLogArray.add(log);
i = i + 1;

end
return eventLogArray;

Algorithm 2: Generation of a set of event logs

2) Generation of a set of logs: Multiple log generation is
one of the main features of the tool presented. To generate a set
of logs the tool is using a loop which is called generateLog().
Every time we use it we generate one log. So we repeat
it until we get the desired number of logs. If the initial
marking contains several places and a set of initial places to be
randomly selected, each execution of log generation method
works with it’s own start. A set of event logs is stored in
an object of EventLogArray class. This is the special class
from ProM 6 Divide and Conquer package [9] intended to
store the sets of event logs. As previously mentioned, ProM
framework has a modular structure and contains lots of plug-
ins for different operations [6]. Several plug-ins contain classes
and methods which support the work with particular modelling
formalisms and approaches. In our work we use one of these
common classes to work with sets of event logs. Thus, one
can process the generated sets directly in other plug-ins which
are based on Divide and Conquer package. Algorithm 2 is
intended to generate a set of event logs.

Fig. 2. Priorities

3) Priorities: In the case when a place has multiple output
arcs the plug-in allows users to decide which output is more
likely to be fired. Every output has a so-called priority which
resembles the probability of this output to be selected. Each
output can have the priority between 0 and 100 (including
0 and 100). Zero priority means that this output arc will
be completely ignored. However, maximum priority does not
mean that this output will be always fired. For every 2 outputs
o1 and o2 it is true that relationship of the o1 probability to

be fired to the o2 probability is equal to the relationship of o1
priority to o2 priority. Hence the higher priority, the higher
chance for this output to be fired. Outputs with the same
priority have equal chances to be fired. Algorithm 3 shows
the approach.

Lets consider the example shown in figure 2. Consider the
outputs (from p1 to t1), (from p1 to t2), (from p1 to t3) whihc
have the priorities a, b, c respectively. Plug-in creates an array
with a size of 3 elements. First element is equal to a, second
is equal to a+ b, the third is equal to a+ b+ c. Then plug-in
gets a random number within a range from 0 to a + b + c
(excluding 0 and including a+ b+ c). If this random number
is less or equal to a then the output (from p1 to t1) is fired.
If the number is bigger than a, but less or equal to a+ b then
the output (from p2 to t1) is fired, otherwise the fired output
is (from p1 to t3).

Data: List of available outputs as availableOutputs.
Result: Output transition
// Creation of array whose length is
// equal to the length of availableOutputs
priorities;
if priorities.length > 0 then

priorities[0] = availableTransitions[0].priority;
i = 1;
while i < priorities.length do

priorities[i] = priorities[i - 1] +
availableTransitions[i].priority;
i = i + 1;

end
if priorities[priorities.length - 1] = 0 then

return NULL;
end
randomNumber = getRandomNumber(0,
priorities[priorities.length - 1]) + 1;
i = 0;
while i < priorities.length do

if randomNumber ≤ priorities[i] then
return availableOutputs[i];

end
i = i+1;

end
end

Algorithm 3: Selection of a transition to fire

4) Noise adding: Noise is defined as deliberate deviations
of generated event logs from a model real behaviour. If noise
is applied a user is asked to select the so-called noise level.
Noise level shows the probability of adding noise events to a
log.

In the real-life processes noise usually consists of two com-
ponents. First one is a totally chaotic represents interferences
or crashes. Second one has more or less strict order. This
component represents breakages, incorrect or unfair activities.
In this work both components are taken into account.

Noise event can be represented in several ways:

• adding artificial transitions (with names specified by
user);

91 of 181

• adding existent transitions from a model in incorrect
order;

• skipped events; in such a case artificial events and
existing transitions may be added to a log.

Thus, noise is added during the log generation process.
Many tools try to add noise in a totally correct event log
which already generated by some instrument or obtained from
any system. Another way is to change the original model
and to generate correct event logs from this changed model.
Our scheme is more similar to real-life process execution. We
generate logs with drawbacks and deviations during process
functioning, which is usual for a number of processes. Table
II shows an event log corresponding to a model from figure 1
with noise added.

TABLE II. AN EVENT LOG WITH NOISE

Case Events
0 A,B,B,D
1 A,D,B,C,D
2 A,C,D
3 A,B,D
4 A,D

C. How to use the tool

The plug-in presented has several UI screens to interact
with user. We provide a number of screenshots in order to
illustrate our tool and make it easier for user to begin using
it. The main screen asks a user about general settings of log
generation (see figure 3). User may select desired number of
logs to be created, number of traces per each log, maximum
number of algorithm steps for one trace. In case when user
uses noise generation, this is not a number of events per trace:
some activities may be skipped, others may be added. User
may specify to the plug-in to use (or not) priorities and/or
noise. The screens specifying noise generation options are
shown to the user, if he (or she) selects to use generation with
noise.

Fig. 3. First screen: General settings

User may specify if an execution of an activity is repre-
sented in a log with 1 or 2 events. Each transition is writen as
2 log events if it is important to separate whent execution of
the transition starts and finishes. In such a case the first event
indicates when the execution of the activity begin, whereas

the second one indicates when it ends recording information
about time according to specified time of execution.In addition,
if user chooses to separate the start and complete events for
each activity, it is possible to set the time of execution of every
activity manually or skip it and use default values.

One of the screens demonstrates to a user the Petri net
given as plug-in input (see figure 4). It uses visualization plug-
in from the Petrinet package to show the model. User can use
this screen to specify simulation settings more simply. This is
favourable for Petri nets of any size.

Fig. 4. Screen demonstrates a model given as plug-in input

Two screens ask user to pick an initial and final markings.
User selects initial places from which an initial marking con-
sists. The plug-in uses a final marking to end the simulation.
Once a token is added to any of final places, the execution
ends.

Some screens are optional. Series of screens help user to
specify priorities for each place with undetermined output.
Noise settings also may be specified with special screens.
Users may specify the noise level and which kind of noise
will be used. There are two possibilities: use only transitions
of the given net, or add additional artificial transitions. Screen
shown in figure 5 allows user to choose any number of
transitions from a model given to appear in event log as noise
transitions. Another screen helps to assign the set of artificial
noise transitions. Screen with time settings allows to specify
execution time for every transition (including artificial noise
transitions) and maximum deviation from this time allowed
for noise generator. We do not give all the screens here to not
clutter up the text.

D. The tool and ProM 6 framework

This section presents an overview of the ProM 6 architec-
ture. ProM is an open-source framework for implementation
of the process mining algorithms in a standard environment.
ProM consists of disjointed parts to increase the flexibility.
The core part of the framework is distributed under GNU
Public License. One may to upload plug-ins developed in the
specific way and to work with them. The framework takes care
about parameters needed for plug-ins. Special plug-ins were
developed which load data into the environment and export
results to disc as well as being stored in ProM resource pool
for using them in other plug-ins. Almost all data types typical

92 of 181

Fig. 5. Noise settings

for working with Petri nets have visualizers, so researchers and
developers do not have to spend time on creating them.

Plug-ins may run with GUI or without it. It is allowed
to call the other plug-ins or employ data types, visualization,
import and export methods from a plug-in via special plug-
in manager. The framework manages this usage in such a
way: our plug-in sends a request to execute code from another
package. The plug-in manager processes this request and
returns an instance of the plug-in called. For example, model
on screen shown in figure 4 visualized by a standard visualizer
from the Petri nets package. In the future work we plan to
improve this screen by using self-engineered visualizer which
allows to set up several generation options (like priorities)
directly on a model visualized.

Plug-in manager enables not only to call the known plug-
ins but also to look for the plug-ins with specific signature,
to call it, and to get results of its execution. Work with plug-
ins based on such named contexts. Each plug-in must have
a context. It may use the data objects within the context. For
every context one can make a child context. Thus, it is possible
to construct hierarchy of plug-in calls from a one parent plug-
in.

The framework allows users to take an advantage of reusing
previous executions of plug-ins via mechanism of so-called
connections. In fact, connection is an object which holds a
number of data objects in the weak hash map. Connection can
be reached after its registration in a framework context by any
other plug-ins using connection manager. Connection manager
takes one argument and searches for all the connections which
hold specific parameter. The mechanism of connections allows
to process data obtained by one plug-in by another one.

The core part of a typical ProM processing plug-in is a
class which contains at least one public method. This class
needs to contain at least one method with special annotation
which registers it in the ProM framework as a plug-in. The
name, input and output parameter lists are also listed inside
the annotation. Particular plug-in context of a current ProM
session should be among the other parameters.

The tool which implements an approach presented in this
work is built as a plug-in for the ProM Framework, therefore
architecture of the tool had to fulfil all requirements of ProM

plug-ins listed above. Our tool consists of 6 main classes:

• LogGenerator class is responsible for interaction with
framework and GUI.

• AbstractPetriNode represents an element of Petri net
(place or transition). It wraps an object of PetriNode
class from PetriNets package providing convenient
access to inputs and outputs of a node.

• Place extends AbstractPetriNode getting specific fea-
tures of a place. An object of this class holds a number
of tokens and allows to choose between the outputs.

• Transition also extends AbstractPetriNode getting spe-
cific features of a transition. Actions of transition
firing and writing to an event log are described in
this class.

• Generator class encapsulates creation of a net accept-
able for the log generation based on a given Petri net
and performs generation.

• Object of GenerationDescription class holds informa-
tion about settings specified by a user about the set
of event logs to be generated (number of event logs,
number of traces per log, priorities and others).

E. Example of the tool usage

Figure 6 shows several examples generated by our ap-
proach. In the first line (a), b), c)) original models are shown.

To examine our approach for each model were generated
sets of event logs with different noise levels and generation
settings. In figure 6 shown the model discovered by process
discovery algorithm [1] from only one model for each set
generated using 5% and 20% noise levels. Second line shows
the models obtained using alpha algorithm [1] from the event
log generated using 5% noise level. Level of 20% was used
for the event logs from which the models in the third line were
obtained.

In the first case (see d), g)) transitions A− st, B − st and
Final were used as noise transitions. Transitions e1, e3 and e6
are used as noise transitions in the second case (see e), h)). In
the third case (see f), i)) transitions c and e were used as noise
transitions. Artificial noise transitions were used in all cases:
noise1, noise2, noise3. Transition skipping was enabled.

We do not show the models obtained from the logs with
0% noise level. Such a model is totally identical to the original
one if sufficient number of traces is used. Process discovery
algorithms may show strange or inappropriate results for a tiny
event logs generated from the complex models.

Resulting model complexity highly depends on structure
of original model used for generation and noise setting. For
example, one can choose to add lots of artificial transitions to
a log. Such setting leads to a generation of an event log from
which one can obtain very sophisticated model.

In our example models obtained from event logs with 5%
noise level differ from original models only in several actions.
Whereas in cases with 20% models are more complex and
different from original ones. It is useless to generate logs
using total noise levels of 50% or more: one obtains chaotic

93 of 181

a) b) c)

d) e) f)

g) h) i)

Fig. 6. Examples of models discovered from the event logs generated by the approach presented

behaviour totally different from the behaviour of an original
model.

IV. CONCLUSION

In this paper we have presented an approach for sets of
event logs generation. This approach is implemented as a ProM
6 framework plug-in which can be easily used by process
miners, researchers, and developers. It allows not only to
generate the simple event logs, but also to generate a set of
event logs, or event logs with noise. All these functions allow
to run experiments in the relatively easy way with different
algorithms implemented as a ProM plug-ins. Generated logs
can be exported using standard ProM plug-ins to use them in
other applications. Noise generation is also quite useful during
plug-in testing process.

The tool presented takes into account the advantages and
drawbacks of other existing approaches. Nevertheless, it also
has its areas to improve. In the future work authors plan
to deal with a generation of logs with additional resources.
Another future development is the incorporation of different
model formalisms into existing plug-in in addition to the Petri
nets. Several improvement should be done in graphical user
interface to simplify interaction with plug-in.

ACKNOWLEDGMENT

This work is output of a research project implemented as
part of the Basic Research Program at the National Research

University Higher School of Economics (HSE). Authors would
like to thank all the colleagues from the PAIS Lab whose
advice was very helpful in the preparation of this work.

REFERENCES

[1] Wil M. P. van der Aalst, Process mining: discovery, conformance and
enhancement of business processes. Springer, 2011.

[2] IEEE Task Force on Process Mining, “Process mining manifesto,” in
Business Process Management Workshops, ser. Lecture Notes in Busi-
ness Information Processing, F. Daniel, K. Barkaoui, and S. Dustdar,
Eds., vol. 99. Springer-Verlag, Berlin, 2012, pp. 169–194.

[3] W. M. P. v. d. Aalst, A. J. M. M. Weijters, and L. Maruster, “Workflow
mining: Discovering process models from event logs,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128–
1142, 2004.

[4] A. Rozinat and W. M. P. v. d. Aalst, “Conformance testing: Measuring
the fit and appropriateness of event logs and process models,” in
Business Process Management Workshops. Springer, 2006, pp. 163–
176.

[5] B. F. van Dongen, W. M. P. van der Aalst, C. W. Günther, A. Rozinat,
E. Verbeek, and T. Weijters, “ProM: the process mining toolkit,”
in Business Process Management Demonstration Track (BPMDemos
2009), ser. CEUR Workshop Proceedings, A. K. A. d. Medeiros and
B. Weber, Eds., vol. 489. Ulm, Germany: CEUR-WS.org, 2009, pp.
1–4.

[6] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, and W. M. P.
van der Aalst, “Prom 6: The process mining toolkit,” Proc. of BPM
Demonstration Track, vol. 615, pp. 34–39, 2010.

[7] W. M. P. van der Aalst, “Decomposing petri nets for process mining: A
generic approach,” Distributed and Parallel Databases, vol. 31, no. 4,
pp. 471–507, 2013.

94 of 181

[8] W. M. P. van der Aalst, “Mine your own business: Using process
mining to turn big data into real value,” in Proceedings of the 21st
European Conference on Information Systems (ECIS 2013). Utrecht,
The Netherlands: AIS Electronic Library, 2013, pp. 1–9.

[9] E. Verbeek and W. M. P. v. d. Aalst, “Decomposing replay problems:
A case study,” in Joint Proceedings of the International Workshop on
Petri Nets and Software Engineering (PNSE’13) and the International
Workshop on Modeling and Business Environments (ModBE’13),
Milano, Italy, June 24 - 25, 2013, ser. CEUR Workshop Proceedings,
D. Moldt, Ed., vol. 989. CEUR-WS.org, 2013, pp. 219–235. [Online].
Available: http://ceur-ws.org/Vol-989/paper07.pdf

[10] A. K. A. d. Medeiros and C. W. Günther, “Process mining: Using CPN
tools to create test logs for mining algorithms,” in Proceedings of the
Sixth Workshop on the Practical Use of Coloured Petri Nets and CPN
Tools (CPN 2005), ser. DAIMI, K. Jensen, Ed., vol. 576. Aarhus,
Denmark: University of Aarhus, 2005, pp. 177–190.

[11] A. Burattin and A. Sperduti, “PLG: a framework for the generation
of business process models and their execution logs,” in BPM 2010
Workshops, Proceedings of the Sixth Workshop on Business Process
Intelligence (BPI2010), ser. Lecture Notes in Business Information
Processing, J. Su and M. z. Muehlen, Eds., vol. 66. Springer-Verlag,
Berlin, 2011.

[12] T. Stocker and R. Accorsi, “Secsy: Security-aware synthesis of process
event logs,” in Proceedings of the 5th International Workshop on
Enterprise Modelling and Information Systems Architectures, St. Gallen,
Switzerland, 2013.

95 of 181

DPMine/C: C++ Library and Graphical Frontend
for DPMine Workflow Language

Sergey Shershakov
International Laboratory

of Process-Aware Information Systems (PAIS Lab)
National Research University Higher School of Economics

Moscow 101000, Russia
Email: sshershakov@hse.ru

Abstract—DPMine generic purpose workflow language is
rooted in DPMine/P scientific workflow language and a set of
plug-ins for ProM which originally were developed for convenient
piping of different plug-ins within ProM framework. DPMine/C
is a new version of DPMine workflow language and a C++
library. The main language concept was complemented by
comprehensive analysis of DPMine/C model execution semantics.
This paper also discusses approaches to the block types extension
concept relying on development of new block type classes and
customization of the model storage subsystem. Finally, we show
an approach for implementation of a GUI frontend.

Keywords: Workflow, Modelling Language, С++ Library, Ex-
tensible Tool, Process Mining, Processes, PAIS

I. Iඇඍඋඈൽඎർඍංඈඇ
Today there exists a wide variety of workflow notations.

Some of them have a formal basis (such as Petri nets, finite
state automata), others have vendor specific notations. Among
them one can distinguish some notations that pretend to be
industry standards. BPMN [1] and BPEL [2] are, perhaps, just
the most known examples of such standards [3].
At the same time, being a standard does not mean being

appropriate for description of all kinds of workflow models.
As an example, we refer to the papers [4], [5] where a problem
of piping components (plug-ins) of ProM heterogenous system
arises. We had to obtain an ability to create a scientific work-
flow model that includes individual invocations of particular
processing algorithms (implemented, for example, with the
help of ProM plug-ins), cycles support, choice constructs
and other controls of the execution thread. As a result,
DPMංඇൾ/P language with a simple, transparent, flexible and,
most importantly, extensible semantics has been developed
and implemented as a set of ProM plug-ins [5].
Typically, workflow management systems are used for

maintaining various kinds of business processes. DPMine is
not another Business Process Management (BPM) system. We
rather call DPMine as a “technical workflow language”.
Unlike most workflow languages DPMine has much more

imperative rather than declarative nature. A model in DPMine
language is similar to a program in some way. As well as
a program, a model can be executed, thus we pay much
attention to its execution semantics. We explicitly state that
it is “execution”, not just a “simulation”. In the case of a
well-formed algorithm the model execution “outcomes” are

determined only by the model incoming resources and by the
model structure (depending, of course, on the nature of the
blocks contained in the model).
Along with the differences DPMine has also a lot of simi-

larities with existing workflow languages. Thus, DPMine uses
ports notations, just as BPEL (Web Services Business Process
Execution Language, WS-BPEL) [6] does. But in DPMine
the port is one of the main language building elements widely
used for setting relations between blocks — another important
building element.
There is a specific language family of Petri net based

workflow languages [7]. One of the most known is YAWL —
a workflow language extended with additional features to
facilitate the modelling of complex workflows [8]. Unlike
YAWL, DPMine does not introduce a generic set of tasks1
that support control-flow tasks (such as AND/XOR split/join
and so on) as a part of the language core. We proposed instead
some control-flow blocks [5]. We considered them only as an
example of custom block type implementation. In this paper
we are primarily considering blocks as abstract objects.
Basically, the requirements for DPMine language have been

indicated through the requirements imposed on a scientific
workflow language for ProM tools. Moreover, one can say
that DPMine/C has been emerging as a way of generalizing the
solution of the piping task. One could consider incorporating
one of the existing BPEL engines into ProM, but this approach
is fraught with compatibility problems and leads to the use of
BPEL in an area not much related to it. A similar situation
happens with BPMN, but in this case the language application
would be even more harder.
Workflow notations can be considered from different per-

spectives [9]. Here, we are mainly focusing on the control-flow
perspective.
The rest of this paper is organized as follows. Section II

describes the modular concept and the basic components
of DPMine language. Section III discusses DPMine model
execution semantics and approaches to resources transfer-
ring. Certain aspects of the extendable storage subsytem are
presented in Section IV. Section V introduces an idea of
implementation of a GUI frontend for DPMine language using

1They could be treated as so-called task-blocks in terms of DPMine.

96 of 181

Storage Subsystem

Graphical Editor (Frontend)

DPModel

Graphical
Representation

XML JSON

Figure 1. Levels of language representation

Qt library. Finally, Section VI concludes with analysis of the
work done and a look at the future.

II. DPMංඇൾ Lൺඇඎൺൾ Bൺඌංർ Eඅൾආൾඇඍඌ
The main work concept for DPMine/C toolset is the model,

which represents some workflow model under experiment. In
a C++-based types system a model is represented as an object
of DPModel base class containing all necessary information
about the model such as model name, model author, and so
on. The most important object contained in the model is the so-
called main scheme to be executed during the model execution
procedure (see sec. III). Developing a DPMine/C library client
one can extend the DPModel defenition by adding project-
relevant features.
The rest of this section is devoted to the model concept, its

main components and their interaction.

A. Model Definition
A model can be considered from different points of view

(Fig. 1). At the lower level there is a C++-based object model
of the workflow model. At the medium level (it can also
be referred to as a storage level) there is an XML-based
model markup language or something similar such as JSON-
based text format. Finally, at the upper level a model can be
represented using a graphical notation, which allows defining
the process model as a set of building blocks.
An object model can be serialized to an underlying XML-

or JSON-based text file or deserialized from it (see. sec. IV).
One can extend a serialization mechanism to utilize any other
storage formats.
The graphical model is transformed into an object model

and vice versa, and it can be used both for user-friendly model
design and representing the model execution dynamic process.

B. Schemes, Blocks, Ports, and Connections Concept
Implementation of the basic language semantics is done

through the concept of schemes, blocks, ports and connectors.
Expansion of the language functionality should be based on
this very concept. The main idea is that no special extensions
for maintaining any kind of custom blocks are needed.
Let us examine these elements in more detail.

Block

AbstractTask

PromTaskBlock CPNTools Task ControlFlowBlock

SForBlock

Scheme

...

BodynessBlock ConstBlock

ExpressionBlock

Acc

Figure 2. Blocks hierarchy scheme

1) Block: It is a basic language building element considered
as a solitary operation in an external representation but can be
complex in internal one. Blocks perform a specific task and
can be considered as statements in programming languages.
Blocks can have different functionality such as performing
a single task of a base platform (task blocks), representing
complex schemes into single blocks (scheme blocks), imple-
menting control workflow (control flow blocks) and so on.
The blocks are arranged by types into a hierarchy that is a

reflection of corresponding C++ block types hierarchy, whose
scheme is presented on Fig. 2.

2) Port: It is an object belonging to a certain block and
used for connection and data objects transfer to other ports.
Depending on data flow direction, one can distinguish three
types of ports: input, output, and so-called proxy (input-output
and output-input). Ports transfer resources of a specific data
type from one block to another. Depending on block type, they
can be either custom or built-in.

3) Connector: It is an object connecting two blocks through
their ports. Connectors have a link direction: a connector (with
its beginning) always connects an output port of a block with
an input port of another one (with its end). One output port
can be linked to several connectors, whereas one input port
can have only one connector linked (Fig. 3a).
Starting from this implementation of DPMine library it was

decided that it was not necessary to introduce a special data
type representing connector at the programming level. Instead,
we decided to use internal links between corresponding output
and input ports. Such links can be treated as connectors at
higher levels.

4) Scheme: It represents a number of interacting blocks
connected with each other by connectors. The schemes are
the main mechanism of implementing abstraction, isolation
and hierarchy of sub-processes. On Fig. 3b there is depicted
a connected scheme consisting of four blocks (A, B, C, D)
and four connectors (AB, AC, AD, BD).
One needs to implement a special container to represent

a scheme at the object model level. Such a container is a

97 of 181

Ain out

Bin out

Cin out

(a) Ports and connectors

Ain out

Bin out

Cin out

D

in2

in2

(b) Scheme example

Figure 3. Various blocks, ports, connectors, and schemes elements

special type of block that is called Scheme-block (Fig. 2). The
Scheme-block is a direct (and most obvious) descendant of a
more general block type, namely Bodyness block. A Bodyness
block is a special kind of blocks whose distinguishing feature
is the ability to aggregate their so-called child-blocks inside
themselves. In other words, the Bodyness block represented
by BodynessBlock abstract class is the ancestor for all the
block types that can own child blocks.
Any descendant of a Bodyness block (including Scheme-

blocks) can be considered both at the external and the internal
level. At the external level a Bodyness block is nothing more
than just a regular block, which can have input and output
ports that can be connected to some ports of some other blocks
(at the same level). At the internal level the same block can
be treated as an isolated scheme (maybe having some special
behavior based on individual characteristics of the specific
descendant2).
This scheme has the only way to communicate with external

blocks at a higher level: by using its own port “everted” and
represented at the internal level in the opposite direction. Thus,
the ports viewed at the external level as input flip to be output
at the internal level, and vice versa. This is why these ports
are named “proxy”.

III. Mඈൽൾඅ Eඑൾർඎඍංඈඇ

One of the main goal for constructing a DPMine model is its
subsequent execution. Outcome results of the executed model
is the sum of results of its individual executed blocks. They
are based on the subject domain of the task blocks contained
in the model.
One can consider an example of workflow model containing

some tasks that perform phased processing of a set of source

2For example, consider For-loop block, see [5].

tex-files with a view to obtaining a PDF-document. This
produced PDF is such an outcome result.
Model execution consists in executing the main scheme of

the model (upper level scheme) and producing an execution
report (about errors, etc.). Model execution is done by a special
agent — Executor, whose implementation is closely related to
the client application design (see sec. III-C).

A. Block Execution
When considering the execution of a scheme one needs to

mention the execution concept for an individual block. Block
execution is an operation done by the underlying block’s type
class method execute() based on the block’s individual state.
In the example above there could be a special block type
performing invocation of some LaTeX tool like pdftolatex
as its execution procedure.
From the technical point of view execute() method is vir-

tual, which means that it must be implemented individually for
each type of blocks. It is also possible to modify the behavior
of any previously defined block type by reimplementing this
virtual method.
In order for a given block to be able to be executed it is

necessary that all the external dependencies of the block be
satisfied.
For a given block B its dependencies are considered satisfied

if:
1) the block does not have input ports, or
2) the block has input ports and for each port the following

conditions are met:
a) there is no “must be connected” flag for the port

set, this way the port can be not connected by a
connector to another (output) port of another block;

b) the input port is connected by a connector to
another (output) port of another block and this
output port is ready to give requested resource
to the input port; in most cases, the latter means
the status of parent block of the output port is
“executed”.

The block with satisfied dependencies is referred to as
“executable” block.

B. Scheme Execution
As it was mentioned above every scheme is represented

by its Scheme-block. So, speaking about the execution of a
scheme one needs to consider the execution of its block.
Since the Scheme-block is a descendant of the Bodyness

block, it does not define its own execution algorithm but
utilizes an algorithm given by Bodyness block class3.
In fact, this algorithm is the heart of DPMine execution

semantics, so it has to be discussed in greater detail.
The mentioned algorithm is iterative. Some subset of the

full set of scheme body blocks is tried to be executed in
each iteration. During its execution the algorithm defines some

3This also holds for many other Bodyness block descendants like For-loop
block, etc.

98 of 181

A

start

B

C

D

end

end

Figure 4. Equivalent (system) Petri net for the scheme on Fig. 3b

state flags. The first is incomplete flag indicating whether
there are still some blocks that have not been executed. Then,
hasExecution flag indicates that there is at least one body block
that has been executed during the whole iteration. Finally,
hasPending flag indicates that there are some blocks being
executed at the moment.
One has to mention that the latter flag can be set only in case

of assigning a task for execution in asynchronous mode with
multiple concurrent executing threads. Assignment of blocks
for execution is done by a special component — Executor,
which determines a strategy of forming such assignments
(see sec. III-C).
There are some steps performed by the executing algorithm

in each iteration.
1) All three flags are set to false state indicating that no

information about state of blocks-to-execute is available
yet.

2) An effort to execute a body block is applied to each
block contained in the scheme body:
a) It checks whether the block has already been

executed previously. If so, it simply goes to the
next block.

b) It checks whether the block is being executed (in
pending state). If so, hasPending flag is set, and it
goes to the next block.

c) Finally, it checks whether the block can be ex-
ecuted (has executable state). If so, there is a
request for Executor to execute the current block
(see sec. III-C).

3) If there is at least one block with a state that is different
from “executed” (e.g. a block could either be not started
at all or be started and still being executed) — that is
incomplete flag is set up, and there has been at least one
block execution, the next iteration is performed.
The presence of some pending blocks with no block
executed is another variation of this case.

The semantics of scheme execution can be represented by
an equivalent system net [10]. Thus, for the scheme on Fig. 3b
containing no choice blocks the equivalent (system) Petri net
would appear as on Fig. 4.

C. Model Executor
Model Executor (or just Executor) is another important

component of the executing subsystem. It is a special agent

Model
Source

m
Model

Processor
m log Loglog

Figure 5. Pull (white) and push (yellow) ports

linking DPMine workflow model and client software together.
Technically, an Executor is an object of some class implement-
ing IExecutor interface which declares some methods used
for executing individual blocks of a workflow model.
Among these methods one can distinguish a couple of the

most important ones. The executeBlock() method is in-
voked by some blocks of some special types such as Bodyness
block whenever there is another block to be executed. The
block is passed to executeBlock() as a parameter, and the
method should be considered as a request from a model to the
Executor for executing another model’s block. The way the
Executor performs the request is completely determined by
the policy implemented in each specific Executor class. As an
example, one can consider synchronous model of execution.
In this case control is not returned to the calling method until
the current block is executed or switched to a broken state.
Another scenario involves asynchronous tasks assignment to
different concurrent threads.
The very first call to executeBlock() procedure is per-

formed when the model is being executed, and its Main
Scheme becomes the very first block passed as a parameter
to executeBlock().
Another important method to be implemented by a specific

Executor class is execNotify(). It is used to send to a client
application event notifications about the state of a model block
being executed. The pointer to the block being processed is the
first parameter of the method, and the event notification type
is the second. Notification type is a constant from a predefined
set including begin, end, cancel, and others. This notification
callbacks may be used by the client application for updating
its information about the blocks’ states.

D. Resource Transferring
Now let us consider the process of transferring resources

through the ports of blocks. We distinguish two different
approaches for resources transferring: pulling and pushing.
Pulling is an approach where a block being executed requests
all necessary resources from its input ports which are con-
nected to the corresponding output ports of other “source”
blocks. As it was mentioned before, the ability to supply
resources for an ahead standing block by the “source” blocks
is the main requirement for the current block to be executed.
Then, the request for the input ports is redirected to the
corresponding output ports through established connectors.
Finally, the output ports ask their owner blocks to supply data
for the requested resources and give them to the requesting
block.

Pushing is another approach illustrated on the Fig. 5.
There is a Log block having connected to a processing

99 of 181

ModelProcessor block. If executed ModelProcessor gen-
erates some log entries (events) and tries to “send” them
synchronously through a dedicated output port to all the
recipients connected. If a receiving block is ready to get such
a “message” it could process it. In the example, the Log block
obtains messages from ModelProcessor for displaying and
storing.

IV. Mඈൽൾඅ Sඍඈඋൺൾ
In the preceding sections we looked at DPMine workflow

models from the object model point of view. Now let us
consider how a model can be represented as some formal
definition in a text-based format.
In the paper [5] we have shown that a model of process

mining experiment can be described by using a well-formed
XML-based notation. Moreover, this kind of model description
was the main form used for importing DPModel objects in
ProM.
Having started developing this library we decided to sepa-

rate the storage subsystem from the core of DPMine library.
According to Fig. 1 the storage engine is used for the trans-
formation of an object model to some persistent form such as
a text-based file (serialization) and back (deserialization).
As previously, we suppose an XML-based format is one

of the best notations for representing a hierarchical irregular
structure, which a DPMine model is. In addition, we are now
proposing another well-known format with the same XML
expression but also which is much more compact and, what is
more important, much more appropriate for manual writing:
JSON [11].
The main idea is that, as much as the DPMine core

system can be extended by developing new block type classes,
the storage subsystem can be simultaneously extended to
maintain the core extension mirrored. For this very pur-
pose we introduce two special classes: XMLModelLoader and
JSONModelLoader. Both of these classes have methods for
working with text streams. These streams are used to serialize
to and deserialize from a given object model. Some of specific
descendants of these classes specify whether a stream is
implemented as a file-stream or as another kind of stream.
By processing a file to be loaded as a workflow object

model XModelLoader parses the file standard header contain-
ing the model description and the model body containing the
workflow itself. At a higher level, the model body normally
contains only one Scheme-block corresponding to the main
scheme. It means the parsing process should start from parsing
this very block.
The extensible nature of (de)serialization mechanism con-

sists in the fact that processing each type of blocks is per-
formed by its dedicated block loader, custom block loaders
for custom block types being added dynamically. The col-
lection of all types of loaders including the standard ones
(like Scheme-block loader based on bodyness block loader,
const block loader, etc.) is managed by a family of so-called
LoadersFactory classes existing for each branch of persistent
formats: XML, JSON, and so on (Fig. 6).

LoadersFactory

+parse() : AbstractBlock

ConstLoader

+parse() : AbstractBlock

ExpressionLoader

...

"const": {
 "name": "const1",
 "ports" : [
 "out" : {
 "name" : "c1",
 "dtype" : "int"
 },
 "out" : {...}
]
 "consts" : [
 "с1" : { "int" : 15
},
 "c2" : { "string" :
"A string"}
]
}

int

str
const

c1

c2

Figure 6. Const loader used for deserialization a JSON-defined “const” block

Registering a new block loader for a corresponding block
type is done during the library initialization process (normally
only once) that uses the underlying collection, which maps the
block type name as it appears in the file (as an XML node
or a JSON parameter) to a parsing object (normally it is a
pointer to a method). When a file loader meets another block
description (an XML node or a JSON parameter) it tries to
find an appropriate block loader and eventually invokes this
block loader and passes to it the cursor to a file position the
block description start is located at. After that, the block loader
performs the reading of all the necessary data from the stream,
constructs a new block object and returns it.

V. Gඋൺඉඁංർൺඅ Fඋඈඇඍൾඇൽ
Along with the library we supply a GUI application de-

mostrating the ability to integrate DPMine/C library into a
GUI client. The application is based on cross-platform Qt
library allowing to consider the application as cross-platform.
Nevertheless, we are focusing here on a Windows edition to
be specific.
The topics to be considered are:
1) How to visualize a workflow model?
2) How to enable user to interact with individual schemes?
3) How to deal with the fact a model can contain custom

block types?
4) How to use different look-and-feels?

A. Qt Graphics View Framework
We use Qt Graphics View Framework to make the graphical

part of the application. The main components of the frame-
work are the following.
1) QGraphicsView object provides a widget for display-

ing the contents of a graphic scheme implemented by
QGraphicsScene descendant.

2) DPMScheme inherits QGraphicsScene class and adds
functionality to handle DPModel specific graphical
items in addition to the items handled by its super class.

3) QGraphicsItem is an abstract class for a family of
classes representing flowchart shapes — main and mis-
cellaneous.

Flowchart shapes implemented by QGraphicsItem descen-
dants are placed on DPMScheme object, and the latter is
visualized by a QGraphicsView container. The goal is to

100 of 181

Figure 7. GUI demo application

provide an appropriate graphical renderer for specific block
types taking into account the ability to change easily its
graphical representation just by changing the renderer. This
is the so-called look-and-feel feature.

B. Custom Block Renderers
Just as in the case of custom block loaders we pro-

pose a dynamic extensible mechanism of block renderers.
BlocksRenderers is the main class supporting a collec-
tion of block renderers. It contains methods for adding
and getting a renderer for a block type given by its type
name. Method getRendererByBlockTypeName returns an
appropriate BlockTypeRenderer object used for rendering
a given block. If no appropriate BlockTypeRenderer for a
given block type is found, a default BlockTypeRenderer is
returned.

BlockTypeRenderer is the base abstract class for all
the block renderer classes. The main method they have to
implement is renderBlock. It returns a QGraphicsItem
specifically representing a given block type. This represen-
tation can take into account any necessary graphical aspects
of a block the developer would like to implement. The base
implementation DefBlocksRender that can be used for all the
block types renders a given block using DPMDefBlockItem
(a descendant of QGraphicsItem). It only shows the block’s
name and its type as a text label and, of course, renders its
ports (Fig. 7).
Block ports are also presented as separate objects of

QGraphicsItem descendant class (DPMDefPortItem is de-
fault) grouped by the owner block shape. This is done in order
to enable the user to communicate with ports as individual
objects.
The presented graphical solution is one of the significant

plug-ins for “VTMine framework” (under development) [12].

VI. Cඈඇർඅඎඌංඈඇ

In this paper we discussed DPMine workflow language and
its implementation as a C++ based library. We introduced
DPMine main concept and looked at its building elements.

Semantics of the model execution has been presented in detail.
DPMine block extension approach has been mentioned with
regard to the addition of new block types and extension of the
storage subsystem and a graphical frontend.
Among the challenges for the future a number of tasks

can be identified, namely forming a strong formal semantic
system, extending the functionality of DPMine language by
introducing some default block types and presenting more
complex workflow use cases.
Finally, we have launched a web-site for a DPMine project:

https://prj.xiart.ru/projects/dpmine. It is based on a Redmine
bug-tracking system and we consider it as a platform for the
future DPMine development.

Aർඇඈඐඅൾൽආൾඇඍ
The study was implemented in the framework of the Basic

Research Program at the National Research University Higher
School of Economics (HSE).

Rൾൿൾඋൾඇർൾඌ
[1] O. M. G. (OMG), “Business process model and notation (BPMN)

version 2.0,” Tech. Rep., Jan 2011. [Online]. Available: http:
//taval.de/publications/BPMN20

[2] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera,
M. Ford, Y. Goland, A. Guzar, N. Kartha, C. Liu, R. Khalaf,
D. Koenig, M. Marin, V. Mehta, S. Thatte, D. Rijn, P. Yendluri, and
A. Yiu, “Web Services Business Process Execution Language Ver-
sion 2.0 (OASIS Standard),” WS-BPEL TC OASIS, http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

[3] W. M. P. van der Aalst, “What makes a good process model?
- lessons learned from process mining.” Software and System
Modeling, vol. 11, no. 4, pp. 557–569, 2012. [Online]. Available:
http://dblp.uni-trier.de/db/journals/sosym/sosym11.html#Aalst12

[4] S. Shershakov, “DPMine: modeling and process mining tool,” in Pro-
ceedings of the 7th Spring/Summer Young Researchers’ Colloquium on
Software Engineering, SYRCoSE 2013, 2013.

[5] ——, “DPMine/P: modeling and process mining language and
ProM plug-ins,” in Proceedings of the 9th Central & Eastern
European Software Engineering Conference in Russia, A. N. Terekhov
and M. Tsepkov, Eds. ACM New York, NY, USA, 2013.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2556622&CFID=
415147702&CFTOKEN=35395117

[6] Web Services Business Process Execution Language Version 2.0, OASIS
Std.

[7] W. M. P. van der Aalst, “Three good reasons for using a Petri-net-
based workflow management system.” in Proceedings of the Interna-
tional Working Conference on Information and Process Integration in
Enterprises (IPIC’96), Cambridge, Massachusetts, Nov. 14-15, 1996,
Navathe, S. and Wakayama, T., Eds., 1996, pp. 179–201.

[8] W. M. P. van der Aalst and A. H. M. ter Hofstede, “YAWL: Yet another
workflow language,” Inf. Syst., vol. 30, no. 4, pp. 245–275, Jun. 2005.
[Online]. Available: http://dx.doi.org/10.1016/j.is.2004.02.002

[9] S. Jablonski and C. Bussler,Workflow Management: Modeling Concepts,
Architecture, and Implementation. International Thomson Computer
Press, London, UK, 1996.

[10] W. M. P. van der Aalst, “Decomposing Petri nets for process mining. A
generic approach,” 2012.

[11] The application/json media type for JavaScript object notation (JSON).
[Online]. Available: http://tools.ietf.org/html/rfc4627

[12] P. Kim, O. Bulanov, and S. Shershakov, “Component-based VTMine/C
framework: Not only modelling,” in Proceedings of the 8th Spring/-
Summer Young Researchers’ Colloquium on Software Engineering,
SYRCoSE 2014, 2014, in press.

101 of 181

https://prj.xiart.ru/projects/dpmine
http://taval.de/publications/BPMN20
http://taval.de/publications/BPMN20
http://dblp.uni-trier.de/db/journals/sosym/sosym11.html#Aalst12
http://dl.acm.org/citation.cfm?id=2556622&CFID=415147702&CFTOKEN=35395117
http://dl.acm.org/citation.cfm?id=2556622&CFID=415147702&CFTOKEN=35395117
http://dx.doi.org/10.1016/j.is.2004.02.002
http://tools.ietf.org/html/rfc4627

Component-based VTMine/C Framework:
Not Only Modelling

Polina Kim
Department of Applied Mathematics

and Information Science
National Research University
Higher School of Economics
Moscow 101000, Russia
Email: pvkim@edu.hse.ru

Oleg Bulanov
Department of Applied Mathematics

and Information Science
National Research University
Higher School of Economics
Moscow 101000, Russia

Email: ovbulanov@edu.hse.ru

Scientific Advisor: Sergey Shershakov
International Laboratory

of Process-Aware Information Systems
(PAIS Lab)

National Research University
Higher School of Economics
Moscow 101000, Russia

Email: sshershakov@hse.ru

Abstract—The paper discussed a concept of VTMine/C —
yet another modular framework which is extensible by plug-
ins. The subject area of the core program refers to process
modelling, workflow, and process mining fields. The framework
allows third-party components in the form of plug-ins to extend
the program and customize their interaction with each other and
with the framework modules. An abstraction layer build up of the
framework modules is described. Concepts of resources, plug-in
dependencies and other features are introduced. One of the main
VTMine/C purposes is to support integration with DPMine/C
library.

Keywords: Component-based Application, Software Architec-
ture, Modelling Tool, C++, Qt

I. Iඇඍඋඈൽඎർඍංඈඇ
Nowadays it is a great challenge to present an applica-

tion that can totally fulfil the user’s requirements. The task
is to create software that can be easily enhanced. While
traditional software engineering design cannot tackle such a
task, a component-based approach seems to be an appropriate
solution.
This approach has diverse objectives [1] and provides a

vast range of benefits like reusable code (components can be
used independently or with any other environment), team de-
velopment and extensibility (a framework can be dynamically
extended by pluging in new components that can be renewed
or released without changing the core platform).
The main goal of our work is to present a modular

framework extensible by plug-ins. Plug-ins allow customizing
the core functionality in a wide range. Specialization of the
framework is related to process modelling, workflow, and
process mining areas [2] (Fig. 1). One of the key features of
VTMine/C are mathematical models (graphs and Petri nets)
that are widely spread in process mining discipline.
The ability to be extended by third-party components is

highly valued almost in all kinds of software. There are
available different frameworks both for solving a certain type
of problems and for building tools for various tasks. Eclipse
is one of the most well-known modular and scalable cross-
platform frameworks [3]. One of the most important concepts
of Eclipse is that everything is a plug-in: each subsystem in the
platform is itself structured as a set of plug-ins, implementing

some key functions. There are two ways how plug-ins can
interact with each other: by dependencies or extensions and
extension points. They are implemented to avoid tight con-
nections between components.
Another example is related to Data Mining area. Rapid-

Miner software supports environment for predictive analytic
tools, data mining tools, etc. Developers are provided with
a platform to create custom plug-ins and implementations
of various mining algorithms. Furthermore, developers are
provided with hooks to change RapidMiner’s behaviour [4].
Such systems as Mirand-IM [5], Mozilla Firefox [6], Hud-

son [7] and Notepad++ [8] are also built up of plug-ins coupled
together. One can easily extend their possibilities by plugging
in a component with desirable functional requirements.
Let us consider process mining discipline. Today, there

is a set of freeware and commercial process mining tools.
Examples of these tools include ProM [9], which is a widely
used research workbench containing more then 600 plug-
ins. One of the most significant limitation of ProM is a
inability to make an experiment workflow containing several
routines from different plug-ins. DPMine/P framework and
language [10] was intended as a remedy to fill up this gap
and implemented as a set of ProM plug-ins using Java. Thus,
DPMine/C implements DPMine workflow language as an
independent C++ library [11].
One of the main VTMine/C purposes is to be a host

application for DPMine/C library. The latter is integrated with
VTMine/C as a separate plug-in that allows creating DPMine
workflows through DPMine/C library functions. DPMine/C
tools can edit and execute workflows composed of blocks.
In its turn, the block type system is customizable by plug-ins.
In this paper we propose a concept of yet another modular

framework. The paper discusses some aspects of the frame-
work under development. We use C++ for the core imple-
mentation and Qt 4.8 library (cross-platform UI and software
application development framework) for building a rich client
application. The crossplatform programming language C++
was chosen for its speed. Furthermore, it allows developers
to manage memory allocation. It is a crucial argument when
processing large amounts of information, which often occurs

102 of 181

Figure 1. Process mining discipline emerged at a junction of process model
analysis and data analysis.

in complex modelling tasks.
The rest of this paper is organized as follows. Section II

describes the modular concept and key components of the tool.
Section III discusses the lifecycle of a plug-in in VTMine/C.
An example of interaction between the core platform and an
existing plug-in in a form implemented by a Petri net Editor,
is presented in Section IV. Finally, Section V concludes the
paper and summarizes the work done.

II. Fඋൺආൾඐඈඋ ඌඍඋඎർඍඎඋൾ
VTMine/C target is to provide a fitting environment for

additional plug-ins or components. From the users’ point of
view they interact with plug-ins through menus, toolbars, etc.
From a technical standpoint they are represented as controls.
The users work with a set of resources, using routines for
processing them. The user can also manage resources through
projects and solutions. The plug-ins register controls to give
the user access to their functionality. The user interacts with
plug-ins indirectly, but through a standard well-defined inter-
face provided by the framework core. The interface contains
necessary controls such as menus, tool and instrumental panels
and general purpose control containers. The latter are used for
representing complex components like a graph editor.
One need to design an abstraction layer through which a

vast range of third party components are allowed to extend
the framework core and even other plug-ins and customize
their behaviour. For this purpose the framework allows plug-
ins to interact with each other and with the framework modules
(Fig. 2) through specific interfaces. Thus, each plug-in is in-
dependent of particular implementations of other components
except those it is dependent on. Strong abstraction makes
system very flexible.
Let us now consider main framework components closer.

A. Plugin Manager
Plugin Manager is a central module of the core platform.

It is responsible for loading plug-ins. Each plug-in is located

in a special directory.
The loading of plug-ins is a two-step process. At the first

step (see Fig. 3) a list of plug-ins compatible with the platform
is created. There are components that implement the base
interface (IBasePlugin; see sect. III). It is checked whether
the plug-ins are compatiable with the framework or not. In
case there are different versions of the same feature, the one
with the latest version is added to the list. As a result of the
first step we get a list of candidates for further verification.
Before discussing the second step, let us introduce depen-

dencies between plug-ins A and B. If A is dependent on plug-in
B version N, it means that A cannot be loaded before loading
of plug-in B version N has been performed. In the case of the
circular dependencies between two plug-ins (A and B), no one
of them are loaded. This is because it is impossible for Plugin
Manager to determine which one should be loaded first.
A plug-in can also determine its previous versions that it

is compatiable with. For example, plug-in C version 78 can
be compatible with versions from 60 to 77 with regard to
a certain feature (versions of the plug-in can be given as a
range). It helps to determine whether a version conflict exists
or whether components dependent on some of the previous
versions of a plug-in can be loaded (see Fig. 5).
At the second step the dependencies of the plug-ins are

checked, components are loaded (Fig. 4) and registration of
components is carried out. The plug-ins register all their inter-
faces, both visual and non-visual. This procedure is discussed
in Section III in detail.

B. Resources

Let us consider resources. A resource is a typed envelop for
data being processed and transformed by VTMine/C plug-ins.
The type of resource is registered in Resource Type Manager
by a plug-in that introduces such kind of resources for the
framework (Fig. 6). For example, there is a plug-in registering
a “Petri net” resource type. Often, the same plug-in registers
not only new resource types, but also additional components
for working with the resources of that type. For example
above, the plug-in can also register an editor for Petri nets.
Some kinds of resources have a file representation and one

or more filename extensions in order for the framework to
be able to determine resource types of the imported files.
The resources are objects that can be created, copied, deleted
either by the user or any other framework component. For
example, resources can be produced and processed by plug-
ins. Depending on its functional purpose resources can be
rather simple (like regular numbers and strings) as well as
complex structures (various models, logs, etc.).
Resources are managed individually by special types of

components, not by the framework. All resources inherit from
a Basic Resource class. It declares common attributes of
resources. There are no limits for the number of resource types.
One can develop a new resource type by inheriting an existing
resource. Resources are determined by resource types which
do not contain data itself, but rather declare their attributes.

103 of 181

Core
<<Interface>>

IUIManager

<<Interface>>

IPerspectiveManager

<<Interface>>

ISolutionManager

<<Interface>>

IResourceTypeManager

<<Interface>>

ProjectTypeManager

PluginManager

Abstraction layer

Plug-in A
Register Perspective Register ResourceType

Figure 2. Cooperation of plug-in A and VTMine/C framework modules

Figure 3. Example of directory of possible VTMine/C plug-ins. Arrows
indicate the dependencies between the plug-ins. Plug-in D does not implement
IBasePlugin so it is not going to be loaded

Figure 4. Example of plug-ins list after performing the loading routine. The
order is important

Each resource can be associated with some so-called re-
source doer objects. A resource doer is a special object which
can perform some operations with given resources. Resource
doers are exported to the core platform by plug-ins. For
example, some resource doer for a Petri net can open a Petri
net editor. While another resource doer can perform some
verification procedure with the Petri net. From the users’
perspective they always work with resource doer objects.
Access to the resource doer functionality is performed through
controls. The plug-ins register controls during the loading
process.

C. Projects and Solution Manager
Projects are used for resources’ interaction. Some resource

files can be grouped into a project. The project represents these
resources as a tree-based structure including so-called folders
as a tool for grouping related resources.
A project type describes projects the system can work

with. The project type describes whether resources can be
used in this very project (Fig. 6). Project types can differ
in characteristics, for example, resources included by default.
A project can also be stored as an XML-based file which
describes properties of the project.
A solution is a high-level tool for organizing some in-

dividual projects. From the file system perspective projects
are subdirectories of the solution’s folder. Solution Manager
controls how projects are stored.

104 of 181

Plugin A / 67

Comp. with: -
Dep.: B/111

Plugin B / 133

Comp. with:
53-132
Dep.: -

Plugin A / 67

Comp. with: -
Dep.: B/111

Plugin B / 177

Comp. with:
150-176
Dep.: -

Figure 5. Example of transitive dependency between plug-ins. In the first
case A can be loaded, in the second it cannot

abbbcac
aaaacccdd
dabaadb

aaabbbbddab

Resource Type
Manager

Project Type
Manager

Plugin

Figure 6. Resource Types and Resource Projects are registered by plug-ins

D. Perspectives
A perspective is a named customized set of visual controls

including menus, toolbars, tool panels, and containers for
custom controls (Fig. 7). A perspective aggregates visual
controls with a view to providing users with necessary tools or
controls for managing some kinds of resources or to perform
specific tasks.
Switching of perspectives leads to a change in the number

of menus, toolbars and panels. A Main Perspective is always
enabled in the core platform. It stores a minimal set of
controls so that the program remains manageable. It contains,
for example, such controls as a menu which is responsible
for switching between perspectives or an exit menu. Custom
perspectives are created by VTMine plug-ins.

III. Pඅඎ-ංඇ අංൿൾർඒർඅൾ

A plug-in is a component that adds new features to the
framework or extends functionality of other plug-ins. As a

component-based application the tool provides an ability to
interact with third-party components developed for VTMine/C.
They appear in the form of shared libraries, dynamic link
libraries (.dll) in Windows and dynamically linked shared
objects libraries (.so) in Linux.
In VTMine/C all plug-ins contain a class implementing

IBasePlugin interface. The interface does not declare any
component functions. There is a special method that gives
minimal required information about a plug-in to the frame-
work. This information is enough to load the plug-in. It is
represented in the form of Descriptor. A Descriptor is a
structure containing the following information:

• Plug-in name
• Plug-in developer
• Plug-in version
• Plug-in dependencies
• Some additional information
Let us consider other methods of IBasePlugin interface.

There is a method called registerMyself (it is responsible
for the plug-in registration procedure and is executed imme-
diately after loading a component) and a method handling
commands. These functions are discussed comprehensively
below.
The plug-ins depending on their function can perform the

following tasks:
• Expand framework GUI by introducing new controls
• Represent doer objects (viewer or editor)
• Be a special kind of doers in the form of various
implementing algorithms that perform some actions

• Register new resources
Let us consider the lifecycle of a plug-in.

A. Loading
As it was written above, a plug-in is loaded if it satisfies a

required interface and all components associated with it have
been already loaded.
Next, the plug-in is expected to prepare a platform for

interaction.

B. Registration
When the plug-in is loaded, it can register itself in the core

platform. VTMine/C provides the plug-ins with well-defined
interfaces of the managers discussed in Section II. The plug-
in consumes their features and enable to add custom features.
The plug-in registers in the framework various components
like resource types or menu items. It is important to point
out that, in fact, the plug-ins does not access GUI itself. The
plug-in can only register controls regardless of their graphical
interfaces. If necessary, the platform wraps them into graphical
controls.
At this stage of development all components, plugging in

to VTMine/C, have the same access rights and are able to
change any module or module properties in the core platform.
This approach is flexible but insecure. For security purposes
the platform checks whether the components support required

105 of 181

Figure 7. Example of VTMine main window where a Petri net editor plug-in has been registered

Petri net editor

PetriNet

PNLayout

PetriNet

PNLayout

Project

Figure 8. Scheme of the work of a Petri net editor plug-in

interfaces and depending on the obtained results provides plug-
ins with different access rights to the framework modules.

C. Further Maintenance
When all components are loaded and registered the frame-

work is ready for interaction. Further execution of the plug-in
depends on the user. Each event issued from the user is a com-
mand. A command has a unique description which includes
information about its producer and consumer. As an event
occurs, the framework handles the command and determines
the consumer. The platform just transfers the command to the
plug-in without being aware of the command’s function. Next,
the consumer invokes a required tasks operation.

The next section illustrates an example of interaction be-
tween a Petri net Editor plug-in and the framework.

IV. Pඅඎ-ංඇ ൾඑൺආඉඅൾ

Let us look at a plug-in exporting Petri net editor to the
framework. First, let us see how the plug-in looks like and
what its main attributes are.
The plug-in is aimed to 1) visualize Petri net models, 2) edit

them and 3) export Petri nets given as VTMine resources to
files. In editing mode basic Petri net items such as positions,
transitions and edges can be added using a toolbar that is
also registered by the plug-in. The plug-in registers a special
widget, placed in a container for custom controls discussed
above, that is responsible for Petri net graphical representation.
The Petri net editor plug-in that has been registered in the
VTMine framework is shown in Fig. 7.

A. Lifecycle of a component

It can be mentioned, that the Petri net editor has no
dependencies on other plug-ins, so it can be freely loaded
by Plugin Manager during the loading procedure.
The editor uses different framework managers to register its

components. Every plug-in “knows” the framework and has
access to its modules. Let us look at the process of plug-in
registration.
1) The Petri net editor plug-in registers its menus in Menu

Manager. The manager does not create any graphics
representation, but adds a description of menu items.
Menu Manager stores a list of menus. So the plug-in

106 of 181

adds a new menu containing menu identifier, title and
items.

2) The plug-in registers a toolbar using Toolbar Manager.
The process of toolbar registration is similar to the
process of menu registration.

3) UI Manager obtains a graphical representation of con-
trols corresponding to their descriptions which have
been registered at the previous step. Moreover, the
editor gets the central widget of the main form from
UI Manager to place a widget that is responsible for the
Petri net’s graphical representation.

4) The plug-in registers a new perspective using Perspec-
tive Manager. Furthermore, the editor binds its menu
and toolbar to the perspective.

5) The Petri net editor uses two special kinds of resources.
These are PetriNet and PNLayout resources. The first
keeps the internal representation of a Petri net as an
object model. The second keeps additional information
about the Petri net’s graphics primitives as they are
represented on the screen. The plug-in tries to register
these resource types, if they have not been already
registered.

B. Plug-in Work
The editor can both import PetriNet alone or be coupled

with PNlayout and give the ability to edit graphical repre-
sentation of the Petri net. Moreover, the plug-in can export
current PetriNet or PNLayout as a new VTMine resource.
When the framework uses the editor, it creates a new Project

in Project Type Manager. The project manages the resources
that are imported and exported during the editor’s lifetime. A
work scheme of the plug-in is shown in Fig. 8.

V. Cඈඇർඅඎඌංඈඇ
In this paper the concept VTMine/C framework was dis-

cussed. The core of the framework is being changed continu-
ously, because the project implementation is in its initial stage.
Some of the components have already been done whereas
others are still need to be developed and implemented. We
expect some concepts drift concerning UI improvement.

Now the main work is to perform integration between
VTMine/C and DPMine/C. Moreover, we consider to continue
developing under some public license to involve the commu-
nity interested in this work. The web site of VTMine project
is https://prj.xiart.ru/projects/vtmine.

Aർඇඈඐඅൾൽආൾඇඍ
The study was implemented in the framework of the Basic

Research Program at the National Research University Higher
School of Economics (HSE).

Rൾൿൾඋൾඇർൾඌ
[1] D. Bose. (2010, November) Component Based Development. Cornell

University Library. [Online]. Available: http://arxiv.org/ftp/arxiv/papers/
1011/1011.2163.pdf

[2] W. M. P. van der Aalst, Process Mining - Discovery, Conformance and
Enhancement of Business Processes. Springer, 2011.

[3] K. Moir. (2012) The Architecture of Open Source Applications -
Eclipse. [Online]. Available: http://www.aosabook.org/en/eclipse.html

[4] How to Extend RapidMiner 5. [Online]. Available: http://rapidminer.
com/wp-content/uploads/2013/10/How-to-Extend-RapidMiner-5.pdf

[5] Miranda IM website. [Online]. Available: http://wiki.miranda-im.org/
[6] A. Campos, B. Lane, N. Clark, S. Jassal, and S. Hitchner. (2007,

June 2) Conceptual Architecture of Firefox. [Online]. Available:
http://web.uvic.ca/~hitchner/assign1.pdf

[7] Hudson website. [Online]. Available: http://www.eclipse.org/hudson//
[8] Notepad++ website. [Online]. Available: http://notepad-plus-plus.org/
[9] H. Verbeek, J. Buijs, B. Dongen, and W. Aalst, “ProM 6: The Process

Mining Toolkit,” in Proc. of BPM Demonstration Track 2010, ser. CEUR
Workshop Proceedings, M. L. Rosa, Ed., vol. 615, 2010, pp. 34–39.

[10] S. Shershakov, “DPMine/P: modeling and process mining language
and ProM plug-ins,” in Proceedings of the 9th Central & Eastern
European Software Engineering Conference in Russia, A. N. Terekhov
and M. Tsepkov, Eds. ACM New York, NY, USA, 2013.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2556622&CFID=
415147702&CFTOKEN=35395117

[11] ——, “DPMine/C: C++ library and graphical frontend for DPMine
workflow language,” in Proceedings of the 8th Spring/Summer Young
Researchers’ Colloquium on Software Engineering, SYRCoSE 2014,
2014, in press.

107 of 181

https://prj.xiart.ru/projects/vtmine
http://arxiv.org/ftp/arxiv/papers/1011/1011.2163.pdf
http://arxiv.org/ftp/arxiv/papers/1011/1011.2163.pdf
http://www.aosabook.org/en/eclipse.html
http://rapidminer.com/wp-content/uploads/2013/10/How-to-Extend-RapidMiner-5.pdf
http://rapidminer.com/wp-content/uploads/2013/10/How-to-Extend-RapidMiner-5.pdf
http://wiki.miranda-im.org/
http://web.uvic.ca/~hitchner/assign1.pdf
http://www.eclipse.org/hudson//
http://notepad-plus-plus.org/
http://dl.acm.org/citation.cfm?id=2556622&CFID=415147702&CFTOKEN=35395117
http://dl.acm.org/citation.cfm?id=2556622&CFID=415147702&CFTOKEN=35395117

Extended Finite State Machine based Test Derivation
Strategies for Telecommunication Protocols

Natalia Kushik
Tomsk State University

Tomsk, Russia
TELECOM SudParis

Evry, France
Email: ngkushik@gmail.com

Anton Kolomeez
Tomsk State University

Tomsk, Russia
Email: anton.kolomeets@gmail.com

Ana R. Cavalli
TELECOM SudParis

Evry, France
Email: ana.cavalli@it-sudparis.eu

Nina Yevtushenko
Tomsk State University

Tomsk, Russia
Email: ninayevtushenko@yahoo.com

Abstract—In this paper, we consider the problem of test
derivation based on an Extended Finite State Machine (EFSM)
that is widely used for describing the behavior of telecommunica-
tion protocols and software. An EFSM augments a classical Finite
State Machine (FSM) with context variables, input/output param-
eters and predicates. Tests based on various coverage criteria for
EFSMs do not capture many functional faults and thus, there is
a strong need for tests checking functional properties. Moreover,
since there are no constructive necessary and sufficient conditions
for checking whether two arbitrary EFSMs are equivalent, most
methods are based on some kind of a transition tour, despite
of the fact that such methods do not provide test suites with
the guaranteed fault coverage. Given possibly nondeterministic
and partial EFSM, we consider a transition tour of an FSM
obtained by the simulation of the initial EFSM and provide some
experimental results that such a test suite detects a number of
inconsistencies in available protocol implementations with respect
to protocol specifications. Since a transition tour augmented with
state identifiers is known to have the higher fault coverage, we
also discuss how state identifiers can be generated without facing
the state explosion problem. Correspondingly, we consider FSM
slices that are obtained by deleting from the initial EFSM all
the context variables and possibly, input and output parameters.
As the obtained FSM can be nondeterministic, a state identifier
should contain separating sequences for pairs of states and we
adapt the known techniques for deriving separating sequences
for nonobservable partial FSMs.

I. INTRODUCTION

In this paper, we consider the test derivation based on the
model of an Extended Finite State Machine (EFSM) that is
widely used for describing protocols and software, see, for
example, [1], [2]. We underline that tests based on various
EFSM coverage criteria do not capture many functional faults
[3], [4] and thus, there is a strong need for tests derived against
formal behavioral models.

An EFSM augments a classical Finite State Machine (FSM)
[5] with context variables and input and output parameters.

The work is partially supported by RFBR grant No. 14-08-31640 mol a.

Since there are no constructive necessary and sufficient condi-
tions for checking whether two arbitrary EFSMs are equivalent
(as for instance, the bisimulation for classical FSMs), most test
derivation strategies are based on some kind of a transition
tour, despite of the fact that such methods do not provide test
suites with the guaranteed fault coverage. Moreover, differ-
ently from classical FSMs, there is the well known execution
problem for tests derived against EFSMs, according to the
necessity for providing appropriate values for internal context
variables. In order to avoid this problem, many methods for
deriving functional tests use an appropriate EFSM slice with
the FSM behavior. In this paper, we consider three different
EFSM slices. The first one is an FSM that is derived based
on the simulation of a given EFSM [6], [7]. However, in this
case, we meet the well known state explosion problem and the
FSM is usually generated up to the given number of states or
up to the given length of input sequences. A transition tour is
then derived for the obtained FSM and we illustrate that such
test detects a number of inconsistencies in available protocol
implementations [8], [9].

The quality of a transition tour can be improved using
distinguishing sequences [2] for final states/configurations of
traversed transitions. Moreover, in order to minimize a test
suite, each distinguishing sequence should distinguish as much
states/configurations as possible [10]. One way to derive such
distinguishing sequences is to use a corresponding distinguish-
ing EFSM [2] that in fact, is a product of initial EFSMs with
corresponding initial states. However, this approach is well
elaborated only for two configurations and there still is the ex-
ecution problem for an obtained distinguishing sequence, since
not every parameterized input sequence that takes the product
of two initial EFSMs from the initial state to a fail state is
executable. Another way is to distinguish not configurations
but states of the EFSM using context-free slices of an EFSM
that are very close to classical FSMs and correspondingly, there
is no problem to execute a derived distinguishing sequence
[11]. In this paper, we consider two such slices. However,
in this case, a corresponding FSM can be nondeterministic,
i.e., distinguishing sequences become separating sequences.

108 of 181

An input sequence is a separating sequence for a given set
of FSM states if for each two different states of the set, the
sets of output responses of the FSM at these states to the input
sequence do not intersect. As an obtained FSM can be partial
and nonobservable, in this paper, methods proposed in [12],
[13] for deriving separating sequences are adapted to partial
and nonobservable FSMs.

Correspondingly, the main contribution of the paper is a
method for deriving a separating sequence for a set of k states,
k > 1, of a nondeterministic FSM that can be partial and
nonobservable. Experimental results are involved when talking
about another contribution. These results clearly show that the
EFSM slices fit very well for deriving high quality tests and
thus, test derivation strategies could be further improved based
on various EFSM slices. One of directions for future work
includes slicing based on time variables when time constraints
are involved in the EFSM description [14].

The rest of the paper is organized as follows. Section 2
contains some preliminaries for EFSMs, while Section 3 de-
scribes how test suites are generated based on three FSM slices
of the initial EFSM. Experimental results on the transition tour
quality are reported for some telecommunication protocols and
methods for deriving distinguishing/separating sequences for
EFSM states based on EFSM slices are discussed. Section 4
concludes the paper.

II. PRELIMINARIES

EFSM Model
A finite state machine (FSM), or simply a machine throughout
this paper is a 5-tuple S = 〈S, I,O, hS , S′〉, where S is a
finite nonempty set of states with a nonempty subset S′ of
initial states; I and O are finite input and output alphabets;
and hS ⊆ S × I × O × S is a behavior (transition) relation.
If |S′| = 1 then the machine is initialized, otherwise it is non-
initialized (weakly initialized). An FSM is nondeterministic
(NFSM), if for some pair (s, i) ∈ S × I there exist several
pairs (o, s′) ∈ O × S such that (s, i, o, s′) ∈ hS , otherwise
S is deterministic. If for each pair (s, i) ∈ S × I there exists
(o, s′) ∈ O × S such that (s, i, o, s′) ∈ hS then the FSM is
complete, otherwise it is partial. If for each triple (s, i, o) ∈
S × I × O there exists at most one state s′ ∈ S such that
(s, i, o, s′) ∈ hS then the FSM is observable, otherwise it is
nonobsevable. In usual way, the FSM behavior is extended to
input sequences.

Given an FSM S = 〈S, I,O, hS , S′〉, two states s1, s2 ∈ S
are compatible if for each input sequence α ∈ I∗ the sets of
output responses at these states to α coincide, i.e. out(s1, α) =
out(s2, α). Two states are distinguishable if there exists an
input sequence α such that α is a defined input sequence at
both states s1 and s2 and out(s1, α) 6= out(s2, α). The FSM
S is reduced if its states are pair-wise distinguishable. States
s1, s2 of S are separable if there exists an input sequence
α ∈ I∗ such that out(s1, α) ∩ out(s2, α) = ∅; in this case,
α is a separating sequence of states s1 and s2. If there exists
an input sequence α that separates every two distinct states of
the set S′, then α is a separating sequence for the set S′.

An extended finite state machine (EFSM) [2], [6] A is a
pair (S, T) of a set S of states and a set T of transitions
between states, such that each transition t ∈ T is a tuple

(s, i, o, P, vp, op, s
′), where s, s′ ∈ S are the starting and final

states of a transition; i ∈ I is an input with the set Dinp−i
of possible vectors of corresponding input parameter values,
o ∈ O is an output with the set Dout−o of possible vectors of
output parameter values; P , vp, and op are functions, defined
over input parameters and context variables. By definition,
P : Dinp−i×DV −→ {True, False} is a predicate where DV

is the set of context vectors; op : Dinp−i×DV −→ Dout−o is
an output parameter update function; vp : Dinp−i×DV −→
DV is a context update function.

According to [2], we use the following definitions. Given
an input i and a vector p ∈ Dinp−i, the pair (i, p) is called
a parameterized input; if there are no parameters for the
input i then i is a non-parameterized input. A sequence
of parameterized inputs (possibly some of them are non-
parameterized) is called a parameterized input sequence.
A context vector v ∈ DV is called a context of A. A
configuration of A is a pair (s, v). Usually, the initial state
and the initial configuration of the EFSM are given; thus, given
a parameterized input sequence of the EFSM, we can calculate
a corresponding parameterized output sequence by simulating
the behavior of the EFSM under the input sequence starting
from the initial configuration.

An EFSM is consistent if for each transition at state s with
input i, every element in Dinp−i ×DV evaluates exactly one
predicate to true among all predicates guarding the different
transitions with the starting state s and input i; in other words,
the predicates are mutually exclusive and their disjunction
evaluates to true. An EFSM A is completely specified if for
each pair (s, i) ∈ S × I , there exists at least one transition at
state s with the input i. The authors of most papers develop test
derivation strategies for consistent and completely specified
EFSMs. However, such EFSMs are rarely met when building
protocol specifications at high abstraction levels.

The equivalence and distinguishability relations for EFSM
configurations are defined similar to those over FSM states.
Two initialized EFSMs are compatible if their initial config-
urations are compatible. Differently from FSMs, we still lack
necessary and sufficient conditions for establishing whether
even two complete and consistent EFSMs are equivalent. Two
states of an EFSM are separable if there exists a (parame-
terized) input sequence such that at these states the sets of
parameterized output responses of the EFSM to this input
sequence do not intersect (for any values of context variables).
In other words, if two states s and s′ of the EFSM are separable
then each two configurations at these states are separable.

When the specification domain of each context variable and
of each input parameter is finite an EFSM A can be unfolded
to an equivalent FSM, written FSMsim(A), by simulating its
behavior with respect to all possible values of context variables
and input vectors. The equivalence means that the set of traces
of the FSM coincides with the set of parameterized traces of
the EFSM. Given a state s of EFSM A, a context vector v,
an input i and the vector p of input parameters, we derive
the transition from configuration (s, v) under input (i, p)
in the corresponding FSM. We first determine the outgoing
transition (s, i, o, P, vp, op, s

′) from state s where the predicate
P is true for the input vector p and the context vector v,
update the context vector to the vector v′ according to the
assignment vp of this transition, determine the parameterized

109 of 181

output (o, w) and add the transition ((s, v), (i, p), (o, w), (s′,
v′)) to the set of transitions of the FSM FSMsim(A). The
number of states of the obtained FSM equals the number of
different configurations (s, v) of the EFSM that are reachable
from the initial configuration. If an EFSM is consistent and
completely specified, the corresponding FSM is complete and
deterministic. Two EFSMs are equivalent if and only if their
corresponding FSMs are equivalent [7]. When the specification
domain of some context variable and/or some input parameter
is infinite or the number of generated transitions becomes huge,
the EFSM behavior is simulated up to the given number of
transitions or up to the given length of input sequences.

III. DERIVING TEST SUITES FOR DETECTING
FUNCTIONAL FAULTS

A. Transition tour of the slice FSMsim

When a test suite is derived using FSM based methods,
the high quality of the test suite is guaranteed by traversing
each transition of an FSM under test and by distinguishing the
final state of a traversed transition from other states. However,
almost all FSM based methods are developed for complete
deterministic FSMs, while the FSM FSMsim(A) is usually
partial and nondeterministic. Moreover, as discussed above,
sometimes only a part of this FSM can be derived due to the
well known transition explosion problem. In order to avoid this
problem the maximal number of states of the FSMsim(A) is
limited by some integer B or the length of input sequences
used for the simulation is limited by some integer l. In the
former case, all the states corresponding to configurations (s,
v) with the numbers that are greater than B are marked by a
special state DNC (DON ′T CARE state) where the self-
loops labeled with all input/output pairs can be added. Two
ways are then appropriate when deriving a test suite for the
obtained FSMsim(A).

1) Transitions with the DNC state are deleted from the
FSMsim(A) and a test suite is derived for a partial
FSM [15].

2) A test suite is derived for a completely specified FSM
FSMsim(A) and then the test suite is ’refined’ by
deleting all suffixes of test sequences that lead to the
DNC state.

When performing experiments with telecommunication
protocols, we tried the first approach and derived a transition
tour that is known to detect all output faults at all traversed
transition. It is also known that such a test suite does not
detect all transfer, predicate and assignment faults and in order
to report the quality of such test suites we use experimental
results with available implementations of some telecommuni-
cation protocols.

The protocol IRC [8], [16] we have experimented with is
used for organizing the real time message exchange between
internet nodes. The EFSM specification is partial and non-
deterministic according to several reply options to the same
query.

The behavior of the FSM FSMsim(A) is included into
the behavior of the initial EFSM that is derived using the
RFC specification. For this protocol, an FSM that covers all
configurations cannot be derived, since specification domains

of the context variables are infinite. When completing the
connection a client sends the message QUIT , i.e., the message
QUIT takes any IRC implementation to the initial state. The
EFSM A that has been extracted from the RFC specification
[16] is an initialized EFSM that has four states, 47 transitions,
12 inputs, 25 outputs, 6 context variables and 17 input and
output parameters. After limiting the number of states by
B = 9 and deriving the FSM FSMsim(IRC) with 34 inputs,
a test suite has been derived as a transition tour of the obtained
FSM [8]. This test contains 265 input sequences with the total
length of 1164 inputs counting QUIT input as the reset. The
test was downloaded into the data base of the software Tester
[17] for testing a free available implementation ngIRCd (ver-
sion 16) that is widely used as a server IRC implementation.
The software ngIRCd was downloaded from the developer
web site and was compiled by A. Shabaldin using the utility
− − strict − rfc. Three inconsistencies have been detected
by the test. First, there was a wrong reply code to the NICK
command with the empty parameter. Another inconsistency
occurred due to the incorrect server use of the Nickname
that is already occupied, while the third inconsistency was
related to the wrong reply to the MODE command that is
used without the Nickname but with the parameter for setting
a communicating mode.

TFTP [9] is a simple file transfer protocol that is used for
reading and writing files from/to a remote server. It is generally
used to move files between machines of different networks
implementing User Datagram protocol and the simplicity of
the protocol makes it very popular. Following the RFC spec-
ification [18] a special EFSM with four states, 11 transitions
and a single context variable that represents a timer, i.e., a
clock variable [9], has been derived. Since a context variable
is a clock variable, a method presented in [19] has been used
for simulating such extended machine in order to obtain an
equivalent FSM where for the sake of simplicity, only the
part that is responsible for getting files from the server has
been modelled. A test suite was derived as a transition tour
of the obtained FSM. Experiments with two implementations
supporting TFTP, namely, class TFTPServer defined in the
commons − net − 2.0.0 library developed by Apache and
atftpd Linux server developed by Jean-Pierre Lefebvre are
reported in [9]. Some mismatching has been detected between
these implementations and the protocol specification. In the
TFTPServer an acknowledgement with the unsent packet
number has been ignored while the atfdp inplementation
replies to acknowledgements incrementing their numbers that
does not match the protocol specification.

POP3 [20] is the Post Office Protocol of the third version
that is used at the application-layer by local e-mail clients to
retrieve messages from the server. Different webmail service
providers like Gmail or Y ahoo support this protocol and thus,
corresponding implementations should be thoroughly tested.
Following the RFC1939 specification an EFSM E describing
the behavior of the POP3 protocol [21] with four states
and two context variables has been derived. The EFSM was
then unfolded to an equivalent FSM with six states and 106
transitions [22]. Similar to previous cases, a test suite has
been derived as a transition tour. The test suite has detected
an inconsistency in the POP3 implementation tpop3d− 1.5.5
that is related to the incorrect processing of the double use of
DELE command for the same message.

110 of 181

Some experiments were performed with other protocols
described as EFSMs where a test suite has been derived as a
transition tour of a corresponding unfolded FSM. Experimental
results show that the fault coverage for such test suites is
around 100% for output faults and approximately 60% for
other faults such as transfer, predicate and/or assignment faults
as they are defined in [6]. In order to enhance the fault coverage
the authors of different papers (see, for example [2]) propose
to add distinguishing sequences for the final configurations
of each traversed transition and according to the results on
FSM based test derivation [10], in order to minimize the length
of a resulting test suite, each distinguishing sequence should
distinguish as much states as possible. However, in order to
escape the state explosion and the execution problems we
propose to distinguish not configurations but states of the initial
EFSM using corresponding context-free slices. Since such
slices usually have the nondeterministic behavior, distinguish-
ing sequences become separating sequences and as obtained
nondeterministic slices can be partial and nonobservable, the
existing methods for deriving separating sequences [13], [12]
have to be adapted to this class of nondeterministic FSMs.

B. Context-free EFSM slice

Here we consider a slice Slicecontext−free(A) of an EFSM
A that does not have context variables. We follow the approach
in [11], but a proposed technique allows to derive such a
slice preserving more transitions of the initial EFSM [3]. The
idea behind the approach is to delete transitions from the
initial EFSM which have predicates that significanty depend on
values of context variables. However, some of such transitions
can be preserved using the following property. For example, if
P is the disjunction of predicates P1 and P2, and P1 does not
significantly depend on the values of context variables then a
transition with the predicate P will be fired for appropriate
values of input parameters where P1 is true, i.e., a transition
with the predicate P can be replaced by the same transition
with the predicate P1. In general case, such replacing is valid
if the predicate P can be represented as a function of P1 and
P2, P = f(P1, P2), where P1 does not significantly depend
on context variables, and f(1, 0) = f(1, 1) = 1. At the next
step, all the context variables and functions for updating these
variables are deleted from the obtained EFSM.

As an example, consider P = a1a2 ∨ v1v2, P1 = a1a2,
P2 = v1v2, where a1 and a2 are Boolean input parameters
while v1 and v2 are Boolean context variables. In this case,
in the FSM slice a transition (s, i, o, P , vp, op, s′) can be
replaced by a transition (s, i, o, P1, s′) and correspondingly,
only input (external) parameters have to be set for traversing
the transition.

By construction, the Slicecontext−free(A) has no context
variables, i.e., has an FSM behavior. Nevertheless, this slice
has input parameters, i.e., parameterized inputs should be
considered when deriving a test suite. Correspondingly, using
a context-free slice two configurations (s, v) and (s′, v′) of the
initial EFSM can be distinguished using FSM based methods if
states s and s′ are distinguishable in the Slicecontext−free(A).
The Slicecontext−free(A) can have predicates which depend
on input parameters and this should be taken into account when
deriving a distinguishing sequence. As usual, for deriving a

distinguishing sequence for two states we consider a corre-
sponding successor tree (or a product) [5] but this construction
is augmented with checking conditions for predicate satisfia-
bility and determining a corresponding satisfying assignment
[3]. To the best of our knowledge, there is no general method
how to solve the problem for an arbitrary predicate but for
most protocols such predicates are described using Boolean
functions or systems of linear comparisons over integers or
rational numbers. If all the predicates are Boolean functions
then the satisfiability problem is reduced to the well known
SAT problem and there are efficient algorithms for its solving,
see, for example [23], [24]. If predicates are represented as
linear expressions then there are methods how to solve a
corresponding system of linear comparisons [25]. According
to performed experiments with some protocols [3], a test
suite augmented with distinguishing sequences derived using
Slicecontext−free(A) additionally detects a number of single
and double transfer, predicate and assigment faults in protocol
implementations.

C. Using separating sequences of the underlying FSM slice

Similar to the context-free slice, another FSM slice of the
initial EFSM can be derived. Given an EFSM A, we derive
an FSM FSM(A) by deleting all context variables, input
and output parameters, predicates, and update functions, i.e.,
each transition becomes a classical FSM transition containing
starting and final states and an input/output pair i/o. By con-
struction, the FSM(A) can be nondeterministic, partial and
nonobservable. Similar to the previous cases, a test suite can
be derived based on a transition tour of FSMsim(A) (Section
3.1) augmented with separating sequences for each pair of
different states of the FSM(A) for which such a separating
sequence exists. In order to minimize a test suite separating
sequences which distinguish subsets of states of FSM(A) are
used. For this purpose, we adapt the algorithm proposed in
[12] for separating two complete observable initialized FSMs
for separating a subset S′ of states of a possibly nonobservable
FSM. We first propose a corresponding procedure for complete
nonobservable machines and then discuss how it can be used
when deriving separating sequences for partial nonobservable
FSMs.

When deriving a separating sequence for FSMs we are
interested in pairs of FSM states. A pair of states is an
unordered state pattern of length two denoted as sp, sq with
sq, sq ∈ S; if sp = sq then the pair is a singleton
sp, sp. Given an input/output pair i/o and a state sp, the set
next state(sp) = {s ∈ S|(sp, i, o, s) ∈ hS} is called an i/o-
successor of state sp. Given an input/output pair i/o and a pair
sp, sq , the i/o-successor of sp, sq is the set of different pairs of
i/o-successors of states sp and sq (if such successors exist for
both states sp and sq). In other words, the pair s′p, s′q belongs
to the i/o-successor of the pair sp, sq if (sp, i, o, s′p) ∈ hS and
(sq, i, o, s

′
q) ∈ hS . The i/o-successor of the pair can contain a

singleton sk, sk if sk is included into the i/o-successor of both
states sp and sq . Given an input i, the i-successor of sp, sq is
the union of the i/o-successors of sp, sq for all possible outputs
o ∈ O. The i-successor is empty if for each o ∈ O the pair
sp, sq has no i/o-successor.

Procedure 1 for deriving a shortest separating sequence
for a subset S′, |S′| ≥ 2, of a possibly nonobservable FSM

111 of 181

Input: FSM S that can be nonobservable and a subset S′ ⊆
S, |S′| ≥2

Output: A shortest separating sequence for S or the
message “There is no separating sequence for the subset S′”

Derive a truncated successor tree for the FSM S. The root
of the tree is labeled with the set of the pairs sp, sq , sp, sq ∈ S′,
p < q; the nodes of the tree are labeled by sets of pairs of the
set S. Edges of the tree are labeled by inputs and there exists
an edge labeled by i from a node P at level j, j ≥ 0, to a node
Q if Q is the union of the i-successors over all pairs of P .
The set Q contains a singleton if i/o-successors of some pair
of P coincide for some o ∈ O. If the union of i-successors of
pairs from P is empty then the set Q is empty.

Given a node P at the level k, k > 0, the node is terminal
if one of the following conditions holds.
Rule-1: P is the empty set.
Rule-2: P contains a set R that labels a node at a level j,
j < k.
Rule-3: P contains a singleton.

If the successor tree has no nodes labeled with the empty
set, i.e., is not truncated using Rule-1 then
Return the message ”There is no separating sequence for a
subset S′”.
Otherwise,

Determine a path with minimal length to a node labeled
with the empty set;

Return separating sequence as the input sequence α that
labels the selected path.
End

Theorem 1. Given a subset S′ of states of an FSM S, the
set S′ has a separating sequence if and only if a truncated
successor tree returned by Procedure 1 contains a node labeled
by the empty set. Moreover, if all the branches of the tree
are truncated by applying Rules 2 and/or 3 then a separating
sequence for the set S′ does not exist.

Proof: Let an input sequence α = i1i2 . . . in label a path
to a node with a set P 6= ∅ of pairs of states. If |α| = n
then α traverses non-terminal nodes labeled with the sets P1,
P2, . . . , Pn−1. The set P0 = S′ and the set Pn = P . By
construction, the set Pl+1 contains pairs of states for which
∃ol ∈ O such that all pairs from Pl+1 are il/ol-successors of
pairs of Pl, l ∈ {1, . . . , n − 1}. Therefore, a pair sp, sq ∈ P
if and only if there exists an output sequence β = o1o2 . . . on
such that sp and sq are α/β-successors of two different states
of S′. Correspondingly, a singleton sp, sp ∈ P if and only if
sp is the α/β-successor of two different states in S′.

The set P has all pairs that are α-successors of two
different initial states and α is a separating sequence when
P = ∅. Thus, a sequence α that labels a path of the truncated
successor tree is a separating sequence for the set S′ if and
only if this path is terminated by the node labeled by the
empty set. On the other hand, by definition, a sequence α
that labels a path to a node truncated by Rule-3 cannot be a
prefix of a separating sequence of the set S′. Moreover, Rule-
2 allows to truncate unpromising tree branches. In fact, let α
be a separating sequence for S′ that traverses a k-level node

labeled by a set P , and the successor tree has a j-level node
labeled by a set R, such that R ⊆ P and j < k. In this case,
there exists a separating sequence for the set S′ with the length
less than |α|. Thus, if there exists a separating sequence for
the set S′ then each shortest separating sequence labels a path
in the truncated successor tree returned by Procedure 1.

Proposition 2. Given a subset S′, |S′| = m, of states of
the FSM S with n states, the length of a shortest separating
sequence for S′ is at most 2(

n
2) − 2(

n
2)−(

m
2).

Proof: Similar to [26], the length of a separating sequence
for an FSM with n states and m initial states is bounded by
the number of sets of state pairs that do not include pairs of
initial states (Rule-2). The number of all sets of state pairs
which are not singletons equals 2(

n
2) while the number of sets

of state pairs including pairs of initial states equals 2(
n
2)−(

m
2).

Despite of the fact, that the above upper bound is reachable
[12], the performed experiments with ranfomly generated
FSMs show that usually the length of a separating sequence
for two states of an FSM (if such a sequence exists) is
much shorter. Thus, the above approach might be useful when
enhancing the fault coverage of an EFSM based test suite.

Deriving separating sequences for partial FSMs. Given
an EFSM, the underlying FSM usually is not only nondeter-
ministic and nonobservable but also partial. In order to adapt
the above procedure to partial FSMs, the interpretation of the
undefined transitions should be considered [27]. One of the
widely used interpretations of an undefined transition is the
augmentation of this transition by a loop labeled with a special
output IGNORE or NULL. In this case, it is assumed that
all undefined transitions will be augmented in the same way
in any protocol implementation. In the second interpretation
of an undefined transition, the transition is considered as a
DON ′T CARE transition, i.e., this transition can be imple-
mented as a transition to every state with every output. In this
case, the transition can be implemented in an arbitrary way
and at the first step of Procedure 1 (truncated tree derivation)
given a pair sp, sq such that a transition under input i is defined
only at state sp as a transition to state s′p, it is taken into
account by adding all possible pairs s′p, s′q, s

′
p, s
′
q ∈ S as i/o-

successors of the pair sp, sq . However, it can happen that the
input i cannot be applied at state sq and correspondingly,
the DON ′T CARE interpretation of this transition is not
possible. For example, this can happen when considering a
partial or a modular design when inputs of a given EFSM are
outputs of another machine [28], [29]. In this case, the only
solution is to consider inputs which are defined at each state of
each pair of the set that labels a current node of the successor
tree derived by Procedure 1.

As an example, consider an FSM represented in Fig. 1
where the set S′ = {1, 2, 3}.

In the case, when undefined transitions are interpreted
as forbidden actions, the FSM in Fig. 1 has no separating
sequence. In fact, at state 3, a transition under input i1 is not
defined while at state 2 there are no transitions under input
i2. On the other hand, when interpreting undefined transitions
as loops with the NULL output Procedure 1 can be applied.

112 of 181

Fig. 1. A nonobservable partial FSM

By direct inspection, one can assure that for this NFSM the
Procedure returns the shortest separating sequence of length
two and this sequence is α = i1i2.

Therefore, separating sequences returned by Procedure 1
can be used for increasing the fault coverage of a transition tour
of different EFSM slices. Additional experimental research is
needed in order to estimate the fault coverage of transition
tours appended with corresponding separating sequences.

IV. CONCLUSION

In this paper, we have focused on some techniques for
deriving functional tests based on the EFSM model. The
main idea behind the described techniques is to traverse an
appropriate set of transitions; this set can be derived as a
set of transitions of an FSM obtained by the simulation
the EFSM behavior. Experimental results of testing protocol
implementations clearly show that the fault coverage of such
tests is rather high. In order to enhance the fault coverage,
an initial test suite traversing an appropriate set of transitions
can be augmented with distinguishing sequences for final
states of traversed transitions and we have proposed how such
distinguishing sequences can be derived using two FSM slices
of the initial EFSM. When deriving distinguishing sequences
for FSM slices, we have adapted the known methods for
separating states of an observable nondeterministic FSM to
FSMs which can be partial and nonobservable.

REFERENCES

[1] H. Konig, Protocol Engineering. Springer, 2012.
[2] A. Petrenko, S. Boroday, and R. Groz, “Confirming configurations in

EFSM testing,” IEEE Trans. Software Eng., vol. 30, no. 1, 2004.
[3] A. Kolomeez, “Algoritmy sinteza proveryayushhikh testov dlya

upravlyayushhikh sistem na osnove rasshirennykh avtomatov (in
Russian),” Ph.D. dissertation, 2010.

[4] S. Nica, “On the use of constraints in program mutations and its
applicability to testing,” Ph.D. dissertation, 2013.

[5] A. Gill, “State-identification experiments in finite automata,” Informa-
tion and Control, pp. 132–154, 1961.

[6] K. El-Fakih, S. Prokopenko, N. Yevtushenko, and G. von Bochmann,
“Fault diagnosis in extended finite state machines,” in Proceedings of
the TestCom, 2003, pp. 197–210.

[7] A. Faro and A. Petrenko, “Sequence generation from EFSMs for
protocol testing,” in Proceedings of the COMNET, Budapest, 1990, pp.
17–26.

[8] M. Zhigulin, A. Kolomeets, N. Kushik, and A. Shabaldin, “Testirovanie
programmnoj realizatsii protokola irc na osnove modeli rasshirennogo
avtomata (in Russian),” Vestnik Tomskogo politekhnicheskogo univer-
siteta. Upravlenie, vychislitel’naya tekhnika i informatika, pp. 81–84,
2011.

[9] M. Zhigulin, S. Prokopenko, and M. Forostyanova, “Detecting faults
in TFTP implementations using finite state machines with timeouts,” in
Proceedings of the SYRCoSE, 2012, pp. 115–118.

[10] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yevtushenko,
“FSM-based conformance testing methods: A survey annotated with
experimental evaluation,” Information & Software Technology, vol. 52,
no. 12, pp. 1286–1297, 2010.

[11] K. El-Fakih, A. Kolomeez, S. Prokopenko, and N. Yevtushenko, “Ex-
tended finite state machine based test derivation driving by user defined
faults,” in Proceedings of the ICST, 2008, pp. 308–317.

[12] N. Spitsyna, K. El-Fakih, and N. Yevtushenko, “Studying the separabil-
ity relation between finite state machines,” Softw. Test., Verif. Reliab.,
vol. 17, no. 4, pp. 227–241, 2007.

[13] M. Gromov, N. Kushik, and N. Yevtushenko, “Razlichayushhie
ehksperimenty s neinitsial’nymi nedeterminirovannymi avtomatami (in
Russian),” Vestnik Tomskogo gosudarstvennogo universiteta. Upravle-
nie, vychislitel’naya tekhnika i informatika, no. 4, pp. 93–101, 2011.

[14] M. G. Merayo, M. Nunez, and I. Rodrguez, “Formal testing from timed
finite state machines,” Computer Networks, vol. 52, no. 2, 2008.

[15] A. Petrenko and N. Yevtushenko, “Testing from partial deterministic
FSM specifications,” IEEE Trans. on Computers, vol. 54, no. 9, pp.
1154–1165, 2005.

[16] RFC2812, “Internet relay chat: Client protocol,” 2000.
[17] A. Shabaldin, “Constructing a tester for checking student protocol

implementations,” in Proceedings of the SYRCoSE, 2007, pp. 23–29.
[18] RFC1350, “The TFTP protocol,” 1992.
[19] M. Zhigulin, N. Yevtushenko, S. Maag, and A. R. Cavalli, “FSM-based

test derivation strategies for systems with time-outs,” 2011, pp. 141–
149.

[20] RFC1939, “Post office protocol - version 3,” 1996.
[21] U. Mihailov, “Razrabotka metoda sinteza proveryayushhikh testov dlya

rasshirennykh avtomatov na osnove srezov (in Russian),” Master’s
thesis, 2008.

[22] A. Nikitin and N. Kushik, “On EFSM-based test derivation strategies,”
2010, pp. 116–119.

[23] J.-H. R. Jiang, C.-C. Lee, A. Mishchenko, and C.-Y. R. Huang, “To
SAT or not to SAT: Scalable exploration of functional dependency,”
IEEE Trans. Computers, vol. 54, no. 9, pp. 457–467, 2010.

[24] K. L. McMillan, “Interpolation and SAT-based model checking,” in
Proceedings of the CAV, 2003, pp. 1–13.

[25] A. Solodovnikov, Systems of Linear Inequalities. Popular Lectures in
Mathematics, 1980.

[26] N. Kushik and N. Yevtushenko, “On the length of homing sequences
for nondeterministic finite state machines,” in Proceedings of the CIAA,
2013, pp. 220–231.

[27] D. Lee and M. Yannakakis, “Testing finite-state machines: State iden-
tification and verification,” IEEE Transactions on Computers, vol. 43,
no. 3, 1994.

[28] J. Kim and M. Newborn, “The simplification of sequential machines
with input restrictions,” IEEE Transactions on Computers, vol. 21,
no. 12, 1972.

[29] A. Petrenko, N. Yevtushenko, and R. Dssouli, “Testing strategies for
communicating FSMs,” in Proceedings of the IFIP Seventh Interna-
tional Workshop on Protocol Test Systems, 1994, pp. 193–208.

113 of 181

A generic knowledgebase for test generation

Artem Kotsynyak, Andrei Tatarnikov

Software Engineering Department

Institute for System Programming of the Russian Academy of Sciences (ISPRAS)

Moscow, Russian Federation

Email: {kotsynyak, andrewt}@ispras.ru

Abstract— Nowadays a lot of various test generation tools are

developed and applied to create tests for both software

applications and hardware designs. Taking into account the size

and complexity of modern projects, there is an urgent need for

"smart" tools that would help maximize test coverage and keep

the required effort and time to a minimum. Despite the fact that

each project is unique in some sense, there is a set of common

generation techniques that are applied in a wide range of projects

(random tests, combinatorial tests, tests for corner cases, etc). In

addition, projects belonging to specific domains tend to share

similar test cases or use similar heuristics to generate them. A

natural way to improve the quality of testing is to make the most

of the experience gained working on different projects or

performing testing at different stages of the same project. To

achieve this goal, a knowledgebase holding information relevant

to test generation would be of a great help. This would facilitate

reuse of test cases and generation algorithms and would allow

sharing knowledge of "interesting" situations that can occur in a

system under test. The paper proposes a concept of a

knowledgebase for test generation that can be used in a wide

range of test generation tools. At ISPRAS, it is applied in test

program generation tools that create test programs for

microprocessors. The knowledgebase is designed to store

information on widely used test generation techniques and test

situations that can occur in a microprocessor design under

verification.

Keywords— test generation, testing knowledge, test reuse, test

situations, constraints, knowledgebase.

I. INTRODUCTION

To start with, it should be said that our team works in the
area of hardware verification [1, 2]. Therefore, the main focus
of the research is on generating tests for hardware devices.
However, the concepts described in this paper are not limited
to hardware verification and remain relevant to a wide range of
domains.

Testing accounts for up to 70% of overall project resources.
To reduce the expenses, an effort is made to automate the
testing process. Over the recent couple of decades, approaches
to automated testing have evolved significantly. Still,
increasing complexity of modern projects demands for more
efficient methods. To get the big picture of the state of the art,
let us first consider existing approaches from the most trivial to
the most advanced.

The most straightforward way to automate test generation
for one's project is to write a simple test generator in one of the
popular programming languages. Such generators are usually

targeted at producing random or combinatorial tests. However,
they can also include heuristics that help generate tests for
some "interesting" situations (e.g. boundary conditions). This
approach has the following obvious disadvantages: such tools
are inflexible and the knowledge they include is unsuitable for
reuse as it is usually hardcoded. Moreover, random and
combinatorial tests are not systematic and cannot guarantee a
sufficient level of test coverage.

To cover nontrivial cases that are unreachable by using
random and combinatorial generation, a test generation tool
should be strengthened to be able to create directed tests [3].
Directed tests are usually generated on the basis of test
templates that provide abstract high-level descriptions of
testing problems. Such an approach is called template-based
generation. Test templates use constraints to formulate
conditions of occurrence for situations to be covered. Briefly
speaking, constraints are a set of formulae describing relations
between data (i.e. properties to be held for some events to
fire). One of the advantages of template-based generation is
that it separates test generation logic from the description of
specific test cases, which simplifies test maintenance. More
importantly, this allows constraints to be reused in other tests.
However, the reuse is limited as constraints are described in
terms of the verified system (hardware design or software
application) and are not systematized. The issue is that manual
creation of complex constraints is quite laborious and it might
require a significant effort to adapt them for a different
system. In fact, this could be improved as constraints for
similar verification tasks tend to share common parts.

The next step in the evolution of approaches to test
generation is model-based generation [1, 2, 3]. It implies
separation of knowledge of the verified system's configuration
from knowledge of test generation techniques. The former is
referred to as a model and the latter is often called testing
knowledge [5, 6]. The model can be created either manually or
built automatically on the basis of formal specifications. The
advantage of this approach is that it allows describing test
cases in terms of the model, which results in more abstract
descriptions. In addition, the model often includes coverage
information that can be extracted from formal specifications or
from other sources. In a nutshell, to generate high-quality
tests, two types of knowledge are required: (1) knowledge of
the verified system's configuration to be able to generate valid
tests and (2) knowledge about situations that can occur in the
system to be able to generate tests that would hit all "corners"
of that system. Coverage information can be represented by a
set of constraints describing conditions for various test
situations. In this case, to generate test programs for the target
system, one needs to provide a test template specified in terms

114 of 181

of information exposed by the model and constraints
describing corresponding situations. As it can be noticed, to
provide a good quality of test coverage, it may require creating
a significant amount of test templates describing test cases for
all possible situations. When this job is done manually, it can
be time-consuming and there is a chance to miss some
"interesting" cases especially when the constraints are not
systematized and the coverage model changes as new
knowledge about the system is acquired.

To further automate the process of test program
generation, constraints need to be stored in a systematized
way. In other words, knowledge of "interesting" situations and
knowledge of how to obtain data causing these situations to
fire should be accumulated in a knowledgebase for further use
in the test generation process. Also, it would be highly
desirable to have this information stored in a human-readable
form to simplify its reuse and the maintenance of the
knowledgebase. This leads to an idea of a knowledgebase that
would store testing knowledge including commonly used
constrains, algorithms for solving them, algorithms of random
and combinatorial test data and test sequence generation,
methods of exploring properties of the verified system's
model, etc. Having this knowledge stored in a systematized
way will allow making more intelligent decisions during test
generation. One of the main goals is to reduce the number of
test templates. The use of the knowledgebase would allow
creating some of them in an automated way, therefore
reducing the effort and increasing the coverage quality. Also,
having a centralized store of testing knowledge gives a great
advantage in terms of reuse and sharing experience between
test engineers.

As the project the verification team is working on moves
from the requirement elicitation to the release, more and more
testing knowledge is accumulated. It may come from different
sources such as requirements, specification, expertise, failed
tests, automated analysis, etc. Some of this knowledge can be
presented in an abstract way so that common test cases like
overflows and other could be reused in projects with similar
components. A centralized store helps ensure that each test
engineer has this knowledge in hand and no "interesting"
situation is ignored.

The present paper describes concepts of a knowledgebase
for test generation. The knowledgebase is being developed at
ISPRAS to be used in projects dedicated to hardware
verification [1, 2].

The rest of the paper is organized as follows. Section II
gives an overview of existing works related to testing
knowledge. Section III provides a list of core requirements for
the knowledgebase. Section IV describes the architecture of the
knowledgebase and explains how it can be integrated with test
generation tools. Finally, Section V concludes the paper.

II. RELATED WORK AND MOTIVATION

Methods of efficient test generation have always been a
major subject of research. One of the most important
applications is functional verification of microprocessors where
test program generation and simulation is the most common
approach applied at the system level. Due to enormous
complexity of modern microprocessors and severe time-to-

market pressures, it is quite a challenging task. For this reason
a lot of effort has been invested to maximize automation of this
activity. This resulted in the emergence of a great number of
test generation techniques. Also, a significant amount of
knowledge about bug-prone areas in hardware designs has been
accumulated. An important direction is to systematize the
accumulated knowledge to further automate the test generation
process and reduce its cost by facilitating knowledge reuse.

IBM Research [3, 5, 6] has been one of the main
contributors in the field of test program generation for
microprocessors during the last decades. The first test
generation tools were developed in the middle of 1980s. Test
program generators by IBM Research have evolved over time
from random to directed model-based generation schemes.
Genesys-Pro, one of the most recent tools, uses test templates
that describe test generation problems as constraint satisfaction
problems and uses a generic constraint solver customized for
pseudorandom generation to increase the coverage quality.
Constraints are based on the architectural description captured
by the model and on the testing knowledge representing a set
of methods that help increase the quality of generated test
cases. There are two types of constraints: (1) mandatory
("hard") and (2) non-mandatory ("soft"). Constraints that
originate from architectural description are typically marked as
mandatory. "Soft" constraints help shift the bias of the
generated stimulus to make test cases more "interesting" and
can be ignored if the solver fails to find a solution. Testing
knowledge, as it is described in papers by IBM Research,
represents a collection of architecture-independent constraints
and constraints specific to a given design. Also, it includes a set
of heuristics that use accumulated knowledge of the semantics
of the verified design to shift bias towards specific constraints
to maximize coverage. IBM Research does not reveal details
on how exactly the storage of testing knowledge is organized
and integrated with their tools. However, their testing
knowledge is obviously oriented only towards test program
generation for microprocessors and is likely to be tightly
coupled with their test generation tools. Two important aspects
that were not covered in their papers are: (1) systematization of
constraints and (2) means of combining constraints to describe
complex problems (this particularly applies to constraints of
different types). It is possible to specify probability
distributions between "soft" constraints in a test template.
However, there are reasons to think that no facilities are
provided to do this at the level of testing knowledge.

Another company that has made a significant contribution
in development of test generation tools is Obsidian Software
(now acquired by ARM) [4]. The company specializes in
development of verification and validation software used in the
design of microprocessors. Their test program generation tool
RAVEN (Random Architecture Verification Engine) is able to
generate random and directed tests based on test templates. To
achieve a better coverage, it makes use of coverage grids and
accumulates verification knowledge in a database. Test
templates are focused on the coverage grid and use constraints
that allow RAVEN to intelligently choose random values to
reach specific coverage goals. Unfortunately, documentation
available on the tool does not provide detailed information on
how the mechanism of knowledge accumulation is organized.

115 of 181

The motivation of the present research is to work out the
concepts and to design the architecture of a knowledgebase for
test generation that could be used in a wide range of test
generation tools. It should help systematize various types of
testing knowledge and facilitate its accumulation and reuse.
The paper aims to contribute to the research in the field as the
lack of information on competitors’ solutions makes it difficult
to apply their ideas. The paper summarizes the ideas from
different sources [4, 5, 6], proposes some important
improvements and expresses our vision for organization of a
knowledgebase for test generation.

III. REQUIREMENTS FOR THE KNOWLEDGEBASE

The knowledgebase should maximize the quality of test
coverage and minimize the effort required to create tests. For
this purpose it accumulates knowledge about different test
situations (conditions that make them fire, probabilities of their
occurrence, methods of producing corresponding stimuli, etc.)
This creates a possibility to easily create complex test cases by
combining the accumulated knowledge. If this job is
automated, it will help reduce the number of test cases
described manually, therefore increasing the productivity of the
verification team. Here is the list of the main requirements a
generic knowledgebase for test generation should satisfy to
achieve its goals:

1) The knowledgebase should be able to store and
accumulate testing knowledge of a wide range of types
coming from various sources and having different formats.
This includes sets of test values, commonly used generation
algorithms, constraints, methods of combining them, heuristics
for shifting biases, etc.

2) The stored knowledge should be systematized and
organized into a hierarchy. This will simplify its maintenance
and reuse and will allow extracting common components.

3) It should be possible to easily integrate the
knowledgebase into test generation environments of different
kinds. The client environment should be provided with full
access to the accumulated knowledge. To facilitate it, the
knowledgebase should be implemented as an open-source
project.

4) The knowledgebase should facilitate the transfer of
project-independent knowledge between projects in a similar
domain. This applies to test situations, constraints, data
generators, etc.

IV. ARCHITECTURE

The most important components of the knowledgebase
architecture are the storage engine, selector and resolution
module as shown in Figure 1. Further in this section, they will
be discussed in more detail.

The job of the storage engine is to provide a persistent
storage for any kind of knowledge allowed. The storage engine
can be powered by any database technology. To add new
knowledge or alter existing, users should interact with the
engine via the control interface built on top of it. The interface
provides access to logical representation of the stored

knowledge hiding any details about the underlying database
and data organization along with normalization logic specific
to the knowledgebase implementation.

Knowledgebase

Test Situation Hierarchies

 Data
* Constraints
* Data sets
* Data generators

 Test
* Tests
* Test generators
* Templates

Storage Engine

Selector

Resolution
module

Statistics

Solver Engine

User System

C
o

n
tr

o
l
In

te
rf

a
c
e

Figure 1. Architecture scheme

The main responsibility of the knowledgebase is to store
hierarchies of test situations along with associated knowledge.
Hierarchies of test situations being part of testing knowledge
themselves are used as a tool for organizing the acquired
knowledge. Therefore, it is up to the storage engine to store,
manage and provide access to these structures to the rest of the
knowledgebase modules. Nevertheless, the storage engine
treats knowledge as data and does not implement any
additional logic beyond what is encapsulated in the control
interface.

Basically, a test situation in a hierarchy is a symbolic
representation of an event (or a group of events) that can occur
in the system under test, but the hierarchy itself does not
provide any information about what kind of event it is.
Hierarchies are represented by directed acyclic graphs (DAG)
where nodes specify test situations while arcs denote
refinement relation, i.e. if there is a path from node u to node v
then node v represents a situation that is a special case of the
situation of node u.

There are two types of situation hierarchies: abstract and
concrete. Abstract hierarchies are used to describe
commonalities between projects belonging to the same domain,
while concrete hierarchies specify relations between particular
test cases. Representations of abstract and concrete hierarchies
have several important differences. First, abstract hierarchies
are represented by unweighted DAGs, while weighted DAGs
are used for concrete hierarchies where arc weights denote the
desired probabilities of corresponding events. Second, nodes in
a concrete hierarchy can be associated with additional
knowledge about situations represented by these nodes (e.g.
constraints describing the conditions for corresponding events
to fire).

Figure 2 shows an example of a simple situation hierarchy
that specifies situations from the microprocessor verification
domain. The “add” node denotes situations possible in the

116 of 181

execution flow of an addition instruction and the “overflow”
node denotes any kind of an overflow situation. Also, there is a
refinement for an integer overflow called “int_overflow” and
two explicit terminal situations called “corner” and “zero_sum”
(the former describes a corner case for the integer overflow
situation and the latter specifies the zero-sum situation). It is
shown that the “int_overflow”, “corner” and “zero_sum”
situations are associated with constraints describing data
resulting in corresponding events. Implicit situations for the
normal flow and random values are omitted along with the
probabilities of their occurrence.

add

int_overflow:
(and (x > 0) (y > 0)

 ((int (+ x y)) < 0))

overflow

corner: (x = 1)

zero_sum: (= (+ x y) 0)

Figure 2. Example of a situation hierarchy

Arc weights in a concrete hierarchy describe relative rates
at which specific test situations are to be obtained during test
generation. Therefore, this can be used to control the
generation process since it is allowed to bias probabilities in
order to get behavior varying from fully random to fully
deterministic. Moreover, zero probability effectively removes
test situations from being exploited in test generation and can
be used to disable unimplemented or irrelevant features of the
current system under test.

Associated knowledge in concrete hierarchies may vary
from complete tests to abstract templates. It can be stored in a
database or in plain files. One of our goals is to reuse existing
test generators so it is allowed to use them as associated
knowledge via appropriate adaptors. This knowledge is
primarily used in the test generation process and the querying
system should be able to handle it by itself.

The control interface of the storage engine provides mostly
database editor functionality. Therefore, to handle queries to
the knowledgebase with respect to knowledge semantics, a
specific module called selector has been introduced. The
module “knows” about knowledge organization and uses
probabilities stored within concrete hierarchies to select
specific knowledge. Since every query to the knowledgebase is
passed through the selector, it can trace test situations queried
and produce a statistical report that can be used to adjust
situation probabilities or to perform coverage analysis.

In the simplest cases, the selector just fetches the stored
data and passes it to the querying system. This works for flat
data and tests, but not for generators and constraints. To handle
these correctly, an additional component called the resolution
module has been included. Its initial purpose is to run
generators stored as knowledge or to pass constraints to some
external solver to produce data. The resolution module is
designed to be an extension mechanism that has access to all
internals of the knowledgebase and is allowed to run external

applications. It is used whenever the selector decides that
knowledge requires additional treatment before being sent to
the querying system. Therefore, it can be adjusted in a domain-
specific way to handle much more sophisticated scenarios, e.g.
generate tests on the fly if a test template has been queried.

It should be noted that despite the fact that the
knowledgebase considers test generators and tests as
knowledge it is not a test generation system. Generating tests
using the knowledgebase is straightforward and can be done at
different levels depending on the contained knowledge and its
organization, e.g. in microprocessor verification we can
potentially generate test data for a single instruction, for a
complex test template or generate a final test program using
stored tests and generators. The test generation system queries
the knowledgebase for test situations that correspond to
terminal or non-terminal nodes in the hierarchy. In the latter
case, the selector will use some refinement of the situation
given with respect to probabilities stored within the hierarchy.
Either the selector is able to fetch knowledge by itself, or it
delegates the task to the resolution module, or both of them fail
because the storage engine does not contain knowledge
required or resolution marks the query unsatisfiable. In a
successful scenario, the output is a test or test data and it is up
to the querying system to distinguish between them.

V. CONCLUSION

We have proposed the concept and the architecture of a
generic knowledgebase for test generation. The knowledgebase
can be used in a wide range of test generation tools to
accumulate knowledge related to the system under test. At
ISPRAS, it will be integrated with tools responsible for test
program generation for microprocessors. It facilitates
knowledge reuse and allows making "smart" decisions during
the process of test generation based on the accumulated
knowledge. This helps improve test coverage and simplify test
development.

REFERENCES

[1] A. Kamkin and A. Tatarnikov, MicroTESK: An ADL-Based
Reconfigurable Test Program Generator for Microprocessors,
proceedings of the 6th Spring/Summer Young Researchers’ Colloquium
on Software Engineering (SYRCoSE 2012), 2012, pp. 64-69.

[2] A. Kamkin, T. Sergeeva, A. Tatarnikov and A. Utekhin, MicroTESK:
An Extendable Framework for Test Program Generation, proceedings of
the 7th Spring/Summer Young Researchers’ Colloquium on Software
Engineering (SYRCoSE 2013), 2013, pp. 51-57.

[3] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov and A.
Ziv, Genesys-Pro: Innovations in Test Program Generation for
Functional Processor Verification, IEEE Design & Test of Computers,
2004, pp. 84-93.

[4] http://www.obsidiansoft.com/pdf/Datasheet.pdf

[5] L. Fournier, Y. Arbetman, and M. Levinger, “Functional Verification
Methodology for Microprocessors Using the Genesys Test Program
Generator: Application to the x86 Microprocessors Family,” Proc.
Design Automation and Test in Europe (DATE 99), IEEE CS Press,
1999, pp. 434-441.

[6] R. Emek, I. Jaeger, Y. Katz and Y. Naveh, "Quality Improvement
Methods for System-level Stimuli Generation", Proc. Computer Design:
VLSI in Computers and Processors (ICCD 2004), IEEE CS Press, 2004,
pp. 204-206.

117 of 181

Interactive test case design via attribute exploration

Fedor Strok
Yandex, NRU-HSE

fdr.strok@gmail.com

Georgy Kondratiev
Yandex

orivej@gmx.fr

Abstract—Techniques of test case design usually either rely
on expert manual work or employ algorithmic approaches like
pairwise testing. However, pairwise testing has several known
limitations: implicit relation between test cases and the domain,
complexity of oracle implementation. Interactive test case design
with attribute exploration is a technique that unites best practices
in a semi-supervised procedure to explore the domain and
generate test cases. It is based on well-studied algorithms of
Formal Concept Analysis.

Keywords—formal concept analysis, pairwise testing, attribute
exploration.

I. INTRODUCTION

Software testing usually aims at the quality assurance of
software. One of its major goals is to properly describe and
consider all possible test cases. One of the most widely used
approaches, Domain Testing, singles out the main parameters
that influence the output, and checks their possible value
combinations.

Enumerating all value combinations leads to exponential
complexity: just six boolean parameters produce 64 combina-
tions, already too much for an expert to evaluate unmistakably.
During manual test case design, experts choose some reason-
able subset of combinations, bearing the risk to leave important
combinations uncovered, which increases with the number of
parameters.

Pairwise testing [2] and its generalization, n-wise testing,
became popular in automating this process. We define param-
eters and domains and pass them as a model to a black-box
algorithm [1] that produces a set of test cases, guaranteed to
cover all combinations of each pair (or n-tuple, as specified
in the model) of input parameters. Generating the optimal test
set is computationally hard, so it is approximated with some
randomized heuristic algorithms. This makes generated cases
different from run to run, unless random seed is fixed. The
main advantage of this approach is its little sensitivity to the
number of parameters.

Typically, input parameters are not completely independent.
A formal way to express dependencies is implications: state-
ments in the form ‘if ..., then ...’. Consideration of parameter
interdependence decreases quantity of resulting cases by ex-
cluding some of possible combinations.

Our approach is focused on implications. We use the
algorithms of Formal Concept Analysis to provide software
engineers with a tool that helps explore the domain in a semi-
automatic way. It guarantees sound and complete description
if the expert gives valid answers to the system.

The rest of the paper is structured as follows. Section 2
introduces basic notions of Formal Concept Analysis. Section 3

focuses on the procedure of attribute exploration. Section 4
provides examples of attribute exploration in the fields of
numbers and logic formulae. Section 5 is the conclusion.

II. FORMAL CONCEPT ANALYSIS

Formal Concept Analysis [4] is a technique introduced
by Rudolf Wille in 1984 to derive a formal ontology from
a collection of objects and attributes. It relies on lattice and
order theories [3]. Numerous applications are found in the field
of machine learning, data mining, text mining and biology.

A formal context is a triple (G;M; I), where G is a set
of objects, M is a set of attributes, and I � G � M is a
binary relation between G and M . In other words, for objects
in G there exists a description in terms of attributes in M , and
relation I reflects that an object has an attribute: (g;m) 2 I
means that object g possesses m.

Here is an example of a formal context:

G n M a b c d
�A � �

@ � �

� �

� � �

Objects: Attributes:
1 – equilateral triangle a – 3 vertices
2 – right triangle b – 4 vertices
3 – rectangle c – has a right angle
4 – square d – all sides are equal

Consider two mappings for a given context:

': 2G ! 2M '(A)
def
= fm 2M j gIm for all g 2 Ag

 : 2M ! 2G (B)
def
= fg 2 G j gIm for all m 2 Bg

For all A1; A2 � G, B1; B2 �M

1) A1 � A2) '(A2) � '(A1)
2) B1 � B2) (B2) � (B1)
3) A1 � '(A1) B1 � ' (B1)

Traditionally, notation (�)0 is used instead of ' and .
(�)00 stands for ' � or � ' (depending on its argument).
Thus, for arbitrary A � G, B �M :

A0 def
= fm 2M j gIm for all g 2 Ag;

B0 def
= fg 2 G j gIm for all m 2 Bg:

118 of 181

(Formal) concept is a pair (A;B): A � G, B �M ,
A0 = B, B0 = A:

In the example with geometric figures, a pair
(f3; 4g; fb; cg) is a formal concept. For a formal context
(G;M; I), A;A1; A2 � G — sets of objects, B � M — a
set of attributes, the following statements hold for operation
(�)0:

1) A1 � A2) A0

2
� A0

1

2) A1 � A2) A
00

1
� A

00

2

3) A � A00

4) A000 = A0 and A0000 = A00

5) (A1 [A2)
0 = A0

1
\A0

2

6) A � B0 , B � A0 , A�B � I

Closure operator on set G is a mapping :P(G)! P(G),
which maps every X � G to the closure X � G under the
following conditions:

1) X = X (idempotence)
2) X � X (extensivity)
3) X � Y) X � Y (monotonicity)

Implication A ! B, where A;B � M , takes place if
A0 � B0, in other words, if each object having A also has all
attributes from B.

III. ATTRIBUTE EXPLORATION

Attribute exploration is well known within Formal Concept
Analysis. Its general idea is to explore the object domain semi-
automatically. This means that an expert is necessary, but his
duty is to answer specific questions about possible dependen-
cies in the area. Questions are presented as implications either
to confirm or to decline. If confirmed, an implication is added
to the base of knowledge. If declined, the expert is asked to
provide a counterexample violating proposed dependency.

In other words, exploration algorithm wants to explore
all possible combinations of a given attribute set. Since it
is typical that objects are too difficult to enumerate, the
algorithm starts with a small set of examples. Then it computes
canonical base of implications for the provided formal context.
Then it asks the domain expert if the computed implications
are valid in general. If so, existing context represents all
possible combinations in the domain. Otherwise, there exists a
counterexample in the domain, which is added to the context,
and canonical base is recalculated.

General strategy is quite intuitive: after enumerating all
relevant attributes, we start exploring the domain with some
knowledge of typical examples and dependencies. To extend
knowledge database we either add a rule, or provide another
example that violates currently standing dependencies.

Algorithm 1 NEXT CLOSURE(A, M , L)
Input: Closure operator X 7! L(X) on an arbitrarily ordered

set M and a subset A �M .
Output: lectically next closed set after A.

for all m 2M , in order, do
if m 2 A then

A := A n fmg
else

B := L(A [fmg)
if no element in B nA comes after m in M then

return B
return ?

Algorithm 2 ATTRIBUTE EXPLORATION

Input: A subcontext (E;M; J = I \ E �M) of (G;M; I),
possibly empty.

Input: Interactive: confirm that A = B00 in a formal context
(G;M; I), M finite, or give an object showing that A 6= B00.

Output: The canonical base L of (G;M; I) and a possibly
enlarged subcontext (E;M; J = I \E�M) with the same
canonical base.
L := ;
A := ;
while A 6=M do

while A 6= AJJ and AJJ 6= AII do
extend E by some object g 2 AI nAJJI

if AJJ = AII then
L := L [fA! AJJg

A := NextClosure(A;M;L)
return L; (E;M; J)

IV. INSTRUCTIVE EXAMPLES

A. Numbers

Let us consider the domain of natural numbers [5]. As the
set of possible attributes we choose the following: even (2�n),
odd (2�n+1), divisible-by-three (3�n), prime (has no positive
divisors other than 1 and itself), factorial (is a factorial of a
positive number). We start from an empty set of objects. The
canonical base for such context is ; !M . We get a question:

Is the following implication valid?
) even, factorial, divisible-by-three, odd, prime

Obviously, not all numbers possess all attributes. Let’s start
with 2, which is even; factorial; prime. We add 2 to our
context and recalculate the base.

G n M even factorial divisible-by-three odd prime
2 � � �

Is the following implication valid?
) even, factorial, prime

Now we can think of number 5, which is prime; odd.

G n M even factorial divisible-by-three odd prime
2 � � �
5 � �

119 of 181

Is the following implication valid?
) prime

Now we are about to either state that all numbers are prime,
or provide a non-prime number, e.g. 6.

Is the following implication valid?
factorial) even

Now we have entered 2 and 6, which are simultaneously
even and factorial. To give a counterexample we should find
an odd factorial, which is 1.

Is the following implication valid?
odd) prime

That does not hold for number 9.

Is the following implication valid?
factorial, odd) prime

There is only one odd factorial, 1, and it is prime, so we
confirm this implication.

Is the following implication valid?
factorial, divisible-by-three) even

The least factorial divisible by three is 6, and it is even.
All larger factorials divisible by three, being multiples of the
least one, are also even.

Is the following implication valid?
prime, divisible-by-three) even, factorial, odd

There is 3, which is just odd.

Is the following implication valid?
prime, divisible-by-three) odd

The only prime divisible by three is three itself, so the
implication is true.

Is the following implication valid?
even) factorial

Not all even numbers are factorials, e.g. 8.

Is the following implication valid?
even, odd) factorial, prime, divisible-by-three

No numbers are both even and odd, so the premise is false
and the implication is true.

Is the following implication valid?
even, divisible-by-three) factorial

There is 12, which is even and divisible by three, but it is
not a factorial.

Is the following implication valid?
even, prime) factorial

The only even prime number 2 is a factorial.

And the exploration process is over. The final context:

G n M even factorial divisible-by-three odd prime
2 � � �
5 � �
6 � � �
1 � � �
9 � �
3 � � �
8 �

12 � �

The set of implications:

� factorial, odd) prime

� factorial, divisible-by-three) even

� prime, divisible-by-three) odd

� even, odd) factorial, prime, divisible-by-three

� even, prime) factorial

B. Logic functions

It is inherent in our approach that dependencies involve
only presence of attributes, not their absence. To cover a
boolean variable, we have to introduce two attributes, one
for its truth and one for falsehood. This leads to unnecessary
questions during exploration, such as A) :A? To eliminate
them, we automatically assign a value to an attribute whenever
its opposite is set. However, we could still face implications of
the form A ^ :A ^ :::) :::?, which we automatically accept,
as it covers an impossibility.

Let us consider the model situation when we are testing a
logical function (a^b)! c. This example may seem unnatural,
but it shows an application of the main principles.
1) :a ^ a ^ :b ^ b ^ :c ^ c ^ :result ^ result? No

a b c result
1 False False True True

2) :a ^ :b ^ c ^ result? No

2 False False False True

3) :a ^ :b ^ result? No

3 True True False False

4) a) b ^ :c ^ :result? No

4 True False False True

5) a) :c? No

5 True False True True

6) b) a ^ :c ^ :result? No

6 False True True True

7) a ^ b) :c ^ :result? No

7 True True True True

120 of 181

8) c) result? Yes
9) b ^ result) c? No

a b c result
1 False False True True
2 False False False True
3 True True False False
4 True False False True
5 True False True True
6 False True True True
7 True True True True
8 False True False True

10) a ^ b ^ result) c? Yes
11) :a) result? Yes
12) :b) result? Yes
13) a ^ b ^ :c) :result? Yes
14) a ^ :c ^ result) :b? Yes
15) b ^ :c ^ result) :a? Yes
16) :result) a ^ b ^ :c? Yes

Thus, our procedure examines all 16 possible value combi-
nations. If we skip rules with ‘result’ in the premise, the final
rules are:

� c) result

� :a) result

� :b) result

� a ^ b ^ :c) :result

V. CONCLUSION

Mathematical toolbox of Formal Concept Analysis pro-
vides interactive procedure for arbitrary domain description.
We apply this methodology to the problem of test case design.
This preserves the major advantage of manual test case design:
each test case breaks an improper implication, so each test
case has a reason to be maintained. But unlike manual work,
it guarantees full coverage, i.e. completeness of implications
and counter-examples, if all questions were answered correctly.

One of the main advantages of interactive test case design
is dual nature of its output. Besides test cases it generates im-
plications that could be used for reference and documentation
purposes.

Another advantage of the proposed technique is its ex-
tensibility. If we add a new attribute, we just initialize a
new formal context with the previous examples (assuming
that the new attribute is absent from all objects, and refining
examples where this assumption does not hold), and proceed
with attribute exploration. Former implications then may also
be reused.

Proposed algorithm is usable not only as a standalone
solution for test case design, but also as a tool to discover
existing dependencies in the domain. Obtained implications
could be valuable in pairwise testing to adjust the model.

However, the current approach is limited in relation to
attribute descriptions. For now, it is highly dependent on the
boolean nature of attributes. One of the main directions of
future work is to support attributes of arbitrary types.

REFERENCES

[1] Bach, J. and Shroeder, P. 2004. Pairwise Testing A Best Practice That
Isnt. In Proceedings of the 22nd Pacific Northwest Software Quality
Conference, 2004.

[2] Czerwonka, J. 2006. Pairwise Testing in Real World: Practical Ex-
tensions to Test Case Generators. In Proceedings of the 24th Pacific
Northwest Software Quality Conference

[3] Davey, B. and Priestly, H. Introduction to Lattices and Order (2nd
edition). Cambridge Mathematical Textbooks. Cambridge University
Press, 2002.

[4] Ganter, B. and Wille, R., Formal Concept Analysis: Mathematical
Foundations, Springer, 1999.

[5] https://github.com/ae-hse/fca/

121 of 181

Keyword-Driven Testing

with Message Sequence Charts

Boris Tyutin, Alexey Veselov, Vsevolod Kotlyarov

Saint Petersburg State Polytechnical University, Saint Petersburg, Russia

b.tyutin@ics2.ecd.spbstu.ru, veselov.alexey@gmail.com, vpk@ics2.ecd.spbstu.ru

Abstract — This paper overviews an approach to keyword-driven

testing based on test cases created in Message Sequence Charts

format. Main features and advantages of this idea are discussed.

Last two chapters provide brief overview of current

implementation of testing automation framework based on the

presented approach.

I. INTRODUCTION

Nowadays software development includes a wide range of
techniques and strategies. During the past years they evolved
from heavy and strict methodologies like waterfall life cycle to
agile techniques and iterative approaches. All of them are now
more or less standardized and are used in different areas of
software engineering. The choice of the development model is
driven by the characteristics of the particular projects.

In all kind of development processes we can find phases
that have some particular goal and go one after another. In
iterative approaches it is possible to get back to some of the
previous step if something goes wrong. And testing is a
reasonable approach for checking whether the whole work is
done well.

It is obvious that different types of workflow activities
require different types of testing. Being in a stage of
requirement clarifying we can operate only a model of future
software. At that moment it is impossible to do performance
testing. Moreover, it is not required as the main goal of that
stage is to reveal contradictions and gaps in the specification.
But it is extremely expensive to maintain different testing
processes for one product. It is required not only to integrate
different technologies but also to maintain multiple test suites
and keep them coherent with the requirements. To reduce costs
testing should be scalable and allow applying the same
approach on different life cycle stages.

Another problem of testing is that traditionally it is directed
towards the engineers. Being unavailable for business people,
information about performed checks and probations of
software product becomes less useful for planning or
marketing. And, vice versa, making test results more obvious
for most of the stakeholders of developing process increases
benefits of testing. So it can be used not only for finding bugs
but also to collect and maintain that database of knowledge
about the product. Test-driven development [1] is a good
example of an attempt to achieve this goal.

Among the variety of existing testing approaches keyword-
driven testing (KDT) is one of the most advanced [2]. It aims at
simplifying the test suite development and maintenance and
separates the logic of test procedures from the implementation.
This paper describes an approach for automated testing based
on Message Sequence Charts (MSC) [3] which implements
KDT approach. Main concepts of the latter one are briefly
overviewed and compared with the capabilities of MSC format.
Basing on both concepts a testing approach is developed, and
two main ways of its implementation are described. The article
is concluded with the overview of current results and future
plans.

II. KEYWORD-DRIVEN APPROACH

KDT is a third-generation approach for automated testing
framework design. This means that it allows creating and
executing structured scenarios with data being separated from
control flow. Keyword-driven tests consist of a list of
keywords and their parameters. Each keyword represents a
predefined set of actions performed against the system under
test (SUT). The scenario itself has tabular format, and can be
edited as plain text or with special tools. Fig. 1 represents the
high-level concepts of KDT approach.

Figure 1. Keyword-driven testing.

Test scenario

Testing libraries

Driver A Driver N

SUT

…

Test adaptor

Keyword Test data

122 of 181

Each keyword has clear and unambiguous definition. It can
be implemented in code or written in document. Thereby KDT
can be applied both for automated and manual testing. It is
possible to develop keyword definitions separately from the
tests, and, thus, testing can be divided into two independent
flows – test design and test action specification. The latter one
can be done by someone without programming skills.

With KDT test suite becomes more stable. The cost of its
maintenance is reduced because it is not necessary to fix test
scenarios according to the changes in SUT, only keyword
definitions. Test execution is more scalable [4]. Test cases
itself become easy to modify as they operate high-level
abstractions and can reuse existing keywords. Due to the
absence of low-level details test suite is readable by all
stakeholders.

III. MESSAGE SEQUENCE CHARTS BENEFITS

Message Sequence Charts are quite similar to UML
Sequence Diagrams. Roughly speaking, they represent the
interaction between a set of agents called instances by means of
sending and receiving signals. More information about MSC
can be found in ITU-T specifications [3]. Fig. 2 demonstrates
an MSC for a part of SIP protocol.

Figure 2. MSC for a part of SIP protocol

It is very native to use sequence diagrams to illustrate use-
cases or even provide concrete specification for
communication protocols or data exchange between software
components. Phrase representation of MSC can be
automatically parsed and analyzed. It means that diagrams may
be used as test scenarios. In this context, the idea of signal in
MSC is very close to the concept of keyword.

MSC as a format for keyword-driven tests has particular
advantages. It is human-oriented and can be presented in
graphical view [5]. Due to standardization it is possible to
develop formal algorithms for MSC processing. Their
implementation can rely on third-party tools and libraries.
Some of the existing modeling and developer tools provide
MSC data, which can be used both for documenting and testing
the product.

IV. TECHNOLOGY CONCEPT

Main elements of MSC diagrams are signals, actions and
inline expressions. All of them can be used to implement
keyword-driven testing concepts.

Signal exchange can be interpreted as a series of keywords,
executed one after another. Testing data can be defined in
signal parameters. In context of testing all instances present in
sequence diagram refer to environment or SUT. Thus, signals
sent from environment to SUT describe testing actions, while
signals coming from SUT instances specify the reaction to the
stimulus. In keyword-driven testing there is no difference
between executed commands in scenario. The concept of
sending and receiving signals has to be adopted in a way that
makes tests more readable whilst clear and unambiguous.

Taking this into account we can consider signals sent from
the environment as a pure keyword execution. Signals sent
from SUT also have this meaning but should imply additional
checks that affect the result of the test. In can be the
interpretation of return code, for example. Another approach is
to detect special states and events during testing and store them
somewhere for future processing by means of signals sent from
SUT. For automated keyword testing let’s call it “passive
driver”.

Actions in MSC are used to describe internal events in
instances such as data evaluation, or comments. As an element
of testing scenario action can be used to increase readability of
the test commenting what is happening inside the “black box”.
In manual testing it can give additional instructions of provide
external references to documents. In automated testing actions
can serve as a placeholder for executable code for test
customization. In both cases actions can contain keywords.

Summing up what has been said it is possible to use MSC
for keyword-driven testing and use diagram components to
make tests more readable and vivid. But the role of each
element must be clearly defined to keep scenarios easy to
understand and provide unambiguous way of their creation.

MSC inline expressions allow specifying non-linear control
flow. They describe repetitive actions (loops), optional or
alternative behavior (opt and alt expression). Combined with
condition events (as in Fig. 3), inline expressions can be used
to represent if-else and loop statements in their traditional
meaning. To enhance the conditions and data manipulations,
variables can be declared using MSC text elements and then
used in control flow management and testing data.

Figure 3. Conditional inline expression

123 of 181

Current research concentrates on automated testing rather
than manual. It was mentioned earlier that MSC is standardized
notation so it is possible to automatically produce human-
readable tests based on it. Testing system can automatically run
those tests by leveraging different underlying technologies with
driver libraries. During the current research a testing
automation framework was created according to the ideas
presented above. Main concepts of the framework
implementation are presented below with the information about
current status of the research and plans for future development.

V. AUTOMATED TESTING FRAMEWORK IMPLEMENTATION

Main idea of the architecture corresponds to the concept of
KDT approach. Keywords are extracted from MSC and
processed using driver libraries. But instead of direct
interpretation of commands tests are first translated to the
program in target code. This approach is commonly used in
testing with MSC [6]. Then it is build into executable called
test unit. Its implementation is based on state machine
approach which allows non-linear behavior and automatic
analysis of execution trace. Main components of created
framework are present in Fig. 4.

Figure 4. MSC-based testing automation framework

Each MSC environment instance is executed in separate
thread. This requires introducing two types of variables – local
and shared. Local variables may have different values in
different instance treads. To provide thread-safe access to the
set of shared variables called test context each test unit has
special control module [7]. The latter one is also responsible
for processing conditions for inline expressions with multiple
instances involved. It tells which branch of alt should be used
or whether instances need to execute another iteration of loop.

VI. CONCLUSION

This research is still in progress. Current implementation of
framework include translator from MSC to C, core and driver
libraries, test report generator. Proposed testing approach is
now being approbated in testing of telecommunication
software. Future plans include design and implementation of
passive driver approach and integration with Robot framework
testing libraries.

REFERENCES

[1] K. Beck, Test-Driven Development by Example, Saint Petersburg: Piter,

2003.

[2] Faught, Danny R. Keyword-Driven Testing. Sticky Minds. Software
Quality Engineering. http://www.stickyminds.com/article/keyword-
driven-testing, 2004.

[3] ITU-T Recommendation Z.120: Message sequence chart (MSC).
Geneva, Switzerland, October 1996,
http://eu.sabotage.org/www/ITU/Z/Z0120e.pdf.

[4] Tiutin B., Veselov A., Kotlyarov V. Scaling of automated test execution
// St. Petersburg State Polytechnical University Journal. № 3 (174).
2013. P. 118-122.

[5] W. Damm, D. Harel. LSCs: Breathing life into message sequence charts.
Formal Methods in System Design, 19(1), 2001.

[6] Hu W., Sun X. Test Case Generation Based on MSC TTCN-3 //
Proceedings of the International Conference on Information Engineering
and Applications (IEA). London: Springer-Verlag, 2013. 888 p.

[7] Kaner C., Bach J., Pettichord B. Lessons Learned in Software Testing: A
Context-Driven Approach. NY: John Wiley & Sons, Inc., 2001. 320 p.

Instance state machines

…

MSC

Testing libraries

Driver A Driver N

SUT

…

Code generator

Core libraries

#1 #N Dispatcher

signal data

124 of 181

Reconciliation Testing Aspects of Trading Systems Software Failures

Anna-Maria Kriger
Kostroma State Technological University

anna-maria.kriger@exactpro.com

Alyona Pochukalina

Vladislav Isaev
Yuri Gagarin State Technical University of Saratov

vladislav.isayev@exactpro.com

 Obninsk Institute for Nuclear Power Engineering
alyona.pochukalina@exactpro.com

Abstract - This paper describes the concept of reconciliation
testing - a process of using data reconciliation tools to validate the
system in parallel with other activities. The authors studied
information about two major software failures in electronic
trading area: Facebook IPO on NASDAQ and Knight Capital
runaway algorithms. This paper contributes to the subject matter
by identifying aspects related to data reconciliation during these
two events. The authors discuss the balance between automated
and manual reactions to discrepancies reported by reconciliation
tools and analyze the necessity of introducing reconciliation
testing as part of system development life cycle for complex
transactional processing systems.

Keywords - data reconciliation, software testing, electronic
trading

I. Introduction
Reconciliation is a process of finding discrepancies in data

obtained from different sources. In accounting, reconciliation
refers to the process of ensuring that two sets of records,
usually account balances, match to each other. In financial
markets, data reconciliation systems help asset managers to
reconcile trades, cash and security flows, balances and
positions between different systems, e.g. internal data stored
by the trading participant vs. external data received from
counterparties, brokers, clearers, custodians, etc. [1]. Data
reconciliation packages are often used by middle- and back-
office teams to identify breaks in post-trade data stored in
relational databases. Most of data reconciliation research is
also focused on various database related techniques [2].
General purpose extract, transform, load (ETL) products such
as Informatica PowerCenter can be used as the basis for
reconciliation tools implementations [3]. The financial
services industry also uses specialized solutions such as
UnaVista [4] from the London Stock Exchange. Data
reconciliation can be implemented as:

a) End of day process
b) Periodic process
c) Real-time process

The optimal implementation approach depends on balance
between time exposure risks of less frequent solutions and
footprint requirements of more frequent solutions. Slower
solutions delay the delivery of critical information to the
operational team, but require less hardware resources
compared to faster solutions. Due to latency requirements,
relational databases were removed from the main transactional

path in most of the trading systems [5]. This fact, along with
the desire to limit time exposure, is likely to be reflected in the
next generation of reconciliation products that will move away
from databases and focus more on real-time matching.

In the next part of the paper, Reconciliation Testing concept
is described. Parts III and IV cover two samples of major
software malfunctions in the electronic trading area. The first
one describes events related to a broken Knight Capital algo
that submitted millions of uncontrolled orders into the US
markets and acquired a huge loss position. The second one
describes problems with determining the uncrossing price and
sending confirmations to members during Facebook IPO on
NASDAQ exchange. The last part contains the analysis of
similarities between Knight Capital and Facebook IPO events
from data reconciliation and testing points of view.

II. Reconciliation Testing
Reconciliation testing is a process of using data

reconciliation tools to validate the system in parallel with
other testing activities. The term rarely appears in research
papers. Data reconciliation tools can be viewed as passive
testing tools due to their ability to check data consistency
across the system without initiating any additional message
flows [6]. The ability of data reconciliation tools to report
errors in data consistency makes them useful test oracles for
both functional and non-functional testing activities.

By their very nature, production data reconciliation tools
satisfy the requirements for test tools that can be used in
trading systems production environments [7]. Thus, data
reconciliation tools can support the requirements of High
Volume of Test Automation (HiVAT) methods:
 their impact on the system under test is acceptable for

both production and test environments;
 tools can collect and process data regarding events in the

system under test at production rates/volumes;
 they can highlight discrepancies in large data sets in a

form that can be analyzed by the operational or QA
teams;

 tools stability and resilience are sufficient to run high
volumes of automated tests.

It is important to use data reconciliation tools during
negative tests execution. The Quality Assurance team should
check whether negative scenarios can be picked by the data
reconciliation tools or not. Whenever a negative test scenario
leads to a discrepancy highlighted by the data reconciliation
tool, the Quality Assurance team should validate whether it is

125 of 181

possible to use the information from the tool to identify the
source of the problem. This way, the operational team will
have the necessary insight to take action if the problem ever
occurs in production environment.

Reconciliation testing requires the presence of data
reconciliation tools in the test environments. In some cases it
can lead to an additional license costs and other expenses.
Yet, the absence of production-like instrumentation limits the
coverage of operational testing.

In order to perform reconciliation tests one needs to have
data reconciliation tools available. The Quality Assurance
team should strongly consider the possibility of implementing
test tools capable of running passive data consistency checks.
These tools should be implemented with a potential
opportunity in mind that they will be also used in production
environments.

In summary, the main aspects of data reconciliation tools
are:

a) they are passive test tools
b) they serve as test oracles
c) they can be used with HiVAT methods
d) they should be used during negative test cycles

III. Knight Capital
Knight Capital was one of the most successful high-

frequency trading (HFT) companies and represented
approximately 10% of listed US equity securities in 2011-
2012. Knight operated ultra-fast order router software named
SMARS. A technical glitch in the system that happened on the
1st August 2012 led to an uncontrolled order submission into
the market and accumulated a loss position of $460 million
within 45 minutes period [8].

Smart Order Router (SOR) software is intended to execute
orders in the current fragmented financial markets landscape
[9]. Figure 1 below shows a simplified view of SOR system
architecture.

Fig. 1. Simplified SOR architecture

The Order Management System (OMS) receives orders
from clients (parent orders) and after validation checks and
controls passes them to the SOR subsystem. The latter creates
market orders (child orders) for every parent order and sends
them to different exchanges depending on the state of the
markets and the internal business logic of the system. The
information about trades is stored into Trade Management
System (TMS) and trading positions and accounts are updated.

A set of reconciliation controls is necessary to protect the
system as shown in Figure 2.

Fig. 2. Reconciliation controls in a SOR system

 It is necessary to check the discrepancies between parent
and child orders. When child orders are executed in the market
it is necessary to reconcile market execution reports vs. parent
orders. Whenever discrepancies are detected, they should be
reflected in the error accounts.

The SMARS system contained the necessary reconciliation
controls. However it appeared that they were not properly
configured or tested. Reconciliation control to validate parent
orders vs. child orders appeared to be higher in the source
code and the SMARS system’s logic was not affected by the
check. All other risk controls were located at the OMS level
and were not suitable to block problems should they happen in
the SMARS system. Knight Capital had a special monitoring
system called PMON to view positions accumulated in the
error account, but its output was not linked to any kill-switch
mechanism and did not provide sufficient information to
operational teams to understand the source of the problem.

 Knight Capital implemented changes related to New York
Stock Exchange (NYSE) Retail Liquidity Platform in the
SMARS system and put them live on the date of the events.
Due to a human operator’s error, the changes were deployed
on seven servers instead of eight. The newly introduced switch
triggered a piece of legacy code on that server, and the result
was an uncontrolled flow of child orders into the market. The
system continued to send child orders even though client
parent orders were already filled. Broken real-time
reconciliation controls were not able to halt erroneous run-
away trading algorithm and post-trade controls were not
designed to affect real-time flow. The Securities and Exchange
Commission (SEC) executive order highlighted the lack of
technical supervision in the firm and issued additional fine of
$12 million. Knight Capital was not able to recover from these
events, its share price dropped and the company was later
acquired by one of its competitors.

IV. Facebook IPO
Facebook is the most widely used social network in the

world. Its audience grew substantially over the years and
exceeded one billion users. In 2012 company announced that
it selected NASDAQ market as its listing exchange. Facebook
Initial Public Offering (IPO) was one of the largest IPOs in
history. Many retail and institutional investors were going to

126 of 181

participate and acquire company shares. On the day of IPO,
18th May 2012, the trading activities in the stock were
disrupted by a set of technical malfunctions that lasted for
several hours, had substantial financial impact on some of the
market participants and led to SEC investigation [10].

The NASDAQ system is one of the most advanced trading
platforms used by many national and alternative exchanges in
many countries. The system has resilient and scalable
distributed architecture and a set of built-in reconciliation
controls targeted to validate internal data consistency. The
trading system can operate in two different modes –
continuous trading and auctions. Continuous trading is a very
efficient way to organize markets with sufficient liquidity.
Whenever a price of the buy order exceeds or equals the price
of the sell order, a trade will happen during continuous
trading. Market participants have immediate access to price
discovery and trading opportunities. Continuous trading is a
self-maintained process. However, is it not the most effective
way of starting a new trading day or maintain an orderly
market after significant material events. The reason for that is
that every participant is afraid that others have information
that is not reflected in the share price, as trading had not
started yet and thus waits for others to submit their orders.
Collectively, this behavior results in limited available
liquidity. The problem can be resolved by the auction trading
mode. For a designated period of time, the participants can
submit, amend and cancel their orders, they can also view
prices offered by other participants, but no trades will happen
until a particular moment. Auction trading mode gives
investor sufficient confidence to decide whether they really
have an intention to trade at the price accepted by the market.
At the end of the auction call period the exchange system
identifies uncrossing price that will result in maximum volume
of traded shares and the trading goes into the continuous mode
[11]. Secondary trading in the NASDAQ markets usually
starts with a special auction called “Display Only Period”
(DOP). NASDAQ uses a separate component called “IPO
Cross Application”. It processes all orders to define the price
at which the largest number of shares will trade and then the
matching engine crosses eligible buy and sell orders at that
price.

The NASDAQ system has a reconciliation control to
validate that the list of orders presented in the matching engine
is identical to the one used by the Cross Application to
determine the price. This control directly affects the trading
system and results in a request to recalculate the price
whenever any discrepancy is located. One of the reasons for
the reconciliation check to fail was that NASDAQ allowed
participants to cancel orders even during a short period of
uncrossing price calculation that usually takes 1-2
milliseconds.

Fig. 3. Conceptual exchange trading system architecture

Information about the NASDAQ platform components and
its architecture is not available in the public domain. We
presented a generic view of the simplified architecture in
Figure 3 based on information from the SEC report and our
overall experience with similar systems. Clients submit orders
into the trading gateways and orders are matched inside the
matching engine. According to the report, the system uses
separate components to calculate the uncross price during
auctions and another application to send confirmation reports
to members and publish quote updates called Execution
Application. Similar to the Cross Application, the Execution
Application also had associated reconciliation controls in
place to make sure that its view of the orders match to the one
available in the Cross Application.

On the day of Facebook IPO, the NASDAQ platform
received unusually high number of orders from participants
desiring to participate in market opening auction. The IPO
Cross Application process took around 20ms to determine the
uncrossing price and a single order was canceled during this
period. The application repeated the calculation and
reconciliation check, but more orders were canceled. The
NASDAQ matching engine and the IPO Cross Application
went into an infinite loop. Every attempt to recalculate the
uncrossing price was followed by failed reconciliation check.
Within the next 25 minutes, technical and executive teams
determined that the reconciliation check prevented the system
from opening the market and agreed on a so called Failover
Proposal. Software update switching of the check was
deployed on the secondary server and the primary one was
killed, enabling the system to stop the cycle. Unknown at the
time, due to the ongoing cycle the system’s ability to process
additional inbound order instructions was limited, and an extra
38k orders were stuck in the processing queue and did not
participate in the cross. This led to the failure of
reconciliation check in the Execution Application. Many
market participants were not able to receive confirmations for
their orders and trades until NASDAQ performed the second
failover and switched off the reconciliation control in the
Execution Application. Figure 4 shows the state of the system
after both failover proposals were executed.

127 of 181

Fig. 4. NASDAQ system state after executing the second

failover proposal

The events around Facebook IPO resulted in significant
loss of investors’ confidence, the NASDAQ operator was
censured by SEC and had to pay an administrative penalty of
$10 million and set aside a $62 million-worth fund to
compensate firms harmed by the glitch.

V. Reconciliation Testing Analysis
Large-scale technology disasters are rarely a consequence

of a single factor. Mostly, they result from a set of flaws in
software development and maintenance processes. Data
reconciliation controls serve as an independent additional
protection mechanism for complex systems and therefore
should be considered as a necessary part of production
infrastructures. Reconciliation testing is an activity that not
only helps to deliver systems that will behave correctly in
production, but also provides additional confidence that
operational teams will have sufficient information to take
action if things unexpectedly go wrong.

In both the Knight Capital and the Facebook IPO cases, the
trading systems had a reasonable set of reconciliation controls.
In both cases, the impact of problems might have been
significantly reduced had these controls worked properly. This
section covers distinctions and similarities between the two
considered events.

The correctness of real-time reconciliation control matching
parent orders vs. child orders had not been tested by Knight
Capital for several years. A negative scenario that resulted in a
discrepancy between these two data sets could have
highlighted that the risk control was longer active after being
moved into another part of the source code. On the other hand,
it is clear that reconciliation controls had been functionally
tested by NASDAQ and proved to work as expected.
However, the exchange team had never tested the course of
actions if the reconciliation control failed permanently. The
team executed the failover proposal without validating in
detail first what impact it would have on other components
and reconciliation utilities.

Both companies had a monitoring view that highlighted the
problem to their operational teams. In both cases, the team
was able to correctly interpret the extent of the events. The
Knight Capital team erroneously decided to roll-back the
changes and effectively made the things worse. The NASDAQ

team was not aware of 38k orders stuck in the processing
queue for some time, even though the reconciliation control in
the Execution Application had picked up the problem
immediately and marked the cross as invalid.

The Knight Capital reconciliation tools were not linked to
any facilities to halt the trading. In the NASDAQ case, failed
reconciliation immediately blocked further processing. Upon
reflection, it is clear that neither of these two behaviors is
ideal. It is necessary to have balance between automated stop-
switches and the operators’ ability to control reconciliation
checks.

In both cases, real-time data reconciliation controls were
built into the main transactional part. It might be a good idea
to use tools separated from the main flow, e.g. surveillance
sub-systems, to perform the data reconciliation function.

The following figure shows market surveillance system
usages as the test tool.

Fig. 5. Market Surveillance System used as reconciliation

testing tool.

The primary task of a market surveillance system is to
support the analytics gathered and analyzed by departments
responsible for recognition of possible market abuse [12]. A
surveillance system must collect the information pertaining to
all incoming orders, system responses, data from external
sources and relevant internal states of the trading platform.

It is possible and beneficial to use market surveillance
system as a reconciliation testing tool for the following
reasons:

 all required data is collected from the system and
available both real-time and in the database;

 most of surveillance systems are configured as a
downstream component and do not affect the main
transactional path;

 rules engine allows creating data reconciliation checks
and raise alerts when they fail;

 order book replay allows studying the exact source of
the discrepancy.

128 of 181

VI. Conclusion
The examples of high-profile software failures presented in

the paper show that incorrectly functioning data reconciliation
controls in electronic trading systems can cause substantial
financial losses. Validation of these controls needs to be
incorporated into the software development life cycle for such
systems.

A comprehensive test library should cover various potential
discrepancies reported by data reconciliation tools.
Operational teams should provide responses to each of these
scenarios. Quality Assurance teams should verify that the tools
provide enough information to identify the source of a
discrepancy. The system itself should have controls to halt and
resume trading both automatically and manually if a
breakdown occurs in production environment.

Apart from being a critical part of production
infrastructures, data reconciliation tools can provide additional
test oracles for both functional and non-functional testing
activities and enable more efficient testing of complex
transactional processing systems.

The authors plan to proceed with researching data
reconciliation tools applicability in software testing and
developing a reference implementation of a scalable real-time
tool for reconciliation testing based on the proprietary market
surveillance platform.

References

[1] W. Wheatley Financial Systems, Reconciliation Best Practice,
http://www.watsonwheatley.com/literature.html

[2] M, Cochinwala, V. Kurien, G. Lalk, D. Shasha, “Efficient
data reconciliation”, The Journal of Information Science,
vol.137, issue 1-4, Sep. 2001

[3] R. Nolan, The Informatica Blog, Even ‘The Most Interesting
Man In The World’ Won’t Do This…
http://blogs.informatica.com/perspectives/2012/03/06/even-
the-most-interesting-man-in-the-world-wont-do-this/
[4] London Stock Exchange. How UnaVista Works:
http://www.londonstockexchange.com/products-and-
services/matching-reconciliation/how-unavista-
works/index.html

[5] I. Itkin, Highload trading systems and their testing,
Highload++ 2012

[6] A. Matveeva, N. Antonov, I. Itkin, “The Specifics of Test
Tools Used in Trading Systems Production Environments”,
Tools & Methods of Program Analysis 2013

[7] A. Alexeenko, P. Protsenko, A. Matveeva, I. Itkin, D. Sharov,
“Compatibility Testing of Protocol Connections of Exchange
and Broker Systems Clients”, Tools & Methods of Program
Analysis 2013

[8] SEC Release No. 70694. In the Matter of Knight Capital
Americas LLC

[9] Foresight: The Future of Computer Trading in Financial
Markets (2012) Final Project Report

[10] SEC Release No. 69655. In the Matter of THE NASDAQ
STOCK MARKET, LLC

 [11] NASDAQ Stock Market Rules
http://nasdaq.cchwallstreet.com/

 [12] D. Diaz, M. Zaki, B. Theodoulidis, P. Sampaio, A
Systematic Framework for the Analysis and Development
of Financial Market Monitoring Systems, Annual SRII
Global Conference 2011

129 of 181

Simulation-based Hardware Verification Back-end:
Diagnostics

Mikhail Chupilko, Alexander Protsenko
Institute for System Programming of the Russian Academy of Sciences (ISPRAS)

{chupilko,protsenko}@ispras.ru

Abstract—Hardware development processes include verifica-
tion as one of the most important part. Verification is very often
done in simulation-based way. After comparison of design and its
reference model behavior, the verdict about their correspondence
appears. It is very useful to have some means of analyzing
potential inconsistency of their output data. It is exactly the
subject of this work to supply verification engineers with a
method and a back-end tool for diagnostics of incorrect behavior
using wave diagrams and reaction trace analysis based on
recombination of reaction traces.

I. INTRODUCTION

The importance of hardware verification (taking up to 80%
of the total development efforts [1]) is raised by difficulties
in error correction in already manufactured devices. Many
methods address verification, some of them being more formal
(static analysis), the other ones using simulators (dynamic
verification). In the first case, the verification is carried out
in a strict mathematical way. For example, the approach to
verification known as model checking [2] means checking
satisfability of formally expressed specification and formulae
manually created by an engineer. If some error occurs, it
is connected with unsatisfiability of the properties set by
the engineer and the specification that should be checked
and corrected. Dynamic verification implies checking mutual
correspondence of output reactions of two models: design
under verification (DUV) and a reference model (possibly,
expressed by a set of assertions). The same stimulus sequence
is applied to the both models, their reactions are checked and
if some problem occurs, incorrect reactions are shown (the
reactions can be so due to their time, data, and possibility of
their appearing). As the unarmed looking at incorrect reactions
is not always enough to understand quickly the problem having
occurred, it seems very important to show more diagnostics
information, including the place of this error on the wave
diagram, and the answer to the question why such an error
has appeared.

In this paper, we will introduce the way of diagnostics,
which should be independent of the specification organization.
It should be also supported by a wide range of test system
making technologies, including the one made by our team
(C++TESK Testing ToolKit [3], [4]) and widely distributed
world-known methods of test system development (Universal
Verification Methodology [5]).

This work evolves the research previously described in [6]
and extends it by new understanding of the explanatory rules

used in the analysis algorithm and visualization of diagnostics.
The rest of the paper is organized as follows. The second

section is devoted to related works on the subject of diagnos-
tics and trace analysis. The third section introduces architec-
ture of test systems for simulation-based verification and the
proposed method of diagnostics subsystem construction. The
fourth section considers method implementation and examples
of its work with test system development library C++TESK
Testing ToolKit. The fifth section concludes the paper.

II. RELATED WORKS

The problem of diagnostics of event-based systems is
studied under different angles. Some researchers understand
failure diagnosis as checking of formal properties in formally
expressed systems (e.g., [7]). In the other sources the fault
diagnostics is closer to our task where it means construction
of such timed automata, which can find a bug in behavior of
DUV according to some pattern during the simulation (e.g.,
[8] and [9]).

The processing of reaction traces produced by DUV and the
reference model can be also called trace rewriting (e.g., [10]).
This term is used for describing of symbolic trace reducing
methods based on some set of rules. There are several types of
objects, which can be removed from the trace without losing
of the trace expressiveness, including extra data, dependent
objects, and all the others not influencing the analyzed result.
In our case, the reaction trace can be represented as a symbolic
trace leading to an error occurred at some moment of time.
Having information about parent-child dependences between
stimuli and reactions, we can remove unnecessary objects from
the trace and provide verification engineer with a meaningful
essence for analysis of defect.

The task we formulated for the research is quite close
in general sense to trace rewriting but has some technical
differences including usage of wave diagrams for visualization
of diagnostics results, different set of rules accounting pecu-
liarities of HDL design traces, for example signal interfaces
(sets of HDL signals) where reactions appear.

III. DIAGNOSTICS SUBSYSTEM

The being developed diagnostics subsystem should be a
back-end to common simulation-based test system architec-
ture. To understand the position of the back-end better, let us
review quite common architecture with names of objects from
C++TESK (see Figure 1). The concrete architecture selection

130 of 181

Fig. 1. Common architecture of test system

does not mean a lot as the set of objects in mentioned above
wide-distributed UVM is very similar to those in C++TESK
([11]).

The typical components of simulation-based test systems are
stimulus generator, test oracle (including reaction matcher),
adapter making the interface between transaction level test
system and signal-level DUV, test coverage collector. The
diagnostics subsystem is also shown in the Figure 1 to clarify
its position. After reaction matcher having checked correspon-
dence of two reaction traces, the one from DUV, another from
the reference model and produced the false verdict at the
current cycle, all this information is given to the diagnostics
subsystem, which can work as an extern plug-in for the test
system.

The input data for the diagnostics subsystem is a trace
including reactions from reference model and DUV, applied
stimuli, dependences between them (by some parent identi-
fier). All this objects can be provided in XML. The diagnos-
tics subsystem can also process wave diagrams to show the
important signals and position of defect reactions. The latter
also requires mapping of DUV signals to reactions in XML.

Let the reaction checker use two sets of reactions:
Rspec = {rspeci}

N
i=0 and Rimpl = {rimplj}

M
j=0.

Each specification reaction consists of four elements:
rspec = (data, iface, timemin, timemax). Each implemen-
tation reaction includes only three elements: rimpl =
(data, iface, time). Notice that timemin and timemax show
an interval where specification reaction is valid, while time
corresponds to a single time mark: generation of implementa-
tion reaction always has concrete time.

The reaction checker has already attempted to match each
reaction from Rspec with a reaction from Rimpl, having
produced reaction pairs. If there is no correspondent reaction
for either specification or implementation ones, the reaction
checker produces some pseudo reaction pair with the only one
reaction. Each reaction pair is assigned with a certain type of
situation from the list of normal, missing, unexpected, and
incorrect.

For given reactions rspec ∈ Rspec and rimpl ∈ Rimpl, these
types can be described as in Table I. Remember that each
reaction can be simultaneously located only in one pair.

The diagnostics subsystem has its own simplified inter-

Type name Reaction pair Definition of type

NORMAL (rspec, rimpl) dataspec =
dataimpl & ifacespec =
ifaceimpl & timemin < time <
timemax

INCORRECT (rspec, rimpl) dataspec 6=
dataimpl & ifacespec =
ifaceimpl & timemin < time <
timemax

MISSING (rspec, NULL) @rimpl ∈ Rimpl \
Rnormal,incorrect

impl : ifacespec =
ifaceimpl & timemin < time <
timemax

UNEXPECTED (NULL, rimpl) @rspec ∈ Rspec \
Rnormal,incorrect

spec : ifaceimpl =
ifacespec & timemin < time <
timemax

TABLE I
REACTION CHECKER REACTION PAIR TYPES

Type name Reaction pair Definition of type

NORMAL (rspec, rimpl) dataspec = dataimpl

INCORRECT (rspec, rimpl) dataspec 6= dataimpl

MISSING (rspec, NULL) @rimpl ∈ Rimpl\Rnormal,incorrect
impl

UNEXPECTED (NULL, rimpl) @rspec ∈ Rspec \Rnormal,incorrect
spec

TABLE II
DIAGNOSTICS SYSTEM REACTION PAIR TYPES

pretation of reaction pair types (see Table II). In fact, the
subsystem translates original reaction pairs received from the
reaction checker into the new representation. This process can
be described as M ⇒ M∗, where M = {(rspec, rimpl, type)i}
is a set of reaction pairs marked with type from the list above.
M∗ = {(rspec, rimpl, type

∗)i} is a similar set of reactions
pairs but with different label system. It should be noticed that
there might be different M∗ according to the algorithm of
its creation (accounting for original order, strategy of reaction
pair selection for recombination, etc.).

To make the translation, the diagnostics subsystem uses a set
of reaction trace transformation rules. Each of the rules trans-
forms the reaction pairs from the trace but does not change
their data. To find the best rule for application, the subsystem
uses a distant function, showing the closest reactions among
the pairs. The distant function can be implemented in three
possible ways.

Metric 1: Reaction closeness correlates with the number of
equal data fields of two given reactions.

Metric 2: Reaction closeness correlates with the number of
equal bits in data fields of two given reactions (the Hamming
distance).

Metric 3: Reaction closeness correlates with the number of
equal bits in data fields of two given reactions, order of equal
and unequal areas, and their mutual disposition.

The measure of closeness between two given reactions is
denoted as c(rspec, rimpl).

Each rule processes one or several reaction pairs. In case
of missing reaction or unexpected reaction, one of the pair
elements is undefined and denoted as null. Each reaction pair

131 of 181

is assigned with a signal interface. The left part of the rule
shows initial state; the right part (after the arrow) shows result
of the rule application. If the rule is applied to several reaction
pairs, they are separated with commas.

In general, the algorithm of rule application consists of two
stages. At the first stage, reactions with equal data are joined
and transformed by the rules. In case of such a transformation,
the application order of rules is of importance. The second
stage includes processing of the rest reactions and new ones
made at the first stage. Here rule priority is less important than
values of the selected distant function.

Now, let us review all the six rules that we found including
the first two rules being basic. In description of the rules c
means the selected distant function but at the first stage of the
algorithm it is always full equivalence of data. At the second
stage of the algorithm a rule may be applied only if c value
for this rule is the best among c values for the other rules for
given reactions.

Rule 1: If there is a pair of collapsed reactions, it should
be removed from the list of reaction pairs. (null, null) ⇒ ∅.

Rule 2: If there is a normal reaction pair
(aspec, aimpl) : dataaspec = dataaimpl

, it should be
collapsed. (aspec, aimpl) ⇒ (null, null).

Rule 3: If there are two incorrect reaction pairs with
mutual correlation of data, the reaction pairs should be
regrouped. {(aspec, bimpl), (bspec, aimpl)} : c(aspec, aimpl) <
c(aspec, bimpl) & c(aspec, aimpl) < c(bspec, aimpl) or
c(bspec, bimpl) < c(aspec, bimpl) & c(bspec, bimpl) <
c(bspec, aimpl) (this closeness is the best amoung
the other rules), {(aspec, bimpl), (bspec, aimpl)} ⇒
{(aspec, aimpl), (bspec, bimpl)}

Rule 4: If there is a missing reaction pair and an un-
expected reaction pair with mutual correlation of data,
these reaction pairs should be united into one reaction
pair. (aspec, null), (null, aimpl) and c(aspec, aimpl) is the
best among the other rules: {(aspec, null), (null, aimpl)} ⇒
{(aspec, aimpl)}.

Rule 5: If there is a missing reaction pair and an incorrect
reaction pair with mutual correlation of data, these reaction
pairs should be regrouped. (aspec, null), (bspec, aimpl) and
c(aspec, aimpl) < c(bspec, aimpl) (this closeness is the best
amoung the other rules), {(aspec, null), (bspec, aimpl)} ⇒
{(aspec, aimpl), (bspec, null)}.

Rule 6: If there is an unexpected reaction pair and an in-
correct reaction pair with mutual correlation of data, these re-
action pairs should be regrouped. (null, aimpl), (aspec, bimpl)
and c(aspec, aimpl) < c(aspec, bimpl) (this closeness is the best
amoung the other rules), {(null, aimpl), (aspec, bimpl)} ⇒
{(aspec, aimpl), (null, bimpl)}.

The first stage of the algorithm is shown in 1 and 3 action
blocks. The first stage having passed, the sets Rspec and Rimpl

does not contain any not yet collapsed reactions with identical
data. The time of the second stage comes (see action blocks
2 and 4). Both stages of the algorithm having passed, the list
of reaction pairs may contain some reaction pairs with both
specification and implementation parts but not collapsed due

to their unequal data. To show diagnostics info for them too,
they are collapsed using modified second rule, not requiring
equality of data in the reaction pairs.

After the application of each rule, the history of transfor-
mation is traced and then it is possible to reconstruct the
predecessors of the given reaction pairs and all the rules
they were processed by. Such a reconstruction of the rule
application trace we understand as the diagnostics information.

In the result, verification engineers are provided with a list
of problems occurred during verification and with a set of hints
making bug localization easier.

Action 1 match1[(r1spec , r1impl
), (r2spec , r2impl

), rnumb]

Input: RP1 = (r1spec , r1impl
), RP2 = (r2spec , r2impl

), c =
total equivalence
for all rule ∈ |Rules| do

if rule.isApplicable(RP1, RP2, c) then
rnumb ⇐ rule.number
return true

end if
end for
return false

Action 2 match2[(r1spec , r1impl
), (r2spec , r2impl

), rnumb]

Input: RP1 = (r1spec , r1impl
), RP2 = (r2spec , r2impl

), c =
selected metric function
metric ⇐ 0
for all rule ∈ |Rules| do

metric∗ ⇐ rule.getMetric(RP1, RP2, c)
if (metric∗ > metric then

metric ⇐ metric∗

rnumb ⇐ rule.number
end if

end for
return metric

Action 3 apply stage1[{(rspec, rimpl)i}]
Input: {(rspec, rimpl)i}

for all r ∈ |{(rspec, rimpl)i}|&!r.collapsed do
for all p ∈ |{(rspec, rimpl)i|}&!p.collapsed do

if match(r, p, rule number) then
(rspeci+1

, rimpli+1
), (rspeci+2

, rimpli+2
) ⇐

Rules[rule number].apply(r, p)
r.collapsed ⇐ true
p.collapsed ⇐ true
return

end if
end for

end for

132 of 181

Action 4 apply stage2[{(rspec, rimpl)i}]
Input: {(rspec, rimpl)i}

for all r ∈ |{(rspec, rimpl)i}|&!r.collapsed do
metric∗ ⇐ 0
for all p ∈ |{(rspec, rimpl)i|}&!p.collapsed do

metric = fuzzy match(r, p, rule number)
if metric > metric∗ then

metric∗ ⇐ metric
rule number∗ ⇐ rule number
s1 ⇐ r
s2 ⇐ p

end if
end for
if metric∗ > 0 then

(rspeci+1
, rimpli+1

), (rspeci+2
, rimpli+2

) ⇐
Rules[rule number∗].apply(s1, s2)
s1.collapsed ⇐ true
s2.collapsed ⇐ true
return

end if
end for

IV. IMPLEMENTATION OF THE METHOD

The proposed approach to diagnostics of incorrect output
reactions has been implemented as a plugin in C++ and Java
languages and attached to C++TESK Testing ToolKit [4].

If the verification process fails, the information provided by
the diagnostics subsystem is shown. It looks like tables with
all found errors (see Figure 2) and rule application history:
new reaction pair sets and the way of their obtaining.

Now let us proceed to the following part of diagnostics sub-
system work — the visualization of bugs on wave diagrams.
Each specification reaction produced during test process keeps
its parents — stimuli and other events making this reaction.
Therefore, it is possible to reconstruct the whole chain from
the very first stimulus up to the reaction with one of the error
types. Each reaction contain data that correspond to signals of
HDL model. Typically, the HDL signals are grouped into input
and output interfaces and correlate with names of data fields in
reactions. There should be a map between signals of interfaces
and data fields. Such a map is usually created manually before
development of test system. Basing on the resulted reaction
pairs, a wave diagram produced by simulator (VCD file [12]),
and the signal mapping the diagnostics subsystem creates a
set of source files for GTKWave [13] to make errors be
visual. The diagnostics subsystem creates separated directory
with VCD and SAV files for each incorrect reaction pair.
According to these files, GTKWave is asked to show the
error situation with its history (predecessors), highlighting
only those signals which are necessary for understanding the
situation. These signals include ones from output interfaces
used in reactions and some common signals like clock, reset
and so on. It is possible to show the reference values of signals
by injecting into VCD files special signals and labeling them
as the reference ones for so and so signals. This possibility

Fig. 2. Result of the diagnostics subsystem work

has not been implemented yet but there is no technological
difficulty as the diagnostics subsystem already parses VCD
files and creates new files with subset of signals.

Example of visual representation of the error from Figure 2
is shown in Figure 3. The situation described by these figures
is as follows. The reaction expected at the 38th interface was
received at the 41st interface. First, it resulted in missing
and unexpected reactions, and then the diagnostics subsystem
joined these reactions to create a normal one. The situation
of the reaction appearing at the 41st interface and the reaction
absence at the 38th interface is exactly shown in the Figure 3.

V. CONCLUSION

The proposed means for trace analysis and bug visualization
allows in some sense to make the verification easier. It allows
to avoid extra information from the reaction trace and to show
only meaningful information for verification engineers related
to the occurred and examined bug in HDL designs.

Our future research is connected with localization of found
problems and bugs in HDL designs using static analysis of
source code.

REFERENCES

[1] J. Bergeron, Writing Testbenches: Functional Verification of HDL Mod-
els. Kluwer Academic Pub, 2003.

[2] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: MIT Press, 1999.

[3] M. Chupilko and A. Kamkin, “Specification-driven testbench develop-
ment for synchronous parallel-pipeline designs,” in Proceedings of the
27th NORCHIP, nov. 2009, pp. 1–4.

[4] C++tesk homepage. [Online]. Available:
http://forge.ispras.ru/projects/cpptesk-toolkit/

[5] Unified verification methodology. [Online]. Available:
http://www.uvmworld.org

[6] M. Chupilko and A. Protsenko, “Recognition and explanation of incor-
rect behaviour in simulation-based hardware verification,” in Proceed-
ings of the 7th SYRCoSE, 2013, pp. 1–4.

[7] S. Jiang and R. Kumar, “Failure diagnosis of discrete event systems with
linear-time temporal logic fault specifications,” in IEEE Transactions on
Automatic Control, 2001, pp. 128–133.

[8] S. Tripakis, “Fault diagnosis for timed automata,” in Proceedings of the
7th International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems: Co-sponsored by IFIP WG 2.2, ser. FTRTFT
’02. London, UK, UK: Springer-Verlag, 2002, pp. 205–224. [Online].
Available: http://dl.acm.org/citation.cfm?id=646847.707114

[9] P. Bouyer and F. Chevalier, “Fault diagnosis using timed automata,”
in Foundations of Software Science and Computational Structures: 8th
International Conference, FOSSACS 2005, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2005. Springer-Verlag, 2005, pp. 219–233.

133 of 181

Fig. 3. Visual example of diagnostics

[10] M. Alpuente, D. Ballis, J. Espert, and D. Romero, “Backward trace
slicing for rewriting logic theories,” in Automated Deduction CADE-23,
ser. Lecture Notes in Computer Science, vol. 6803. Springer Berlin
Heidelberg, 2011, pp. 34–48.

[11] A. S. Kamkin and M. M. Chupilko, “Survey of modern technologies
of simulation-based verification of hardware,” Program. Comput.
Softw., vol. 37, no. 3, pp. 147–152, May 2011. [Online]. Available:
http://dx.doi.org/10.1134/S0361768811030017

[12] Value change dump description. [Online]. Available:
http://en.wikipedia.org/wiki/Value change dump

[13] Gtkwave. [Online]. Available: http://gtkwave.sourceforge.net

134 of 181

From Abstract Parsing to Abstract Translation

Semen Grigorev

St. Petersburg State University

198504, Universitetsky prospekt 28

Peterhof, St. Petersburg, Russia

Email: rsdpisuy@gmail.com

Iakov Kirilenko

St. Petersburg State University

198504, Universitetsky prospekt 28

Peterhof, St. Petersburg, Russia

Email: jake@math.spbu.ru

Abstract—String-embedded language transformation is one of
the problems which can be faced during database and information
system migration. The conventional solution which is provided by
a number of tools is based on run-time translation. We present a
static abstract translation approach which originates from the ab-
stract parsing technique [9] initially developed for syntax analysis
of string-embedded languages. We present abstract translation
algorithm and some optimization techniques, and discuss the
results of its evaluation on a real-world industrial application.

I. INTRODUCTION

Complex information systems are often implemented using
more than one programming language. Sometimes this variety
takes form of one host and one or few string-embedded lan-
guages. Textual representation of clauses in a string-embedded
language is built at run time by a host program and then
analyzed, compiled or interpreted by a dedicated runtime
component (database, web browser etc.) Most general-purpose
programming languages may play role of the host; one of
the most evident examples of string-embedded language is
dynamic SQL which was specified in ISO SQL standard in
1992 [7] and since then is supported by the majority of DBMS.

String-embedded languages may help to compensate the
lack of expressivity of general-purpose language in a domain-
specific settings or to integrate heterogeneous components of
large system; however this approach comes with some price.
In particular even the syntax analysis of string-embedded
part of a system is undecidable in general case since its
source code is represented implicitly using string-manipulation
primitives, procedures and libraries, and generated “on the
fly”. In a naı̈ve implementation syntax analysis of embedded
clauses is completely outsourced to the runtime environment
which postpones many errors from being discovered prior to
execution and thus compromises the ideas of code safety and
static control.

Abstract parsing is the approach which was developed to
overcome the aforementioned deficiency. In abstract parsing
the source code of a host application is statically analyzed to
provide some constructive representation of the set of string-
embedded language clauses which can possible be generated
at run time [9], [4]. This representation is then analyzed by a
certain parsing algorithm which is usually derived from some
existing one for plain strings [5]. Abstract parsing technique
is utilized in a number of tools [8], [10], [2], [3] for program
analysis and understanding.

While abstract parsing can help in application analysis it
cannot handle the case of application transformation. As a

practical use case for string-embedded language transforma-
tion we can mention reengineering. During reengineering it
is sometimes necessary to migrate from one database man-
agement system to another; this migration may require a
transformation of string-embedded clauses.

One of the options is dynamic translation at run time [1].
However this solution not always desirable. First, it may
degrade the performance of the system due to introduction
of extra processing stage. Next, with dynamic translation the
ultimate goals of the reengineering are not achieved since some
part of the original system escaped transformation.

Another approach includes translation of stored SQL which
is supported by a number of existing production tools for
database application development [11], [13], [12]. However,
these tools do not support dynamic SQL translation and thus
provide only partial solution.

The contribution of this paper is an approach for abstract
translation. Similar to abstract parsing first we perform static
analysis to build an approximation for the set of all generated
clauses. Then our algorithm performs analysis which, unlike
abstract parsing, produces parsing forest — a family of syntax
trees, each of which represents the result of translation of cer-
tain input sequence. New correct assignments for all relevant
string values in the host program are calculated then. Our
approach works only when the source and the target languages
are syntactically close enough (e.g. when they are two dialects
of the same language). We discuss some heuristic which helps
to reduce the complexity of the algorithm in many practical
cases and present the results of its application for the migration
of a real-world industrial project from MS-SQL Server 2005
to Oracle 11gR2 platform.

II. GRAPH-BASED INPUT REPRESENTATION

As we mentioned above, the first stage of abstract parsing
is static approximation of relevant string values. Two main rep-
resentations for approximated values were used so far. In [4],
[2], [3] the sets of potential string values are described using
regular expressions; in [9] approximations are represented in
more implicit form as a solutions of a system of (recursive)
dataflow equations.

We did not find a way to scale either of these repre-
sentations to abstract translation case. Instead, we represent
the input stream for abstract translation via flow graph with
one source and one sink nodes and string-labeled edges. The
labels of edges in this graph represent the results of constant
propagation so that every path in input graph corresponds to

135 of 181

{tables.get(i)}

ε

ε

,

ε
select ∗ from

;10
3

2

4

Fig. 1. Correct finite automaton (graph representation)

select ∗ from ;,

ε

{tables.get(i)}
10 32 4

Fig. 2. Result of cycles approximation

one potential value of dynamic query. Moreover, we perform
lexical analysis on graphs which converts the initial string-
labeled graphs into graphs, labeled by tokens.

Since any cycle in the input graph generates infinite se-
quence of tokens which upon translation is turned into infinite
forest we simplify the graph even more. We replace each cycle
with the single repetition. For example in the order to get
regular approximation of query value set from code presented
below we should build the next regular expression:

”select * from ” · ({tables.get(i)}|ε)∗ · ”;”

and the corresponding finite automaton (see Fig. 1). Note that
we do not care about approximation for tables.get(i) expression
because it depends on a constant propagation algorithm. But
we will get the graph where cycle replaced with only one
repetition of its body. The result of such approximation is
presented in Fig. 2.

query = "select * from ";

for(int i = 0; i < tables.size(); i++)

{

if(i != 0) query += ", ";

query += tables.get(i);

}

query += ";";

As you can see, in our example we do not produce
strings like select * from tbl1, tbl2; or
select * from ;. So, we can not check it. We
process only two strings and all of them are in
original infinite set: select * from tbl1; and
select * from, tbl1;. As a result, we do not
process all possible values but we process all variables used
for query construction and it is enough for such tasks as code
highlighting or transformations because all parts of expression
are processed.

Thus the graph becomes cycle-free and we can process all
vertices in the topological order. While this drastic simplifica-
tion is completely heuristic our experience of dynamic SQL
translation for real information systems showed that DAG is
still a good approximation for practical use.

As an example consider the following code snippet:

(1) IF @X = @Y

(2) SET @TABLE = ’#tbl1’

(3) ELSE

� �
�������	

�
���
���

�
�������

�
���
�������

���
������

Fig. 3. Tokenized input graph

(4) SET @TABLE = ’tbl2’

(5) SET @S = ’SELECT x FROM ’ + @TABLE

(6) EXECUTE (@S)

Variable @S contains dynamically generated query and can
have two potential values at the point of query execution.
During approximation we can build a graph which represents
the set of potential values of the variable @S at the line 6. Each
edge of this graph is labeled by a token which represents a part
of the query (see Fig. 3).

Note that real-world systems can communicate with other
systems source of which may be inaccessible to analyze. These
systems can contain parts of queries to process and we should
use some approximations. For example, clients applications of
information system can sent conditions for filters (conditions
for where clause of select statement) as part of requests.

III. ABSTRACT TRANSLATION ALGORITHM

Our approach for abstract traslation borrows the idea of
reusing the control structures used in classical parsing from [9].
Control tables of LALR analyzer may be generated by some
conventional tool (e.g. yacc1). The interpreting automaton,
however, has then to be modified to be able to compute all
possible parser states for each vertex of the input graph.

For example, let we have the following grammar:

s -> Ae

e -> BD

e -> CD

An input graph is shown on the Fig. 4. The set of parser
states for each vertex of the graph can be calculated during
syntax analysis. The result of state calculation is shown on the
Fig. 5.

A B

C

D
10 32

Fig. 4. Input graph for abstract parsing

A B

C

D
s → A.es → .Ae s → Ae.

e→B.D
e→C.D

Fig. 5. Parser states

In the case of translation (not parsing) the parsing state
consists of state of the automaton and some semantic value
which represents the result of translation built so far. In

1http://dinosaur.compilertools.net

136 of 181

KW SELECT IDENT(myTbl)IDENT(fld1)

IDENT(fld2)

KW FROM
V1 V3V2 V5V4

Fig. 6. Graph with states possible to merge

L1

...

Ln1

M1

...

Mn2

V1
... VkV2 V3

Fig. 7. Graph which requires an exponential resources for translation

particular, the translation algorithm works not only with token
types, but also token values.

One of the possible solution of translation is abstract pars-
ing algorithm with mechanism of stack splitting for semantic
calculation support. It disallows to merge states and creates a
new copy of the whole stack for the each branch of the input
graph.

However, this approach faces the exponential memory
usage problem. For example parser states for vertex V3 on
the Fig. 6 should be equal for two input edges but if we want
to calculate semantics, then we get two different states because
identifiers has different values.

Queries which contain a huge number of branches is a big
problem. The number of states is an exponential function of
the number of branches because for each branch we should
produce n ∗ k states where n is a number of states in the root
of the fork vertex and k is the number of branches. One of the
most frequent example of queries with big number of branches
is select query. Each of fields to select can be calculated
with if-statement or case-statement. Example of such graph is
presented on the Fig. 7.

If we use only sequentially concatenated if-statements then
the number of parsing trees is 2n where n is a number of
if-statements (or number of branches). In some real-world
systems we have faced the queries which contains more than
100 branches. The full forest calculation by naive adaptation
of abstract parsing is impossible for such queries.

We propose the following solution for the forest size
minimization problem. We have previously mentioned that the
result of translation is a new values for all variables which
were used for queries construction. It is sufficient to construct
not the full forest but only the minimal set of trees such that
after translation every variable gets new value.This way, we
can process not all paths in the input graph but only minimal
set which contains all edges. Note that we cannot calculate
this set prior to the parsing because we cannot be sure that
every path produces syntactically correct value. If some path
contains error than the tree for that path is not constructed
and we may lose information about variables. For example
consider the graph presented on the Fig. 8.

The one possible set of paths which we can calculate before
syntax analysis is {(L1;M1); (L2;M2)}. But every path here
contains syntax errors and the result forest would be empty
instead of containing two trees. We should choose another set
(for example {(L1;M2); (L2;M1)}) to get the correct result.

L1

L2

M1

M2

V1 V3V2

Fig. 8. Graph for minimal paths set selection.

So, path calculation is an iterative process. We perform
state filtering during syntax analysis for each vertex with
multiple input edges. Let describe the steps of the process:

• Initial state. Set of states for the vertex is empty.

• Step. For each step if the current vertex has multiple
input edges then we should add new state to a state set
for the current vertex if one of the following conditions
is true:

◦ new state corresponds to a path, which con-
tains some edges which are not contained in
any of the paths, which correspond to any state
of the currently processing set;

◦ new state corresponds to a parser state which
is not yet presented in the currently processing
set.

A pseudo code for the described algorithm is presented
below.

/*
V list of input graph vertices in the topological order.

v_s start vertex of input graph.

*/

let filterStates v =

let groupedByParserState =

v.States.GroupBy (fun state -> state.Item)

v.States = Set.empty

for group in groupedByParserState do

/* Each state corresponds with path from v_s to v.

Set of paths specify set of edges of graph E_s.

We should construct minimal set of paths which

contains all edges of E_s. The next greedy algorithm

can be applied to solve this problem.

1) Order paths by length ascent.

2) While current path contains edges which are not

in the result set add this path in the result set.*/

let ordered =

group.OrderBy (fun s -> -1 * s.Path.Lenght)

for s in ordered do

if (s.Path contains edges which are

not contained in any path corresponded

with states from v.States || not s in v.States)

then v.States.Add s

for v in V do

v.States <- /*step of syntax analysis*/

/*If input degree of the vertex v more

then 1 then try to filter states.*/

if v.InEdges.Count > 1 then filterStates v

This way we can get state set which contains all parser
states from input set but is not greater than it. Correspond-
ing paths contain all possible edges in processed subgraph.
Described algorithm of filtration allows to increase the perfor-
mance of parsing by decreasing the number of parsing trees.

137 of 181

IV. EVALUATION

We implemented our algorithm of abstract translation in a
tool built on top of FsYacc2. We completely reused LALR gen-
erator, but implemented custom interpreter with stack copying
ability.

Our tool was evaluated on a migration of a real-world
project from MS-SQL Server 2005 to Oracle 11gR2. The
original system contained 850 stored procedures and more
than 3000 dynamic queries. The total size of the system was
2,7 million lines of code. More than half of all queries were
complex; the number of query-generating operators varied
from 7 to 212. The average number of query-generating
operators was 40. We used PC workstation with Intel Core
i7 2.6 GHz and 16 GB of RAM.

The results of comparison of two abstract translation im-
plementations are presented in the Table I.

The first implementation was directly based on abstract
parsing algorithm. That version was not adapted to process
complex queries and turned system into active swapping. The
analysis did not finish in acceptable time. Timeout (64 seconds)
was added to limit one query processing time. Experiments
showed that increasing timeout did not increase the number
of processed queries. The number of queries, whose analysis
was terminated by a timeout is shown in the table under the
category ”Dynamic SQL-queries with exponential growth of
parsing forest”.

The second implementation utilized state merging. State
merging reduced the number of queries with exponential
growth of parsing forest from 253 to 42, i.e. approximately
in six times.

In the table below we present statistics for dynamic SQL
query processing by two algorithms: original algorithm with
timeout and algorithm with states merging.

Partially processed queries are those with non-empty pars-
ing forest but with parsing or lexing errors. This category is
the most difficult to deal with because error may be a false
positive. Such situation may occur if query which triggers error
can not actually be generated at run time.

V. CONCLUSION AND FUTURE WORK

Semantics calculation for embedded languages is also the
source of problems. The main problem is that we cannot
guarantee semantics correctness during syntax analysis: we
can get correct tree with incorrect semantic. Example of this
situation is shown on Fig. 9. In presented graph we can
choose 2 paths which contain all variables used for query
value calculation. For example, let we choose the paths which
produce the next queries: ”Select fld1 from myTbl1”
and ”Select fld2 from myTbl2”. Both chosen paths
are syntactical correct but in the real system the table myTbl1
may not contain the field fld1, and the table myTbl2 may
not contain the field fld2.

Also we have problems which correspond with syntax of
analyzes language and its specification in documentation and
grammar. For example, such clauses of Select statement

2http://fsharppowerpack.codeplex.com/wikipage?title=FsYacc

TABLE I. COMPARISON OF THE ORIGINAL ALGORITHM WITH

TIMEOUT AND THE ALGORITHM WITH STATE MERGING

Category description Original

algorithm

with

timeout

The algo-

rithm with

state merg-

ing

The total number of dynamic SQL queries 3122 3122

The number of successfully processed dynamic

SQL queries

2181 2253

The number of partially processed dynamic

SQL queries

408 522

Lexer errors 283 289

Parser errors 354 468

The number of not processed dynamic SQL

queries

533 347

Lexer errors 140 134

Parser errors 280 305

Dynamic SQL queries with exponential growth of

parsing forest.

253 42

Percentage of successfully processed dynamic

SQL queries

69.86% 72.17%

Percentage of partially processed dynamic SQL

queries

13.07% 16.72%

Percentage of dynamic SQL queries with non-

empty forest

82.93% 88.89%

KW SELECT IDENT (myTbl1)

IDENT (myTbl2)

IDENT (fld1)

IDENT (fld2)

KW FROM
V1 V3V2 V5V4

Fig. 9. All path in this graph are syntactical correct but semantics of some
path may be incorrect.

as group by or order by. Any of these clauses can be
omitted, but when the optional clauses are used, they must ap-
pear in the appropriate order and only one time per statement.
But some simple approximation which allows to omit explicit
enumeration of all variants of permutation is often used in the
documentation and the grammar. Such approximation allows
to accept input strings with arbitrary repetition of clauses
(multiple repetition of one clause also possible). In the stored
code such situation is not possible because this code should
be correct but during graphs processing we can get Select
query with multiple group by clause. This situation is not
correct. The preferred solution of such problems is to use a
special constructions in translation specification language. Also
we can manually check correctness of parsing forest but this
solution looks more difficult and less preferred.

REFERENCES

[1] Shapot M., Popov E. Database reengineeing // Open Systems.DBMS.
Number 4. 2004.

[2] Annamaa A., Breslav A., Kabanov J. e.a. An interactive tool for ana-
lyzing embedded SQL queries. Programming Languages and Systems.
LNCS, vol. 6461. Springer: Berlin; Heidelberg. 2010. P. 131-138.

[3] Annamaa A., Breslav A., Vene V. Using abstract lexical analysis and
parsing to detect errors in string-embedded DSL statements // Proceed-
ings of the 22nd Nordic Workshop on Programming Theory. Marina
Walden and Luigia Petre, editors. 2010. P. 20-22.

[4] Aske Simon Christensen, Mller A., Michael I. Schwartzbach. Precise
analysis of string expressions // Proc. 10th International Static Analysis
Symposium (SAS), Vol. 2694 of LNCS. Springer-Verlag: Berlin; Heidel-
berg, June, 2003. P. 1-18.

[5] Grune D., Ceriel J. H. Jacobs. Parsing techniques: a practical guide. Ellis
Horwood, Upper Saddle River, NJ, USA, 1990. P. 322.

138 of 181

[6] Costantini G., Ferrara P., Cortesi F. Static analysis of string values //
Proceedings of the 13th international conference on Formal methods and
software engineering, ICFEM11. Springer-Verlag: Berlin; Heidelberg,
2011. P. 505-521.

[7] ISO. ISO/IEC 9075:1992: Title: Information technology Database lan-
guages SQL. 1992. P. 668.

[8] Java String Analyzer. URL: http://www.brics.dk/JSA/

[9] Kyung-Goo Doh, Hyunha Kim, David A. Schmidt. Abstract parsing:
Static analysis of dynamically generated string output using LR-parsing
technology // Proceedings of the 16th International Symposium on Static

Analysis, SAS09. Springer-Verlag: Berlin; Heidelberg, 2009. P. 256-272.

[10] PHP String Analyzer. URL: http://www.score.is.tsukuba.ac.jp/∼minamide/phpsa/

[11] PL/SQL Developer. URL: http://www.allroundautomations.com/plsqldev.html

[12] SQL Ways. URL: http://www.ispirer.com/products

[13] SwissSQL. URL: http://www.swissql.com/

[14] Xiang Fu, Xin Lu, Peltsverger B. e.a. A static analysis framework for
detecting SQL injection vulnerabilities // Proceedings of the 31st Annual
International Computer Software and Applications Conference. Vol. 01,
COMPSAC07, Washington, DC, USA, IEEE Computer Society, 2007.
P. 87-96.

139 of 181

http://www.brics.dk/JSA/
http://www.score.is.tsukuba.ac.jp/~minamide/phpsa/
http://www.allroundautomations.com/plsqldev.html
http://www.ispirer.com/products
http://www.swissql.com/

Comparison of generalized
ascent and descent parsers

Ragozina Anastasiya
Saint-Petersburg State University

Email: ragozina.anastasiya@gmail.com

Semyon Grigoriev
Saint-Petersburg State University

Email: rsdpisuy@gmail.com

Abstract—Syntax analyzers are used in many software reengi-
neering tasks. This leads to create parser automatically. There are
two basic types of parsers: ascent and descent. Descent parsers
are popular because their control flow follows the structure of
the grammar. However, descent parsers allow to process a very
limited class of grammars. On the other hand ascent parsers allow
to process a wider class of grammars (in particular left recursive
grammars) but they are not so easy to understand and debug.
Both classes suffer from the need to force the grammars to be in
form which are deterministic, or at least near-deterministic for the
chosen parsing technique. Nevertheless, generalised algorithms
allow to remove these restrictions. The main problem posed in
this paper is implementation of generalized table-based top-down
parser algorithm and its comparison with generalized table-based
bottom-up parser in the field of performance and errors detection.

I. INTRODUCTION

One of the main problem arising in the process of automatic
software reengineering is a development of parsers [1] for
programming languages. Syntax analysis may be used for
translation, code analysis and other reengineering tasks.

Parsers may be separated into two classes: bottom-up and
top-down. Each of them has advantages and disadvantages
which are discussed below. Descent parsers (or top-down)
are attractive because their structure is fully consistent with
the structure of the grammar. Unfortunately, in spite of their
readability, top-down parsers allow to handle a very limited
class of grammars. The fact that LL(k)-grammars must be
unambiguous causes strict restrictions on the languages [2].
It is typical for the naive implementation and generalised
algorithms [6], [9] allow to get around this limitation. Left-
recursive grammar are not LL(k)-grammar for any k. Some-
times it is possible to convert not LL-grammar to an equivalent
LL-grammar by eliminating left recursion and factorization.
However, the existence of an equivalent LL(k)-grammar for
not LL-grammar is undecidable problem [3]. Backtracking
methods [4] may extend the class of languages which may be
processed by these analyzers but even it does not help to handle
left recursion. However, left recursion problem can be solved
by bottom-up (ascent) parsers. Bottom-up LR-analyzers[2]
allow to handle a wider class of grammars in particular left
recursive grammars. On the other hand, ascent parser do not
have the direct consistency between them and the grammar that
descent parsers have. Furthermore, LR(0) parse tables may be
exponential in the size of the grammar [5] while LL-tables is
linear. Moreover, even LR parsers can not cope with hidden left
recursion. Also the performance of ascent analyzers is often

lower than performance of parsers constructed using top-down
algorithm.

Both classes suffer from the need to force the grammars
to be in form which are deterministic, or at least near-
deterministic for the chosen parsing technique. Nevertheless,
generalised algorithms allow to remove these restrictions. New
generalised algorithm of top-down parsing was described in
order to extend the class of languages processed by descent
analyzers. Generalised LL (GLL) [6] handles all (including
left recursive) context free grammars; runs in worst case
cubic time; runs in linear time on LL grammars [2]. It also
allows grammar rule factorisation, with consequential speed
up. Most importantly, the construction is so straightforward
that implementation by hand is feasible [10]. Parsers built
using this algorithm may deal with both conventional and
hidden left recursion and significantly extend the class of
languages which are able to be processed by descent parsers.

II. OVERVIEW

As previously mentioned, syntax analysis plays an im-
portant role in software reengineering. Modern tools allow
to generate parsers using specifications. Consequently, it is
necessary to develop similar tools for the needs of automatic
reengineering. The projects aimed to the development of tools
for software reengineering automatization put forward specific
requirements for parser generators [?] which are discussed
further. Often the system to be reengineered are written on
programming languages that have existed since the dawn of
the development of the theory of syntax-directed translation.
This means that the theory on which most of modern tools are
based did not exist at that time. It leads to an impossibility
of development of parsers for legacy languages using modern
tools. In addition, parser generators for reengineering must
handle a wide class of languages, allow to resolve ambiguities
in the grammar, generate parsers with high performance and a
good error recovery mechanism. Ease and convenience of the
grammar specification language is another important feature
which significantly influence on the development of parsers.
It is essential for a specification language to make the parser
creation process faster and make it easier to maintain parsers.

YaccConstructor [8], parser generator for the needs of
automatic software reengineering developed at the Department
of System Programming of the St. Petersburg State University,
has all the mentioned features. YaccConstructor is a modularity
tool which allows to create parsers using different specifica-
tion languages and syntax analysis algorithms. Also, the tool
supports its own specification language Yard. Yard allows to

140 of 181

use extended Backus-Naur form[2]. This form differs from
the Backus-Naur form by its more ”capacious” constructions
which provide an opportunity to simplify grammar and reduce
its size keeping the same expressive ability. Moreover, Yard
language allows to create parameterized rules and to use a
special syntax to resolve ambiguities.

A grammar is often changed in the process of reengi-
neering. This changes make grammar ambiguous and lead
to conflicts. This problem may be solved in different ways,
for example, by using of GLR-algorithm. There is GLR-
generator implemented as a part of the tool to deal with am-
biguous grammars. It generates bottom-up parsers which use
the RNGLR-algorithm [9]. Also error recovery mechanism and
a mechanism which is provided an information about conflicts
were implemented as a part of YaccConstructor project.

Previously, top-down parser could not provide opportunity
to deal with ambiguous grammars but new generalized top-
down parsing algorithm allows to handle ambiguous grammar
and recursion. Generalized parsing algorithm is simple and it is
also claimed that it has high performance. For these reasons,
it was decided to implement new LL-generator using GLL-
algorithm.

III. STATEMENT OF THE PROBLEM

The main problem posed in this paper is comparison of
generalized bottom-up and top-down parsers. The following
tasks were formulated to solve it:

• Implementation of a parser generator which uses GLL
algorithm

• Implementation of a simple error detection mechanism

• Creation of the set of tests aimed to compare the
performance of the generalized bottom-up and top-
down analysis

IV. IMPLEMENTATION

There are two several approaches for automatic parser
generation. It is possible to generate the whole parser code
and then use it to build abstract syntax tree[2]. Schema of
generator using this approach displayed in Figure 1.

Fig.1. Scheme of parser generator creates whole parser code.

A different approach is a generation only additional infor-
mation required for the interpreter. The interpreter is created in
advance, contains main algorithm logic and it is reused without
changes for every parser being generated. It uses additional
information to build abstract syntax tree. This approach is more
flexible because it provides an opportunity to creates several
interpreters for different tasks. Scheme of such generator is
displayed in Figure 2.

Fig.2. Scheme of parser generator creates only additional
information.

V. DESCRIPTION OF THE ALGORITHM

The first approach is used in the article [6] which describes
the algorithm which is taken as a basis. It consists of a set
of functions for grammar nonterminals and control function.
Control is passed between these functions by goto statements.
In connection with the decision to use a different approach
from the one described in[10], an algorithm has been adopted.

The input of the generator is grammar which is used to
generate source file with additional information. This file is
used in the future by the interpreter and contains the following
additional information: grammar in the form convenient to
process, functions for working with grammar and modified
LL-table which is used to select rules for reduction. In the
original algorithm, special functions are used to determine
which alternative to choose instead of the table. Unlike a
conventional table, LL-table may contain several rules in each
cell. This situation arises because of the ambiguity of grammar.

Process of analysis has been also changed due to the
rejection of the entire code parser generation. The parser from
original articles consists of several functions corresponding to
each nonterminal and one control function. Control function
controls the process of analysis, checking whether the analysis
was not completed and calling the necessary function. We
use only two mutually-recursive functions (control function
and processor) instead of several functions corresponding to
each nonterminal. Control function performs the same role
as before. There are some basic situations for the processing
function:

• If x (currently considered symbol in grammar) is
terminal then proceed to the next character in the rule
and the input pointer is moved to next.

• If x is a nonterminal A then record current rule and
position in it on the stack. This information is used
to continue parsing after nonterminal x is processed
to finish. A rule, by which x is revealed depending
on the current character in the input stream, becomes
a considered one. Pointer in the input stream remains
unchanged.

• If a rule is considered to end and the current stack is
not empty then pop the descriptor from the top of the
stack and continue to work with these data.

Thus, the processing function simply performs a different
action depending on the situation.

The generalized algorithm deals with ambiguity by mech-
anism similar to the mechanism of RNGLR. In ambiguous
places it creates new processes each with its own stack. Special
descriptors are used in GLL. Descriptors store label for goto

141 of 181

statement, stack and position in the input stream. Instead of
labels we store just rule number and position in it.

Descriptors allow multiple configurations to represent pro-
cesses in conflict situations. To do it in places where an
ambiguity in the grammar is,new descriptors are created and
pushed to the stack. The descriptors completely describe the
current state of the process. The disadvantage of this approach
is that for some grammars the number of descriptors depends
exponentially on the size of the input. Another issue is that the
mechanism cannot handle left-recursive grammars. To solve
these issues the stacks are combined to graph structured stack
(GSS) [6]. This structure allows to combine the stacks into a
single one and record only one necessary vertex in descriptor.
It significantly reduces the amount of memory needed for the
algorithm.

It is necessary to make a number of control measurements
in order to verify the effectiveness of the algorithm. After it,
we should compare the results of existing generalized parsing
algorithm and a new descent one on several criteria. It is
assumed that the new algorithm shows better performance and
more accurate data necessary to detect errors.

VI. RESULTS

Currently generator of additional data used for analysis is
developed as a new module of YaccConstructor. Generated
data contains a representation of the grammar, functions for
working with it and modified LL-table, which mentioned
earlier. There is GLR-module in YaccConstructor and many

useful structures are reused in GLL-module. For example,
structures, allowing to store the grammar in a compact form,
structures for abstract syntax tree building and etc. are reused.
Recognizer based on GLL algorithm also is implemented.

REFERENCES

[1] Alfred V. Aho and Ullman, The Theory of Parsing, Translation and
Compiling, volume 1 - Parsing of Series in Automatic Computation.
Prentice-Hall, 1972 , pages 33-45.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman,
Compilers: Principles, Techniques, and Tools. Pearson Education, Inc,
2006.

[3] D.J. Rosenkrantz and R.E. Stearns. Proceeding STOC ’69 Proceedings
of the first annual ACM symposium on Theory of computing. ACM,
1969 , pages 165-180.

[4] Dick Grune and J. H. Ceriel Jacobs. Parsing Techniques: A Practical
Guide (Second Edition). Springer, 2008.

[5] Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel J.H. Jacobs, and
Koen G. Langendoen. Modern Compiler Design (Second Edition). John
Wiley & Sons, 2010.

[6] Elizabeth Scott and Adrian Johnstone GLL Parsing. Electronic Notes in
Theoretical Computer Science 253 (two thousand and ten) pages 177-
189.

[7] Y.A. Kirilenko, S.V. Grigoriev, D.A. Avdyukhin. Syntax analyzers devel-
opment in automated reengineering of informational system. Scientific
and technical statements SPbSPU Issue 3 (174) / 2013.

[8] YaccConstructor home page https://code.google.com/p/recursive-
ascent/wiki/YaccConstructor

[9] Elizabeth Scott and Adrian Johnstone Right Nulled GLR Parsers.
[10] Elizabeth Scott and Adrian Johnstone Modelling GLL Parser Implemen-

tations. Engineering Lecture Notes in Computer Science Volume 6563 ,
2011 , page 42-61.

142 of 181

One Approach to Automated Compiler Verification

Vyacheslav A. Bessonov
Department of Software and Computing

Systems Mathematical Support
Perm State University

Perm, Russian Federation
E-mail: v.bessonov@hotmail.com

Scientific Advisor:
Lyudmila N. Lyadova

Department of Business Informatics
National Research University Higher School

of Economics
Perm, Russian Federation

E-mail: LNLyadova@gmail.com

Abstract. Most modern software is written in high level
languages. The task of translating source code, written in high-
level languages, into a representation, which can be executed
on a computer system, solves by specialized programs called
compilers. Errors in compilers lead to differences between the
behavior of modules, resulting from the work of compilers, and
behavior, defining the semantics of the original program. Such
errors are very difficult to detect and correct, and their
presence casts doubt on the quality of the programs generated
by a compiler. Obviously, the correctness of the compiler is a
strong prerequisite for reliable software created with its help
[20]. This paper describes the concept of a system designed to
automate the process of testing the major components of any
compiler: syntax analyzer and context conditions analyzer
(semantic analyzer).

 Keywords – compiler verification, automated testing, syntax
analyzers testing, semantic analyzers testing

I. INTRODUCTION
All kinds of methods of software verification can be

divided into two large groups [8]:

1. Static verification methods, including formal
methods, methods of static analysis and expertise.
Using of such methods implies that the verification
of software systems is done “statically”, i.e. without
execution on a computer system.

2. Dynamic methods that are used to verify the
behavior of the program during execution.

The compiler of any language, having practical value, is
such a complex system that static verification techniques can
be used only for its individual small subsystems. Despite the
fact that there are exceptions such as CompCert or πVC,
common practice for compiler testing is dynamic verification
[20], which involves the following tasks [14]:

1. Test generation (test writing).

2. A verdict on the results of test execution which is
performed by the so-called test oracle, which is a
procedure for determining the correctness of the
system under this test.

3. Assessment of the tests quality which is performed
with special test coverage metrics.

Currently, there are two common approaches used to
solve these problems:

1. “White box” testing that used to identify all
erroneous fragments of specific implementation.

2. “Black box” testing, designed to determine formal
specification’s degree of compliance.

Model-based testing is a compromise between these two
methods. This approach combines the advantages and
eliminates the disadvantages of the above methods [20]. The
model can be described formally, that allows using it as input
for test generation and evaluation of test coverage. At the
same time, the model defines the requirements for
implementation and therefore it can be used to test the
correctness of a particular implementation.

But it is obvious that manual construction and
maintenance of the test suite is extremely difficult task. To
simplify this task, it is proposed to use one of the main
advantages of the model-based testing – the ability to
systematically and automatically generate test cases [2]. The
existence of a formal description allows automating the
process of tests construction, which significantly reduces
labor costs, and the systematic nature of testing increases
confidence in its results.

Thus, the described above problems of the dynamic
compiler verification can be summarized to the following
problems [20]:

1. Automation of test construction:

a. Automating the generation of test data.

b. Automating the validation of test data processing
(the problem of constructing a test oracle).

2. Determining the termination criterion of verification
process.

143 of 181

In [20] verification scheme was proposed that designed to
solve these problems. Its schematic representation is shown
in Fig. 1.

Fig. 1. Verification method scheme

The first stage of the scheme is requirements extraction
from regulatory documents (e.g., specifications of the target
programming language) and its classification. At the second
stage a formal model is built via description of extracted
requirements in some formal language. At the third stage test
generation is performed on basis of the created model. It is
often assumed that the user can optionally specify the desired
size of the test suite, and/or test suite requirements in terms
of some test coverage metrics. Depending on the task in
addition to texts in the target programming language test
suite may additionally contain an oracle for automatic verdict
of the compiler correctness. At the last stage the created test
suite is performed. After that reports on the entire process of
testing are built. These reports contain information on how
the compiler's observed behavior corresponds to the created
formal model.

As mentioned above, compilers for real programming
languages are extremely complex software systems.
Furthermore, there is an additional source of difficulty in
verifying compiler. It is the complexity of input data
structure and its internal links. Obvious solution to reduce
the complexity of the compilers verification task is
functional decomposition into separate subtasks that should
together cover all the functionality of the compiler [20].
Additional incentive for it is that the compiler is usually
represented as a set of functional modules, which interactions
and sequence are strictly defined.

However, in this paper it is considered verification of
only the first three modules: lexical analyzer, syntax analyzer
and semantic analyzer. It is worth noting that the
development of the lexical analyzer often regarded not as a
standalone module, but as an internal infrastructure for
syntax analyzer. Under the semantic analyzer in the future
will be understood analyzer of static semantics given by the
set of so-called context conditions, as an example of which is
the enforcement that all used variables are declared in the
program code.

Thus, in accordance to the aforesaid task of compiler
verification may be divided into the following subtasks:

1. Syntax analyzer verification.

2. Semantic analyzer verification.

In the case of automated testing, these tasks can be
formulated as follows:

1. Syntax analyzer automated testing.

2. Semantic analyzer automated testing.

II. SYNTAX ANALYZERS AUTOMATED TESTING
The syntax analyzer is one of the core modules of any

compiler and its incorrectness makes futile testing the rest of
the modules. Therefore, verification of the syntax analyzer is
one of the most important tasks of verifying compiler.

Positive tests generation
Since the 60's of the 20th century, many authors have

investigated the grammar-based test generation for syntax
analyzers.

One of the first works in the field was the work of
Hanford [6], who proposed a method based on a “dynamic”
grammar for generating test data for PL/1 compiler. Its
drawbacks are the lack of any coverage metrics and non-
deterministic nature of the method.

Purdom’s work [15] considered fundamental. It contains
one of the first coverage criteria for positive test sets: in a
whole variety of tests for each grammar rule there must be
language sentence, which is used in the derivation of this
rule. In addition, in the same paper, the author proposed an
algorithm for constructing a minimal test set that would
satisfy this criterion.

Lämmel [10] showed that the Purdom’s criterion is
inadequate: tests that are constructed by this algorithm fail to
detect the simplest errors. Stronger criterion proposed by
Lämmel avoids this disadvantage and consisted in the fact
that the test should cover each pair of rules, one of which can
be applied directly after the other.

Many authors ([11], [12], [13]) proposed probabilistic
methods of test generation. But in any case, this means that
there is no guarantee that the algorithm has finished for the
end time and thereby violates one of the basic principles that
we have tried to follow, is consistency.

Negative tests generation
The above-described methods devoted exclusively to the

generation of positive tests. At this time works, which would
have offered methods for generating negative tests, are
virtually absent.

A so-called “mutation testing” method is proposed in [7].
The basis of this method is the assumption that after the
adding to the original grammar a number of changes
(mutations) it can be used to generate potentially negative
tests. However this approach entails the following problems:

1. Grammar-mutant can be equivalent to the original
grammar.

2. Tests, generated on the basis of grammar-mutant,
which is not equivalent to the source, may not be
valid.

Test
suite

Formal
specification

Requirements System
model

Testing
report

Documentation
analysis

Requirements
formalization

Test
generation

Result
analysis

144 of 181

In [19] authors described methods for generating positive
and negative tests and their coverage criteria. The authors
embodied developed methods in the tool SynTesK. Using of
this tool for testing industrial compilers confirmed the
practical applicability of the developed approaches.

SynTesK main advantages are:

1. It is made under a unified methodology UniTesK,
which formalizes the process of testing not only
syntax analyzer, but also any other software.

2. Mechanisms of its work are based on the formal
theory having a clear rationale.

3. It has open nature and is distributed with source
code.

4. SynTesK allows to store together with tests their
descriptive metadata (for example, the parse tree),
which can be used for subsequent analysis.

5. Tool’s functionality can be expanded through the
development of specialized plugins.

6. The tool has real-world examples of successful
application in practice.

SynTesK has the following disadvantages:

1. SynTesK allows using as a meta-language for
formally describing the grammar only one certain
type of EBNF. Users who use specialized tools to
generate the syntax analyzer (Lex/Flex, SableCC,
ANTLR, etc.) will be forced to perform translation
from tool’s meta-language to SynTesK meta-
language.

2. It does not contain any specialized tools for
managing sets of tests and analysis. SynTesK
provides no opportunities to work with the
generated tests (e.g., edit or delete), and the user is
forced to use for this a file system, which greatly
complicates the tests processing. In addition, it is
often necessary to analyze a set of generated test
(for example, to estimate the coverage metrics or
determine the number of tests for a certain grammar
rules, etc.), but SynTesK also provides no any
special features for this and the user is forced to
perform these operations manually.

3. SynTesK does not provide any special features to
perform syntax analyzers profiling. For example,
changing of string handling internal mechanisms in
the syntax analyzer can strongly affect both the
value of consumed memory and performance.

4. The tool interprets negative tests as a self-checking.
However, apart from establishing the fact of error
there must also ensure that the syntax analyzer
correctly identifies the type of error and its location.
Because application developers will use exactly this
information when working with the compiler.

III. SEMANTIC ANALYZERS AUTOMATED TESTING
In their works Hanford [6] and Purdom [15] described

the methods used to generate a positive tests for the syntax
analyzers of procedural languages compilers, but these
methods does not take into account any contextual
conditions.

In [17] Wichmann and Jones proposed a method for
constructing test sets, which would take into account some
contextual conditions such as a correct processing of
restrictions on the depth of nesting blocks, procedures
blocks, cycles, etc. However, this method does not allow for
other simple rules of static semantics, for example,
concerning the using of variable names.

Celentano et al in [3] described the practical application
of approach, which allows partially automate the testing of
Pascal compiler. They used Purdom’s algorithm to generate
positive tests. To generate the test programs, which correct
from the standpoint of static semantics, they used a
specialized module with a grammar, augmented with a code
for converting syntactically correct programs to semantically
correct. The authors noted that the description of the context
conditions in this way requires considerable effort and it is
unlikely that this approach would be viable for testing
modern programming languages analyzers.

In [5] authors offer to use attribute grammars as a
formalism to describe contextual conditions. The resulting
test suite, generated in accordance with the method proposed
by Duncan and Hutchison, should contain only syntactically
correct tests satisfying the context conditions. This is
achieved by sequential scanning of all grammar production
rules, which are executed only if it’s permitted by contextual
conditions. The tests generated by this method, should cover
all grammar production rules and all described contextual
conditions. However, this approach leads to a large number
of empty runs of the generator, because of necessity to
interrupt the process of generation due to unfulfilled
contextual conditions. Furthermore, this approach leads to
the construction of large numbers of semantically
uninteresting tests [5].

In [16] Sirer and Bershad described language Lava.
Grammar defined on Lava reminds EBNF-grammar
augmented by Java code describing the contextual
conditions. The authors used Lava to generate a small
number of tests (approximately 6 tests) with large size
(approximately 60,000 instructions). These tests allowed
making some resistance checks of Java Virtual Machine.
Unfortunately, the paper does not give any estimates of test
coverage.

In [1] author provides a method for constructive
description of static semantics, as well as the method of
generating both positive and negative tests. In addition, the
author proposed a set of coverage criteria. The SemaTesK
tool is the practical embodiment of proposed approaches.

SemaTesK as a SynTesK was developed in accordance
with the methodology UniTesK and therefore inherits many
advantages of this tool. Its other advantages are:

145 of 181

1. The tool uses an algorithm of semantically controlled
generation. This algorithm makes it possible to
systematically generate test data.

1. The performance of this tool is significantly higher
compared to the other instruments (both real and
hypothetical) [2]. It is achieved through the use of
constructive test generation techniques.

Many SynTesK disadvantages, listed above, are also
present in the SemaTesK. Its other disadvantages are:

1. One of necessary steps when working with the tool is
the stage of creating a TreeDL representation of AST.
However, in the case of using of specialized tools for
the generation of syntax analyzers, this representation
may be generated by this tool. For example, ANTLR
generates a similar representation together with
generation of grammar listener or visitor.

2. Users of the tool must create a specialized Java code
intended for translation TreeDL representation into
the text.

Common SynTesK and SemaTesK problem is that for
the user they look like two completely different programs,
each of which has its own characteristics and specific
sequence of actions. For example, SynTesK user only has to
run the program, passing to the input a formal description of
the grammar and generation parameters. In the case of tool
SemaTesK sequence of actions is much more difficult. In
addition to formal description of context conditions user
should also create TreeDL representation and develop Java
code that performs mapping from TreeDL representation into
the text. In the first case, a tester without any programming
skills could handle the task of generating. In the second case,
the requirements for the qualification of the tool’s user are
significantly higher.

IV. ANOTHER COMPILER TESTING SUITE
Our goal is to develop a system that would combine the

advantages of the above-described tools and thus would be
deprived of their disadvantages. First of all, the system must
meet the following requirements:

1. Unified approach to test generation for syntax and
semantic analyzers.

2. Presence of specialized tools designed to manage test
sets and to analyze them.

3. Ability for integration with existing development
tools using to automate the development process of
syntax and semantic analyzers.

The system was called ACTS (Another Compiler Testing
Suite) and its schematic representation is shown in Fig. 2.

Fig. 2. Automated testing system scheme

Components of this system are:

1. Test generator is the main component of the system.
It is designed to automate the process of developing
test sets.

2. Test warehouse is storage for test suites and their
metadata. This component contains special tools for
analyzing the repository content.

3. Test runner is a component, the main purpose of
which is to automatically run test suites and collect
the results of testing.

A. Test Generator
Test generator should use a unified approach to the

generation of tests for both the syntactic and semantic
analyzers. To implement this requirement, we suggest the
following:

1. To use as a meta-language for grammar formal
description a meta-language used in some of the
most popular tools for generating syntax analyzers
(for example, ANTLR).

2. To eliminate the need for intermediate TreeDL
representation and use as a representation for the
parse tree grammar classes generated by ANTLR
tool. This, in turn, saves us from having to write
additional code that performs the mapping from
TreeDL representation into the text.

Schematic representation of the test generator is shown in
Fig. 3.

Fig. 3. Test generator scheme

Input data for the test generator are the formal
specification of interesting language constructs and user-
defined generation parameters. User may specify tests kind
(syntax/semantic, positive/negative), test generation method
kind, coverage metric, etc.

Currently there are many different methods for
generating test data for syntax and semantic analyzers. Many
of them are interesting from a practical point of view. That is
why the test generator must provide the ability to use
different methods of generation.

To implement this requirement, it is proposed to use the
plugin-based architecture. Plugin is an abstraction of a
method for generating tests and describes a generalized
software interface that is used by the generator. Any

Test generator

Plugin manager
Generation
parameters

Test suite Formal
specification

Metadata

Test
warehouse

Test runner Test generator

146 of 181

particular method of generation may be implemented as a
separate plugin.

To control the individual plugins it is proposed to use
specific module, called “plugin manager”. It allows viewing
a list of available plugins, adding new or deleting an existing
one. Test generator has access to a specific plugin only
through the plugin manager. To select a specific plugin, the
user must specify the appropriate information in the list of
parameters passed to the input of the generator.

Schematic representation of the plugin manager is shown
in Fig. 4.

Fig. 4. Test generator plugin manager scheme

In addition to testing compliance of a developed analyzer
to a formal specification, ACTS can be used to test analyzers
efficiency and productivity. To do this, for example, ACTS
can use specialized plugins designed for generation of tests
with a very large number of instructions. These tests can be
used for analyzers load testing. It is worth noting that these
plugins do not have to be a stand-alone product and can use
existing plugins for test generation.

The results of the test generator are test suite, which is a
set of programs for a particular programming language, and
set of metadata representing a formalized description of the
test suite.

Such metadata can be extremely diverse. For example,
such metadata can be a subset of the Dublin Core properties
or the information of the tests structure.

B. Test Warehouse
Test suite and its metadata are placed in test warehouse.

Testing reports are also stored in warehouse. Schematic
representation of the repository is shown in Fig. 5.

Fig. 5. Test warehouse scheme

In addition to direct physical storage warehouse should
provide to the user with a convenient tools to control and
analyze its content:

1. Test warehouse should provide a special opportunity
to examine the contents of test suites and its
metadata. For example, the user may need
information on statistical information of existing
tests: the number of positive/negative tests, the
number of tests for a certain grammar rules, etc.

2. Warehouse must provide the ability to retrieve tests
that meet certain criteria (for example, tests that
verify the correctness of the implementation of a
compiler module).

3. User should be able to view statistical information
on the test results: the total number of uncorrected
errors, common errors, etc.

4. Test warehouse may need also functions of version
control system. At the case of new language
development old tests can be an important historical
material, showing the path of language development.

To implement this requirement, we propose to use
warehouse’s structure, schematically depicted in Fig. 6.

Fig. 6. Test warehouse extended scheme

Warehouse High Level API is a high-level programming
interface for managing warehouse content (adding new,
changing, or deleting an existing one) and for managing its
different versions. The main purpose of this programming
interface is abstracting from low-level operations like
creating new repository, adding new file to repository,
committing changes, etc., which would assumed working
with specific version control system.

All low-level operations are performed by Warehouse
Low Level API, which delegates the execution of these
operations to a particular version control system. For
example, Maven SCM API or specialized software interfaces
used in different IDE (e.g., Net Beans VCS API).

Query API is a high-level programming interface for
executing queries that retrieve various information from the

Metadata Test suite Testing report

Test warehouse

Warehouse Low Level API

Warehouse
High Level API

Query API Reporting API

Metadata Test suite Testing report

Test warehouse

Plugin manager

Syntax plugins

Purdom SynTesK SemaTesK

Semantic plugins

Test plugins Profiling plugins

Memory Time Johns

147 of 181

warehouse (for example, statistical information mentioned
above).

Reporting API is a specialized programming interface for
reporting. For example, this report is in addition to the
standard information on the number of tests performed
successfully or unsuccessfully, may also contain information
extracted from the version control system (for example,
information about what changes were made in the analyzer
source code for a certain time period, by whom they were
made and when).

C. Test Runner
Fig. 7 shows a schematic representation of the module

running test suites. It is also based on the abstract program
interface describing the runner, which can be used to run the
tests in any programming language that are stored in the test
warehouse.

Fig. 7. Test runner scheme

Required possibility of extension, as in the case of the
test generator, achieved through the use of plugins based
architecture, where modules designed to run tests on a
particular programming language acts as a plugins.

To work with plugins as well as in test generator test
runner uses a specialized plugin manager, schematic
representation of which is shown in Fig. 8.

Fig. 8. Test plugin manager

In addition to plugins designed for running test suites and
recording the results, ACTS must contain specialized plugins
designed to perform profiling analyzers (for example, to
determine the number of used RAM or to measure the total
execution time).

The result of the test runner is the test report, which
contains information on which of the tests have been passed,

and which are not, as well as any other information that may
be needed for further analysis.

VIII. INTEGRATION WITH DEVELOPMENT
INSTRUMENTS

As noted above, currently there are many tools designed
to automate the development process of syntax and semantic
analyzers: Lex\Flex, Yacc\Bison, SableCC, ANTLR, GOLD
Parsing System, etc.

Pretty interesting scenario is the integration of tools that
automates the creation of separate compiler modules and
tools that automate the process of testing them. In this case,
the resulting instrument would almost completely automate
the entire process of developing a compiler or its individual
modules and greatly facilitate the work of both developers
and testers.

For example, in practice, it is not a rare case when one
developed language is similar in many ways to others.
“Language” at the same time may not necessarily mean a
programming language (although in this case there are many
examples of similarity of different languages, for example,
C# and Java), but the description languages of different data
structures, protocols, etc., or DSL languages. For example,
the syntax grammar of the new DSL language may be based
on the grammar of existing language, which has already been
added to the warehouse. Thus the developer can create a new
grammar, which includes existing rules and also the tests
checking these rules. So with the help of a minimum set of
actions developer can build not only a working analyzer, but
also a set of tests that can be used to check how well the
implementation meets the requirements.

For example, the ease of warehouse integration with
different development environments provide a specialized
abstraction level Warehouse High Level API which allows
you to use any version control APIs that exists in modern
IDEs (for example, Maven SCM API, NetBeans VCS API,
etc.).

Using ANTLR in test generator should ensure ACTS
easy integration in such a development environment like
ANTLR Works or any ANTLR plugins, existing for other
IDEs (IntelliJ IDEA, Eclipse and Visual Studio).

IX. CONCLUSION

In this paper it is introduced the concept of a system
designed to automate the testing of syntax and semantic
analyzers. The main advantage of this system compared to
existing competing solutions:

1. Unified approach to test generation for syntax and
semantic analyzers.

2. Presence of specialized tools designed to manage test
sets and to analyze them.

3. Ability for integration with existing development
tools using to automate the development process of
syntax and semantic analyzers.

Plugin manager

C Java C#

Run plugins Profiling plugins

Memory Time …

Test runner

Plugin manager
Run

parameters

Testing
report

Test suite

148 of 181

Together with instruments designed to automate the
creation of separate compiler modules the system could
almost completely automate the entire process of developing
a compiler or its individual modules and greatly facilitate the
work of both developers and testers.

A deep integration of testing tools and development tools
can provide the high quality of the final product.

REFERENCES
[1] Аrkhipova M.V. “Аvtomaticheskaya generatsiya testov dlya

semanticheskikh analizatorov translyatorov”, Dissertatsiya na
soiskanie stepeni kandidata fiziko-matematicheskikh nauk. Moscow.
2006. ISP RАS.

[2] Аrkhipova M.V. “Generatsiya testov dlya semanticheskikh
analizatorov”, Vychislitel'nye metody i programmirovanie, Vol. 7,
2006. pp. 55-70.

[3] Celentano A., Reghezzi C.S., Della V.P., Granata G., and Savoretti F.,
"Compiler Testing using a Sentence Generator," Software - Practice
and Experience, Vol. 10, No. 11, 1980. pp. 897-913.

[4] CMMI for Systems Engineering/Software Engineering, Version 1.02
(CMMI-SE/SW, V1.02) CMU/SEI-2000-TR-018 ESC-TR-2000-018.
2000. pp. 598.

[5] Duncan A.G., Hutchinson J.S. Using Attributed Grammars to Test
Designs and Implementation // In Proceedings of the 5th international
conference on Software engineering. Piscataway, NJ, USA. 1981. pp.
170-178.

[6] Hanford K.V., "Automatic generation of test cases," IBM Systems
Journal, Vol. 9, No. 4, 1970. pp. 242 - 257.

[7] Harm J., Lammel R., "Two-dimensional Approximation Coverage,"
Informatica Journal, Vol. 2029, 2000. pp. 201-216.

[8] Kulyamin V.V., "Integratsiya metodov verifikatsii programmnykh
sistem," Programmirovanie, 2009.

[9] Lämmel R., Verhoef C., "Cracking the 500-Language Problem,"
IEEE Software, Vol. 18, No. 6, 2001. pp. 78-88.

[10] Lämmel R. Grammar Testing // Fundamental Approaches to Software
Engineering. 2001. pp. 201-216.

[11] Maurer P.M., "Generating test data with enhanced context-free
grammars," IEEE Software, Vol. 7, No. 4, 1990. pp. 50 - 55.

[12] Maurer P.M., "The design and implementation of a grammar-based
data generator," Software: Practice and Experience, Vol. 22, No. 3,
1992. pp. 223–244.

[13] McKeeman W., "Differential testing for software," Digital Technical
Journal, Vol. 10, No. 1, 1998. pp. 101-107.

[14] Posypkin M.А. “Primenenie formal'nykh metodov dlya testirovaniya
kompilyatorov”, Trudy Instituta sistemnogo programmirovaniya
RАN, 2004.

[15] Purdom P., "A sentence generator for testing parsers," BIT Numerical
Mathematics, 1972. pp. 366-375.

[16] Sirer E., Bershad B.N. Using production grammars in software testing
// In Proceedings 2nd conference on Domain-specific languages. New
York, NY, USA. 1999. pp. 1-13.

[17] Wichmann B.A., Jones B., "Testing ALGOL 60 compilers," Software
- Practice and experience, Vol. 6, No. 2, 1976. pp. 261-270.

[18] Yang X., Chen Y., Eide E., and Regehr J. Finding and understanding
bugs in C compilers // Proceeding PLDI '11 Proceedings of the 32nd
ACM SIGPLAN conference on Programming language design and
implementation. 2011. pp. 283-294.

[19] Zelenov S.V., Zelenova S.А. “Аvtomaticheskaya generatsiya
pozitivnykh i negativnykh testov dlya testirovaniya fazy
sintaksicheskogo analiza”, Trudy Instituta sistemnogo
programmirovaniya RАN, 2004, Vol. 8.

[20] Zelenov S.V., Pakulin N.V. “Verifikatsiya kompilyatorov –
sistematicheskij podkhod”, Trudy Instituta sistemnogo
programmirovaniya RАN, 2007.

149 of 181

Generation of overlapped executable code

V. Aranov

Institute of applied mathematics and mechanics

SPbSPU

Saint-Petersburg, Russia

vladik@d-inter.ru

A. Terentiev

Institute of applied mathematics and mechanics

SPbSPU

Saint-Petersburg, Russia

alterterrific@gmail.com

Abstract—The paper discusses opportunities of new methods

for creation modification resistant obfuscated executable code. In

particular, overlapped executable code generation for CISC

processors without instruction alignment with active use of

custom modified LLVM framework is analyzed. The feasible

approach for modification resistant code generation is proposed

and a criterion for the quality estimation for proposed code

transformation is provided. How this code generation approach

can be used only for platforms not requiring strict instruction

alignment like Intel x86 and x64 and cannot be employed for

architectures like ARM, which have every instruction of the

exactly same size and every instruction must be 4 byte aligned.

Keywords—obfuscation; LLVM; code transformation; code

generation; reverse engineering

I. INTRODUCTION

The two main approaches to overcome software piracy
threats are used: administrative one, including legislation
support and organization piracy countermeasures and technical,
which include different kinds of DRM, registration keys,
software activation technologies and so on. We are to
concentrate our efforts on the technical aspect of this problem.

The need of new code transformation in the industry is
clear: a lot of pirated software available in the Internet shows
inefficiency of current technical protection methods and
techniques. There is no need to go far away to find examples.
The first KMS activator for Windows 7 appeared in less than 3
months after operating system gone alive. For Windows 8.1 the
same took place less than one month: in Oct. 17, 2013, the OS
was published and around Oct. 25 KMS [1] activation solution
was readily available for everybody to download in the Internet
[2]. The client activation code for MS Windows starting with
Windows XP uses an asymmetric cryptography, so it is
impossible to generate the valid activation response. However,
the valid KMS server can be bought by a client for local
activation and the code from it was used to create KMS
activator back in 2010 and 2013 years. No need to tell KMS
client and server codes in both products were protected with
anti-debugging techniques and properly obfuscated, but reality
tells us “not enough did”. This is the most notorious case which
calls us for new code generation methods for code execution in
insecure environment.

Another example is WinRar – a popular data compression
product. Key-code generation algorithm or specifically private
key for registration verification code was never publicly
available, but counterfeit copies of WinRar are still available

despite of all measures taken by Eugene Roshal and his team.
The reason is simple: the code is either patched to ignore key
code check at all (loosing archive authentication feature), or
public part of registration checking part of the executable code
is replaced with one in keygen [3].

These examples demonstrate the need for patch-proof code
that cannot be easily modified by either third party or legal
customer of the product. Current obfuscation technologies
include mostly virtual machines, different morphing
technologies, garbage code insertion and code encryption with
runtime decryption coupled with heavy anti-debugging
technologies [4], but every encrypted code has to be decrypted
before execution and therefore can be modified. In addition,
most anti-debugging technologies are well known; morphing
and garbage insertion do not prevent code modification at all.
Obfuscation virtual machines still provide serious challenges
for hackers, but still could be defeated with enough efforts. So,
something completely new should be invited. Overlapped code
is promised to be one of such solutions, since it can be
flawlessly integrated into general solution proposed in work
[4].

II. OVERLAPPED CODE

A. Attacker’s model

From now on we are going to use Bruce Schneier
archetypes [5]. Let’s assume Eve as a person with malicious
intension to modify a program developed by Alice. Alice has
transferred to Eve full program consisting of executable
modules, dynamic linking libraries and data files. Eve has full
control over execution environment which means that she can:

 Modify any and every byte of executable program at
any given time.

 Set breakpoint at the any point of Alice application.

 Perform full snapshot of all address space Alice
application is running in.

 Record execution traces.

 Perform backtrack debugging.

 Alice cannot react to Eve actions.

Therefore, Eve is like omnipotent Supreme Being relative
to Alice code. However, no Eve actions except for the first one
breaks execution logic of Alice code. While modifying the
code, Eve supposes she does not break the logic of other parts

150 of 181

of the code except for that were just modified. However, two
technologies break this assumption: making check sums and
overlapped code.

 Unfortunately, the code check sums are to defeat: many
platforms have hardware “Page guard” [6] breakpoints to assist
Eve. “Page guard” breakpoint is triggered only when CPU
reads specific memory page, but not when executes. Therefore,
overlapped code is the only valid option.

B. Overlapped code idea

How one can make a patch-proof code in this case? At first,
such task seems to be impossible as soon as Eve has full
control over execution environment with specified capabilities.
However, there is a way showed on Fig. 1.

add al, 0a3h call dword ptr[eax]

mov edx, eax mov eax, 0805d0ffh

89 50 04 a3 ff d0 05 0889 50 04 a3 ff d0 05 08

Fig. 1. Overlapped code with 4 bytes overlapped and 2 bytes shift

Bytes on the Fig. 1 encode two sets of instructions at once
for x86 architecture:

mov edx,eax

mov ax, 0805d0ffh

and

add al, 0a3h

call dword ptr[eax]

Patching any overlapped byte will implicitly change
meaning of another instruction in other code execution path. If
this code path is not discovered by Eve, such code change may
even go unnoticed because the task of discovering all executing
control paths is not solvable for arbitrary case. In most cases
using common tools like IDA, Hex-Rays and OllyDbg second
layer code will not be even discovered using static code
disassembly analysis, which means this approach not only
having unclear way to defeat but also being hard to detect.

III. OVERLAPPING CODE QUALITY

Before starting overlapping code generation it is important
to define exact goals of such generation, i.e. define a criterion
answering the question: which of two pieces of overlapped
code of the same functionality is better.

Let’s define requirements for such criterion with the
following assumptions: P – is a program of n size generated by
reference LLVM compiler, Q – is a program of m size
generated by overlapped code generator with same
functionality as P, – each byte usage count in
program code, – target quality measure:

 . We assume reference compiler
does not generate overlapped code.

 .

 We do not
want a huge program size. The shorter program code,
the larger .

 The larger
program code, the lower .

 The more overlapping bytes in the code, the larger
 .

In such case the suitable criterion will be:

 √ ∑ (
)

where d – is an arbitrary float parameter from ,
where means we do not care about overlapping at all
and means we prefer overlapping over the code size.

In general, the more value, the better result.

IV. GENERATION OF OVERLAPPED CODE

The ROP (Return-oriented programming) [7] technique had
been employed for overlapping code generation task. This
technique uses control over an exploited program to execute an
arbitrary code in vulnerable application. However, we are to
employ this technique for good. ROP defines sequences of

instructions ending with ret or jmp instruction called
gadgets. It is worth to mention, any instruction capable to
modify instruction pointer register can be used as gadget finish
instruction. According to ROP, the gadgets are usually
searched in an application executable code or in dynamically
linked libraries.

During ROP attack, Mallory [5] usually overwrites
executing program stack and creates gadgets library. The first
is not important for us and explored by R. Hund [8], but the
latter is the way to go for our purpose. Let’s consider two
major ways to create a gadget library:

 Explicit instruction sequences. Explicit sequences are
widely discovered in standard library functions.
According to Roemer [7], libc library contains more
than 4000 different potential gadgets capable to
implement almost arbitrary algorithm, while the library
size is only 1.3 Mbytes. However, explicit sequences
are not important for us because of not increasing
criterion (1).

 Implicit instruction sequences. These are instruction
sequences we are looking for, since each byte these
instructions consist of will increase (1). There
sequences are obtained through looking for specific
byte (or bytes) in the code (for example: 0c3h – ret
instruction) and backward disassembly starting with this
specific byte. One such byte(s) can usually produce
more than one gadget. This approach would provide
even more gadgets than explicit instruction case.
However, one should be accurate with relocation item
addresses. Fig. 2 provides good example of implicit
gadget.

151 of 181

Fig. 2 Implicit gadget example

The main difference from standard ROP is that initially we
do not have any code to create gadgets from, because our
compilation unit is empty. The MakeOverlappedCode
algorithm is proposed to get around this problem:

In: 𝑓𝑢 𝑐𝑠 = 𝑎𝑟𝑟𝑎𝑦[]𝑜𝑓 𝐵𝑦𝑡𝑒𝐹𝑢 𝑐𝑡 𝑜

Out: 𝑒𝑤𝐹𝑢 𝑐𝑠 = 𝑎𝑟𝑟𝑎𝑦[]𝑜𝑓 𝐵𝑦𝑡𝑒𝐹𝑢 𝑐𝑡 𝑜
Algorithm:

𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡=nil

 𝑒𝑤𝐹𝑢 𝑐𝑠[0]=𝑓𝑢 𝑐𝑠[0]

for =1 to do

𝐹 𝑁𝑒𝑤𝐺𝑎 𝑔𝑒𝑡𝑠(𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡, 𝑒𝑤𝐹𝑢 𝑐𝑠[− 1])

 𝑒𝑤𝐹𝑢 𝑐𝑠[]=𝐼 𝑠𝑒𝑟𝑡𝐺𝑎 𝑔𝑒𝑡𝑠(𝑓𝑢 𝑐𝑠[],𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡)
end for

,where 𝐹 𝑁𝑒𝑤𝐺𝑎 𝑔𝑒𝑡𝑠 has following pseudo code:

In/Out:

𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡 = 𝑎𝑟𝑟𝑎𝑦 𝑜𝑓 𝐺𝑎 𝑔𝑒𝑡s
In:

𝑓 = 𝐵𝑦𝑡𝑒𝐹𝑢 𝑐𝑡 𝑜
Algorithm:

for = 0 to 𝑠 𝑧𝑒𝑜𝑓(𝑓) do

 if 𝑓[] == 𝑟𝑒𝑡 then
 //Add gadgets ending with ith byte

 𝐹 𝐺𝑎 𝑔𝑒𝑡𝑠(, 𝑎 𝐺𝑎 𝑔𝑒𝑡𝐿𝑒 𝑔𝑡ℎ, 𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡)
 end if

end for

Function 𝐹 New𝐺𝑎 𝑔𝑒𝑡𝑠 looks for all bytes with
specific instruction codes (ret in this example) in machine
bytes forming function 𝑓. If specific byte sequence has been
found, all byte sequences ending by this instruction are
disassembled (backward disassembly). Disassembly is
considered being successful if the last byte of disassembled

instruction sequence is byte []. If disassembly was
successful, the disassembled instruction sequence is added as a
gadget into 𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡.

MakeOverlappedCode works on function-based level with
the following next steps:

a) For very first function in compilation module the

code generated as usual with a normal LLVM codegenerator,

however no new .CODE section is created for each function to

disable function-level linkage and to enable cross-function

gadgets. For the same purpose alignment bytes are not inserted

between functions.

b) Inside every generated function new gadgets are

discovered and added to 𝑔𝑎 𝑔𝑒𝑡𝐿 𝑠𝑡.

c) For every gadget added this way its LLVM

representation pattern is created and added to instruction list to

enable this gadget to be used as a normal instruction in every

suitable case.

d) Finally instruction selector priorities are being

manupulated to force instruction selector choose gadget type

instructions over ordinary ones.

The greedy approach is used while inserting gadgets into
newly generated code: if we can insert longer gadgets, we
continue adding first suitable instruction into gadgets as much
as possible. Such approach could potentially lead to miss of
longer gadgets. However, experiments do not show big loss of
the criterion (1) value, while avoiding exhaustive search is very
important. As soon as we can’t add more instructions to match
our gadget, we completely remove generated gadget code,
replacing it with call or jump to the found gadget .

It is possible to estimate time complexity of the approach.
Disassembly of a limited sequence takes O(1), the gadget list
creation – O(n

2
). Insertion gadgets into the code – O(n

3
).

Therefore, in the worst case the total time complexity of all
actions performed is O(n

3
).

V. PRACTICAL RESULTS EVALUATION

The proposed approach has been evaluated using LLVM
stress test kit. More than 1000 different programs has been
generated and compiled using the standard LLVM code
generator and our code generator enhanced with the approach
proposed in this paper. The results are shown on Fig. 3 and 4.
Value of criterion (1) here is the average value for all sample
programs compiled.

LLVM instruction count

W
P (Q

)

Fig. 3 Dependence of WP(Q) from compilation module size (d = 1)
For d = 1 (Fig. 3) we virtually prefer neither size of the

program nor amount of instruction bytes being overlapped. Fig.
3 demonstrates that with such choice of criterion the quality of
our code generator gradually increases with increase of the
amount of the code being compiled. This is an expected result,
because LLVM code generator has more probability to
discover gadget in the code already compiled and more
versatility of such gadgets discovered. However, the
aggressiveness of gadgets usage is limited by the size of output
data. To tune the algorithm it is possible to use other values of
parameter d.

152 of 181

LLVM instruction count

W
P (Q

)

Fig. 4 Dependence of WP(Q) from compilation module size (d = 2)

For d = 2 (Fig. 4) we favor overlapped bytes more than

size and our criterion benefits more from overlapped bytes

rather than from decrease of program size.

Fig. 5 Compiled program size reduction
It is noteworthy to tell that in some cases the proposed

approach was able to produce code (Q) better than normal

code produced by compiler (P) not only in terms of criterion

(1), but in terms of the size in bytes too. This result was not

intentionally pursued and appeared as the following positive

side effect demonstrated on Fig. 5: the size of the program is

4% reduced in average after compilation. While the whole

reduction is not big and depends on the actual code, it is still

worth to save about 700 bytes for 19Kbytes (roughly

corresponds to 1000 LLVM instruction program) of the

compiled code.

TABLE I. PERFORMANCE OF THE OVERLAPPED CODE

Algorithm
Reference

time, sec

Overlapped

time, sec

Overlapped CPU

cycles/Reference

CPU cycles

Tylor series (sin) 3.628 3.574 1.0007

Factorial 3.334 3.477 1.0430

Fibonacchi 3.301 3.211 1.0260

Measurements in Table 1 made for 1000 repetitions of the

algorithm in the first column demonstrates insignificant

performance slowdown in both CPU cycles and real execution

times, while overlapped code sometimes executes even faster

compared to reference code, probably due to the smaller code

size in the overlapped code case.

VI. FUTURE WORK

The approach proposed by Joshua Mason [9] looks like the
most prominent way to improve criterion (1) and makes better
overlapped code. Since we are interested in increase of

criterion (1) we can use Viterbi algorithm [10] to traverse our
collection of gadgets in conjunction with hidden Markov model
to reconstruct most probable sequence of states used in HMM.
Where each function being encoded in Markov model, which
states specified by unknown parameters (most suitable gadgets
or ordinary glue instructions in our case) and known
parameters (list of gadgets we are already have).

Such approach would allow us to avoid greedy approach
and has prominent potential to increase quality of overlapped
code.

Usage of the proposed approach for compilation of size
critical code for SOCs and microcontrollers is one of further
research goals and can be further improved.

REFERENCES

[1] Microsoft Windows volume activation reference guide, Microsoft
Corporation, October 2009

[2] Vlad Dudau, Windows 8.1 activation has been bypassed, 2013, URL:
http://www.neowin.net/news/windows-81-can-now-be-activated-with-
kms-workaround-tool (accessed on April 11, 2014)

[3] Practical Reverse Engineering Tutorial - Cracking Winrar, 2011, URL:
http://www.hackingalert.net/2011/09/practical-reverse-engineering-
tutorial.html (accessed on April 12, 2014)

[4] Aranov V.Y., Zaborovskiy V.S.,Method of executable code protection
from reverse engineering, Problems of information security. Computer
systems, SpbSPU, p. 93-97, 2013.

[5] Bruce Schneier, Applied cryptography (2nd ed.): protocols, algorithms,
and source code in C, John Wiley & Sons, Inc., New York, NY, 1995

[6] Gene Novark , Emery D. Berger, DieHarder: securing the heap,
Proceedings of the 17th ACM conference on Computer and
communications security, October 04-08, 2010, Chicago, Illinois, USA

[7] Ryan Roemer , Erik Buchanan , Hovav Shacham , Stefan Savage,
Return-Oriented Programming: Systems, Languages, and Applications,
ACM Transactions on Information and System Security (TISSEC), v.15
n.1, p.1-34, March 2012 .

[8] Ralf Hund , Thorsten Holz , Felix C. Freiling, Return-oriented rootkits:
bypassing kernel code integrity protection mechanisms, Proceedings of
the 18th conference on USENIX security symposium, p.383-398,
August 10-14, 2009, Montreal, Canada.

[9] Joshua Mason , Sam Small , Fabian Monrose , Greg MacManus, English
shellcode, Proceedings of the 16th ACM conference on Computer and
communications security, November 09-13, 2009, Chicago, Illinois,
USA .

[10] A. J. Viterbi. Error Bounds for Convolutional Codes and an
Asymptotically Optimum Decoding Algorithm. IEEE Transactions on
Information Theory, 13(2):260--269, April 1967

153 of 181

http://www.neowin.net/news/windows-81-can-now-be-activated-with-kms-workaround-tool
http://www.neowin.net/news/windows-81-can-now-be-activated-with-kms-workaround-tool
http://www.hackingalert.net/2011/09/practical-reverse-engineering-tutorial.html
http://www.hackingalert.net/2011/09/practical-reverse-engineering-tutorial.html

Predicative analytics for developing software

Nadejda Yarushkina

Dept.of Information systems

Ulyanovsk state technical University

Ulyanovsk, Russia

jng@ulstu.ru

Tatiana Afanaieva

Dept.of Information systems

Ulyanovsk state technical University

Ulyanovsk, Russia

tv.afanasjeva@gmail.com

Irina Timina

Dept.of Information systems

Ulyanovsk state technical University

Ulyanovsk, Russia

i.timina@ulstu.ru

Abstract—The article is devoted to the problem of

applying the formal data mining tool – forecasting – for the

developing of new software and for reengineering the present

software. We propose the algorithm adjustments of the time

series forecasting. This algorithm takes into account the

dependence of the current state of time series from the previous

one, the influence of basic fuzzy projected trends in the time

series. The proposed algorithm expands the opportunities of time

series short-term forecasting on the base of fuzzy trends, as the

historical software time series are of small length. The proposed

algorithm was examined experimentally and showed the

efficiency

Keywords—data mining, development, software, fuzzy time

series, forecasting, fuzzy tendency

I. INTRODUCTION

Predicative analytics is the major formal tool for

developing of new software and for reengineering the present

software. To develop not only new, but competitive software,

it is necessary to research of appearing trendsby using formal

methods at an analysis stage. This research should be directed

on the perspective functions and software technologies,

scientific achievements and user requirement. So, to fulfilled

such researchfor development of the competitive software the

data mining algorithms, extracting new trends and predicative

analytics have to be used. The predicative analytics is the

effective tool in the analysis of trends, if we want to create

new competitive software. The core of the predicative

analytics undoubtedly is the time series analysis of the

importantsoftware parameters.

Forecasting is one of the problems of Time series analysis.

The results of Time series forecasting and its trends are useful

for business and management. Particularly the forecasting of

economic indicators and its trends is a part of planning process

in the enterprise. Unfortunately, the trend forecasting, as a

data miningformal tool, for developing of new software and

for reengineering the present software practically isn't used.

The regular analysis of the trend and dependenciesin

technologies, scientific achievements and user requirement,

expressed in time series, allows to uncover ways to create a

new useful ideas for software development.

There are two approaches to Time series forecasting and

analysis. The first one is based on forecasting only one Time

series. This approach is widely spread, and many methods and

modelshave been proposed: statistical [1-4], fuzzy [5-9],and

their combination [10-13]. In this approach regression models

on time and autoregression models are used to predict values

and global trends.

In The second approach to Time series forecasting the

predictive model includes another Time series valuesin

addition. In this approach it is supposed that variation of one

time series causes the variation of another time series. To

estimate this dependency the regression model has to be

identified and to built the adequate regression model the

cointegration between TS has to be studied.

If time series are not cointegrated, then the estimation of

their dependency makes no sense. Fundamental results in this

problem were generated byGranger, Engle, Johansen, Phillips

in [14-16]. There are well-known methods for cointegration

testing:Engle–Granger test, the Johansen test, Phillips–

Ouliaris cointegration test.Cointegration is an important

property of many economic indicators. To forecast them the

ECM- time series modeling with correction errors was

proposed [15]. The main idea of ECM is to correct model for

short-term dynamics in accordance with long-term

dependence between time series.

154 of 181

mailto:i.timina@ulstu.ru

However, most of the methods are required long-term time

series, and the time series might be the same length. The

mentioned fact makes a serious problem for an applied

researcher when forecasting time series of software indicators,

particularly, in case time series are not long enough, for

example, 20 values (short-term time series).

For the analysis of a dependencies between short-term

time series fuzzy models could be used computational

Intelligence techniques [7-9], [17], [19].

According to fuzzy modeling the components of time

series model are considered as fuzzy sets, and there were

proposed a lot of techniques. In [17] three groups of fuzzy

time-series data models are considered: (1) a regression

model-based analysis [6], [11] by using a fuzzy regression

coefficient, (2) a Box-Jenkins model-based analysis by using a

fuzzy autocorrelation coefficient [18] (3) a fuzzy reasoning

(IF-THEN rule)-based analysis by using fuzzy time series

model [7-8].

In [9],[12] the modification of fuzzy time series model is

proposed for modeling fuzzy short-term tendencies.

However, the problem of modeling fuzzy tendencies (local

trends) based on dependences between fuzzy time series, has

received far less attention and is still an open problem. The

importance of this problem lies in the fact that many time

series of software indicators are interdependent and the

situation that fuzzy trends of TS Z might be a predictor of TS

Y is really exist.

In this paper we proposed a new time series forecasting

algorithm, using fuzzy trends time series model and

hypothesis about dependences between two time series. We

embed explicit hypothesis from an expert of applied field, that

fuzzy trends of time series Z is a predictor of fuzzy trends of

time seriesY. The term predictor is used for determination of

significant convincing characteristics providing the most

precise forecast of any phenomenon. In other words the

predictor is a pre-requisite of a certain important event

evaluated and being a part of a respective equation for the

forecast.

The structure of the article is the following: Part 2 briefly

describes basic provisions of the proposed time series

forecasting algorithm; Part 3 shows theoretic basics of fuzzy

trends time series model; Part 4 demonstrates the new

algorithm of time series forecasting and computing experiment

results.

II. BASIC PROVISIONS OF PROPOSED ALGORITHM

In the development of new software applications on the

analysis of the IT market is one of the important tasks.

Indicators of the IT market for some time peniod can be

represented by time series. It should be noted the following

features of the time series: short time series (less than 20

values), nonstationary time series, the existence of the

relationship between time series, time series with missing

values.The main purpose of market analysis software is

forecasting the trends in sales volumes in different segments

of the software applications.

Short length, non-stationary behavior, inaccurate data and

problem of selection of a proper model are the factors that

complicate the use of classic statistical models and methods

[1-4].

The analysis and forecast of such time series is held

usually by software experts, forming results in the form of

linguistic terms of tendencies: Small growth, Rapid Fall,

Stability.

It is known that to design linguistic values the fuzzy-set

theory is used [5], which is the base for fuzzy TS forecasting

models. Models for fuzzy values forecast are called fuzzy time

series [8].

But the problem of fuzzy trends modeling is under-

investigated.

A. Analysis of fuzzy trends definitions

In statistical approach the analysis of behavior

characterizing long-term dynamics of TS is connected with the

trend concept describing long-term dependence of time series

values from time. So in accordance with [3] mathematic

model of time series is represented in the form:

𝑦𝑡 = 𝑓 𝑡 + 𝑢𝑡 (1)

Herewith it is assumed the presence of deterministic trend

(or the aggregate of trends) upon the whole of time series.

Diversity of possible variants of TS trend component

behavior approximate quantitative estimation and absence of

opportunities to identify qualitative assessments caused the

idea to use fuzzy trend concept.

In 1982 H. Tanaka [11] proposed the model of linear

regression with fuzzy coefficient and applied methods of

linear programming. However the use of fuzzy coefficients did

not allow to solve the problem of qualitative TS trend

identification.

Further research of FTS brought out a new task of FTS

object description, modeling and forecasting – fuzzy trend as a

representative of qualitative changes expressing the changes

not in numerical but in fuzzy values of TS [7].

The sequence of FTS fuzzy trends in time dimension

brings out fuzzy time series with fuzzy trend [9].

Our research showed that the elimination of the above

mentioned restrictions by introducing the forecast correction

procedure considering main trend allows to get a more

accurate forecast of a future TS trend of a software market

indicators.

III. THEORETICAL PROPOSITION OF PROPOSED

TIME SERIES FORECASTING ALGORITHM

Suppose there are given a discrete time series𝑌 =
 𝑡𝑖 , 𝑥𝑖 , 𝑖 = 1,2,… ,𝑛. According to the basic provisions of FTS

theory, developed by Zadeh [5], Song andChissom [8], any

finite discrete time series – numeric, nonnumeric, mixed –

might be transformed into FTS 𝑌 = 𝑡𝑖 , 𝑥 𝑖 , 𝑖 = 1,2,… ,𝑛,

given that its value set 𝑋 = 𝑥𝑖 will be covered by specific

functions (fuzzy sets) 𝑥 𝑖 ∈ 𝑋 , 𝑗 = 1,2,… ,𝑚,𝑚 < 𝑛.

Definition 1. Fuzzy trend , assigned on the segment

 𝑡𝑖 , 𝑡𝑗 , 𝑡𝑗 ≥ 𝑡𝑖with 𝑥 𝑖 , 𝑥 𝑗 of fuzzy time series 𝑌 is a fuzzy term

assigning fuzzy increment 𝜏 = 𝜏 𝑡𝑖 , 𝑥 𝑖 , 𝑡𝑗 , 𝑥 𝑗 .

155 of 181

Generalized model of FTS FT will be:

𝜏𝑖 = 𝑓 𝜏𝑖−1,… , 𝜏𝑖−𝑑 (2)

whered – a fixed number, model parameter;

𝜏𝑖 , 𝜏𝑖−1,… , 𝜏𝑖−𝑑– asequence of fuzzy trends;

𝑓 – some fuzzy dependence.

Substantial analysis allows to conclude that the term Trend

defines qualitative changes upon the time domain and is used

in sentences along with general linguistic assessments

connected with content function, type and intensity, for

example, Long Growth Trend, Strong Fall Trend, High

Quality Stability Trend, etc.

Therefore it is worthwhile to mark out the following

characteristics for FT:

 Fuzziness. Fuzziness is a fact that FT is built on the
base of fuzzy values of FTS and inherits the fuzziness of
these values, time series might correspond with various
fuzzy trends with different grade of membership.

 Duration. Duration is a characteristic of various
duration of fuzzy trend.

 Typicality. FT typicality property allows to discern
classes, FT types, which have fuzzy trends considered as
homogeneous within.

 Significance. For various fuzzy trends of one type
and equal duration application of level of FT significance
of intensity characteristics is appropriate.

 Time awareness. This property shows that fuzzy
trends are determined between two values of time interval.

 Linguistic interpretability. This fuzzy trend property
follows the definition of fuzzy trend as a quality changes
characteristic. Fuzzy trend is defined as a fuzzy mark
matching linguistic term.

We suggest a more detailed description of fuzzy trend

which has fuzzy time series. For this purpose let the following

statements and definitions be introduced.

Assume that the linguistic variables Fuzzy Time Series,

Fuzzy Trend, Type_Trend, Intensity_Trend, Duration_Trend

are assigned with basic finite term-sets 𝑋 , , 𝑉 , 𝐴 , Δ𝑇

respectively.

Definition 2. Each fuzzy trend 𝜏 ∈ ℑof fuzzy time series

𝑌 = 𝑥 𝑡 , 𝑡 = 1,2…might be shown a structure model in the

form of relation tuple built on Cartesian product of fuzzy trend

properties 𝑉 × 𝐴 × ∆𝑇 → ℑ:

𝜏 = 𝑣 , 𝑎 ,∆t, μ (3)

where – a name of fuzzy trend from the set , 𝜏 ∈ ℑ;

𝑣 – a type of fuzzy trend (change type) v~V
~

 shows basic

quality dependences of time series {Fall, Growth, Stability}.

𝑎 – intensity of fuzzy trend, a~ A
~

, might be introduced

linguistically, e.g. values from the set {Intense, Average,

Weak};

∆𝑡– duration of fuzzy trend, ;Tt

𝜇– a membership function of a FTS segment bounded by

interval t of fuzzy trend .

Classify fuzzy trends of fuzzy time series in accordance

with duration into elementary 𝑇 ∈ ℑ ∆𝑡 = 1 local 𝑁𝜏 ∈
𝑁ℑ 1 < ∆𝑡 < 𝑛 − 1 and basic (general) 𝐺𝜏 ∈ 𝐺ℑ ∆𝑡 = 𝑛 − 1 .

Definition 3. Elementary fuzzy trend (EFT) of fuzzy time

series 𝑌 = 𝑥 𝑡 , 𝑥 ∈ 𝑋 , 𝑡 = 1,2… ,𝑛 is a fuzzy trend 𝜏𝑡 =
 𝑣 𝑡 ,𝑎 𝑡 ,μ𝑡 showing the character of change of FTS segment

between two neighboring fuzzy FTS marks 𝑥 𝑡−1, 𝑥 𝑡 with

membership degree 𝜇𝑡 = min(𝑥 𝑡−1 𝑥𝑡−1 , 𝑥 𝑡(𝑥𝑡)).

Types of elementary trends are basic types of fuzzy trends

of FTS from the set 𝑉 1 = 𝑣 1, 𝑣 2, 𝑣 3 , 𝑣 1=Stability, 𝑣 2=Fall,

𝑣 3=Growth.

Definition 4.Finite elementary trend 𝜏𝑠 = 𝑣 𝑠 , 𝑎 𝑠 ,∆t𝑠 , μ𝑠 is

an elementary trend built on the last pair of neighboring FTS

values.

Definition 5.Elementary fuzzy trend (EFT) time series is

introduced in the form

𝑣 𝑡 = 𝑇𝑇𝑒𝑛𝑑 𝑥 𝑡 , 𝑥 𝑡+1 , 𝑎 𝑡 = 𝑅𝑇𝑒𝑛𝑑 𝑥 𝑡 , 𝑥 𝑡+1 ,
 𝜇𝑡 = 𝑚𝑖𝑛 𝜇 𝑥 𝑡 , 𝜇(𝑥 𝑡+1) (4)

Statement 1. Any finite discrete time series might be

transformed into time series of EFT.

Specify the generalized model of EFT time series and

define main components EFT changes admitting that this

model might behave differently.

Definition 6.

Let 𝑋𝑡 , t = 1,2,… ⊂ 𝑅1 ,𝑅1 is a universe discourse,

where fuzzy sets 𝑥 𝑡
𝑖 , (𝑖 = 1,2,…), 𝑣 𝑡

𝑗
, (𝑗 = 1,2,…), 𝛼 𝑡

𝑠 , (𝑠 =

1,2,…) are defined and 𝑋 𝑡 is a collection of 𝑥 𝑡
𝑖 , (𝑖 = 1,2,…),

𝑉 𝑡 is a collection of 𝑣 𝑡
𝑗
, (𝑗 = 1,2,…), 𝐴 𝑡 is a collection of

𝛼 𝑡
𝑠 , (𝑠 = 1,2,…). Let relations𝑅𝑉 :𝑋 × 𝑋 → 𝑉 ,𝑅𝐴:𝑋 × 𝑋 → 𝐴

exist, then the model of fuzzy dynamic process with fuzzy

differences is

𝑋 𝑡 = 𝑋 𝑡−1 × 𝑉 𝑡 × 𝐴 𝑡 ∘ 𝑅(𝑡, 𝑡 − 1) (5)

where

𝑉 𝑡 = 𝑉 𝑡−1 × 𝑉 𝑡−2 × …× 𝑉 𝑡−𝑝 ∘ 𝑅𝑣 (𝑡, 𝑡 − 𝑝),

𝐴 𝑡 = 𝐴 𝑡−1 × 𝐴 𝑡−2 × …× 𝐴 𝑡−𝑝 ∘ 𝑅𝛼 (𝑡, 𝑡 − 𝑞) (6)

there 𝑋 𝑡 , 𝑋 𝑡−1 is a state of fuzzy process, coded by fuzzy

sets (linguistic terms);

𝑅(𝑡, 𝑡 − 1)– fuzzy relation defining the first-order model

in terms of fuzzy values
tХ

~
, which can be represented by sets

of fuzzy ―equations‖ in the form of IF-THEN;

𝑉 𝑡 = 𝑉 𝑡−1 × 𝑉 𝑡−2 × …× 𝑉 𝑡−𝑝 ∘ 𝑅𝑣 𝑡, 𝑡 − 𝑝 is p-th order

fuzzy time series model of FT-type changes (changes type)

shows basic quality dependences of time series {Fall, Growth,

Stability},

𝐴 𝑡 = 𝐴 𝑡−1 × 𝐴 𝑡−2 × …× 𝐴 𝑡−𝑝 ∘ 𝑅𝛼 𝑡, 𝑡 − 𝑞 is q-th order

fuzzy time series model of FT intensity changes (changes

intensity),

∘ – composition sing in fuzzy theory; p>0; q>0.

The model of the numeric time series 𝑌 = 𝑡𝑖 , 𝑥𝑖 , 𝑖 =
1,2,… ,𝑛 is represented in the form of:

𝑥𝑡 = 𝑥𝑡−1 + 𝑣𝑡 ∙ 𝛼𝑡 + 𝜀𝑡 (7)

where 𝑥𝑡 , 𝑥𝑡−1 – numeric values of time series, generated by

defuzzification of FTS fuzzy values 𝑌 = 𝑥 𝑡 , 𝑥 ∈ 𝑋 , 𝑡 =
1,2,… ,𝑛:

156 of 181

𝑥𝑡 = 𝑑𝑒𝐹𝑢𝑧𝑧𝑦 𝑥 𝑡 , 𝑥𝑡−1 = 𝑑𝑒𝐹𝑢𝑧𝑧𝑦 𝑥 𝑡−1 , 𝑡 = 1,2,… ,𝑛
here 𝑣𝑡– numeric values, defining EFT type, obtained as a

result of defuzzification of fuzzy values 𝑣𝑡 = 𝑑𝑒𝐹𝑢𝑧𝑧𝑦(𝑣 𝑡);

𝛼𝑡 – numeric value defining EFT intensity, obtained as a result

of defuzzification𝛼𝑡 = 𝑑𝑒𝐹𝑢𝑧𝑧𝑦(𝛼 𝑡); 𝜀𝑡–errors.

To defuzzificate fuzzy trend type the following formula is

used

𝐷𝑒𝐹𝑢𝑧𝑧𝑦 𝑣 𝑖 =

0, 𝑖𝑓 𝑣 𝑖 = "𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦"
−1, 𝑖𝑓 𝑣 𝑖 = "𝐹𝑎𝑙𝑙"

1, 𝑖𝑓 𝑣 𝑖 = "𝐺𝑟𝑜𝑤𝑡"

 (8)

To defuzzificate intensity the centroid method (nmin, nmax

– determined by min and max differences of TS values) is

used:

𝐷𝑒𝐹𝑢𝑧𝑧𝑦 𝛼 𝑡 =
 𝑥∙𝛼
𝑛 𝑚𝑎𝑥
𝑛 𝑚𝑖𝑛

 𝑥 𝑑𝑥

 𝛼
𝑛 𝑚𝑎𝑥
𝑛 𝑚𝑖𝑛

 𝑥 𝑑𝑥
 (9)

According to the approach suggested in this work the

results of EFT forecasting should be corrected considering the

main trend 𝐺𝜏. To identify the main fuzzy trend 𝐺𝜏 and to

define its TS components we suggest heuristic algorithm

where the applicable components are determined

experimentally. To make algorithm function the source TS

was transformed in FTS.

Algorithm 1.

Step1. Deriving of fuzzy elementary trend time series

𝜏𝑡 = 𝑣 𝑡 , 𝑎 𝑡 , μ𝑡 , 𝑡 = 2,3,… ,𝑛 and defuzzification of EFT

intensities is according formula (9):𝛼𝑡 = 𝑑𝑒𝐹𝑢𝑧𝑧𝑦(𝛼 𝑡).

Step 2. Calculate the cumulative intensity of sane-type

EFT upon the whole of time series 𝜏𝑡 = 𝑣 𝑡 ,𝑎 𝑡 , μ𝑡 (𝑡 =
2,3,… ,𝑛):

𝐼𝐹 𝑣𝑡 = "Growth" ,𝑇𝐻𝐸𝑁 𝑆𝑇𝑔𝑟𝑜𝑤𝑡 = 𝑆𝑇𝑔𝑟𝑜𝑤𝑡 +

𝛼𝑡 , 𝜇𝑔𝑟𝑜𝑤𝑡 = max(𝜇𝑔𝑟𝑜𝑤𝑡 , 𝜇𝑡);

𝐼𝐹 𝑣𝑡 = "Fall" ,𝑇𝐻𝐸𝑁 𝑆𝑇𝑓𝑎𝑙𝑙 = 𝑆𝑇𝑓𝑎𝑙𝑙 + 𝛼𝑡 ,𝜇𝑓𝑎𝑙𝑙 =

max(𝜇𝑓𝑎𝑙𝑙 , 𝜇𝑡).

Step 3. If (𝑆𝑇𝑔𝑟𝑜𝑤𝑡 = 0 and𝑆𝑇𝑓𝑎𝑙𝑙 = 0) or (𝑆𝑇𝑔𝑟𝑜𝑤𝑡 =

𝑆𝑇𝑓𝑎𝑙𝑙), then the type of the main FT 𝑣 𝐺𝜏=―Stability‖ and after

defuzzification 𝑣𝐺𝜏 = 0, dynamics of time series is stationary,

otherwise Step 4.

Step 4.On the base of comparative analysis of values

𝑆𝑇𝑔𝑟𝑜𝑤𝑡 and 𝑆𝑇𝑓𝑎𝑙𝑙 determine the type of main fuzzy trend. If

𝑆𝑇𝑔𝑟𝑜𝑤𝑡 ≥ 2 ∙ 𝑆𝑇𝑓𝑎𝑙𝑙 , then 𝑣 𝐺𝜏= ―Growth‖ and after

defuzzification 𝑣𝐺𝜏 = 1, otherwise the type of main fuzzy

trend 𝑣 𝐺𝜏= ―Fall‖ and after defuzzification 𝑣𝐺𝜏 = −1. Time

series dynamics is non-stationary.

Step 5.Then the main trend intensity is:

𝛼𝐺𝜏 = 𝑆𝑇𝑔𝑟𝑜𝑤𝑡 − 𝑆𝑇𝑓𝑎𝑙𝑙 .

For the model FTS (sample of 50 TS of short length), the

accuracy of basic trend identification 𝐺𝜏 suggested by the

algorithm was 99 %.

IV. ALGORITHM OF SHORT-TERM TIME SERIES

FUZZY TRENDS FORECASTING

Consider the algorithm of TS for casting 𝑌 = 𝑡𝑖 , 𝑥𝑖 , 𝑖 =
1,2,… ,𝑛 , on the assumption that expert’s hypothesis that TS

fuzzy trend 𝑍 = 𝑡𝑖 , 𝑧𝑖 , 𝑖 = 1,2,… , 𝑘 is a predictor of TS Y

is reasonable. Algorithm consists of 3 phases. During the first

phase forecast EFT of TS Y, according to (3):

𝜏𝑡+1
𝑌 = 𝑓 𝜏𝑡

𝑌
therein 𝜏𝑡+1

𝑌 – prognostic fuzzy elementary trend of time series

Y,

𝜏𝑡
𝑌 – current fuzzy elementary trend of time series Y,

𝑓 –dependence in fuzzy elementary trends of time series Y.

The second phase involves correction of prognostic fuzzy

elementary trend of time series Y in accordance with the

components of main trends of the analyzed time series 𝐺𝜏𝑌and

TS predictor 𝐺𝜏𝑍 respectively:

𝜏 𝑡+1
𝑌 = 𝑟(𝜏𝑡+1

𝑌 ,𝐺𝜏𝑌 ,𝐺𝜏𝑍),
therein 𝜏𝑡+1

𝑌 – is a prognostic fuzzy elementary trend of time

series Y,𝜏 𝑡+1
𝑌 – prognostic fuzzy elementary trend of time

series Y after correction, 𝐺𝜏𝑌 main fuzzy trend of time series

Y,𝐺𝜏𝑍 – main fuzzy trend of time series Z, 𝑟– correction rules.

The third phase serves for estimation of prognostic value

of numeric time series Y, according to (7).

On this base we suggest the following algorithm for TS.

Algorithm 2.

Step 1. Transformation of numeric TS 𝑌 = 𝑡𝑖 , 𝑥𝑖 , (𝑖 =
1,2,… ,𝑛), into fuzzy TS 𝑌 = 𝑥 𝑡 , 𝑥 ∈ 𝑋 , 𝑡 = 1,2… ,𝑛:

𝑥 𝑖 = 𝐹𝑢𝑧𝑧𝑦 𝑥𝑗 , 𝑥𝑗 ∈ 𝑋, 𝑥 𝑖 ∈ 𝑋 ,

Here at the intervals where fuzzy sets defined, its form and

name are set up by user from object domain characteristics.

Step 2. Transformation of fuzzy TS 𝑌 = 𝑥 𝑡 , 𝑥 ∈ 𝑋 , 𝑡 =
1,2… ,𝑛 into fuzzy TS of fuzzy elementary trends, is

according to (3,4):

𝜏𝑡
𝑌 = 𝑣 𝑡 , 𝑎 𝑡 , 𝜇𝑡 ,

𝑣 𝑡 = 𝑇𝑇𝑒𝑛𝑑 𝑥 𝑡 , 𝑥 𝑡+1 , 𝑎 𝑡 = 𝑅𝑇𝑒𝑛𝑑 𝑥 𝑡 , 𝑥 𝑡+1 ,
𝜇𝑡 = 𝑚𝑖𝑛 𝜇 𝑥 𝑡 , 𝜇(𝑥 𝑡+1) .

Beforehand determine a set of FT type names 𝑉 =
 𝐹𝑎𝑙𝑙,𝐺𝑟𝑜𝑤𝑡, 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 , and a set of FT intensity names

𝐴 = 𝐼𝑛𝑡𝑒𝑛𝑠𝑒,𝐴𝑣𝑒𝑟𝑎𝑔𝑒,𝑊𝑒𝑎𝑘 .
Step 3. Generation of EFT components change models of

TS Y and its forecasting for one period according to (6):

𝑣 𝑡+1 = 𝑣 𝑡 × 𝑣 𝑡−1 × …× 𝑣 𝑡−𝑝 ∘ 𝑅𝑣 𝑡, 𝑡 − 𝑝 ,

𝛼 𝑡+1 = 𝛼 𝑡 × 𝛼 𝑡−1 × …× 𝛼 𝑡−𝑝 ∘ 𝑅𝛼 (𝑡, 𝑡 − 𝑞)

Step 4. Forecast of numeric time series Y with preliminary

defuzzification according to formula (7) of FT components

𝜏𝑡+1
𝑌 = 𝑣 𝑡+1 , 𝑎 𝑡+1, 𝜇𝑡+1
𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1 ∙ 𝛼𝑡+1.

Step 5. Application of main trend identification algorithm

(see Part 3. Algorithm 1) for TS Y and determination of its

components 𝐺𝜏𝑌 = 𝑣 𝐺𝜏
𝑌 ,𝛼 𝐺𝜏

𝑌 , 𝜇 𝐺𝜏
𝑌 .

Defuzzification of TS Y basic fuzzy trend components is

according to (8) and (9).

Step 6. Application of basic trend identification algorithm

(see Part 3. Algorithm 1) for time series Z and determination

of its components 𝐺𝜏𝑍 = 𝑣 𝐺𝜏
𝑍 ,𝛼 𝐺𝜏

𝑍 , 𝜇 𝐺𝜏
𝑍 .

Defuzzification of TS Z basic fuzzy trend components is

according to (8) and (9).

Step 7. Correction of TS prognostic fuzzy elementary trend Y
𝜏 𝑡+1
𝑌 = 𝑟(𝜏𝑡+1

𝑌 ,𝐺𝜏𝑌 ,𝐺𝜏𝑍):
𝜏 𝑡+1
𝑌 = 𝑣𝑡+1 ∙ 𝑎𝑡+1 + 𝑣𝐺𝜏

𝑌 ∙ 𝑎𝐺𝜏
𝑌 + 𝑣𝐺𝜏

𝑍 ∙ 𝑎𝐺𝜏
𝑍

157 of 181

Step 8. Calculation of corrected prognostic value of

numeric TS Y for a one period
𝑥𝑡+1
′ = 𝑥𝑡 + 𝜏 𝑡+1

𝑌 .

The proposed approach to forecast was tested for short-

term forecast of ITcompanies sales of Ulyanovsk regionin

Russia (time series Y consists of 12 values), the predictor was

expertly selected time series Z as an average number of

employees of ITcompanies engaged in production of new

software.

Table I shows the results obtained estimates predict.

Table I. Evaluation of forecasting

Evaluation
Song

model[8]

Fuzzy

Tend[9]
Proposed

model

MSE 0,025 0,202 0.0123

To check the obtained forecast values we used the criterion

MSE:

𝑀𝑆𝐸 =
1

𝑛
 х𝑡 − х′𝑡

2

𝑛

𝑡=1

The results of the experiment demonstrates that the

suggested approach implementing modified method of EFT

forecasting might be used for short-term forecasting of time

series when there is an expert assumption about existence of

predictor time series.

V. CONCLUSION

This article proposes the approach to the analysis of the

software market trends in technologies, scientific

achievements and user requirement, expressed in time

series.The proposed approachallows to uncover ways to create

a new useful ideas for software development. We propose the

algorithm expanding the opportunities of TS forecasting on

the base of fuzzy trends, as the historical software TS are of

small length. The experiments carried out demonstrate the

functionality and increase of forecast accurancy when

applying the suggested algorithm.

The advantages of the proposed approach:

 The results of forest consider the results of the
analyzed time series main trend.

 It does not demand for highly qualified users.

 The analyzed time series might be of short length.

 The analyzed time series might be of various length.

The future research will be connected with involving of

time series similarity coefficient into forecasting algorithm.

ACKNOWLEDGMENT

This work has been partially funded by the projects no. 13-
01-00324 and no. 14-07-00247 of the Russian Foundation for
Basic Research.

REFERENCES

[1]. Holt C.C. Forecasting trends and seasonals by exponentially weighted
moving averages // O.N.R. Memorandum, Carnegie Inst. of Technology.

1957. № 2.

[2]. Kendall, M. Time series. Translated from English, Yu. P. Lukashina. –

Мoscow: Finansy I statistika, 1981. 199 p. (rus)

[3]. Anderson T. W. Statistical Analysis of Time Series.. New York: John

Wiley and Sons, Inc., 1971.

[4]. Box, J. Time series analysis: Forecasting and control: Translated from
English; ed. by F. Pisarenko – Мoscow: Mir, 1974. – 406 p (rus).

[5]. Zadeh, A. Lotfi. Fuzzy Sets / Lotfi A. Zadeh //Information and Control. –

1965.
[6]. Sabic, D.A. Evaluation on fuzzy linear regression models / D. A. Sabic,

W. Pedrycz // Fuzzy Sets and Systems. 1991. №23. Р. 51-63.

[7]. Chen, S. M. Forecasting enrollments based on high-order fuzzy time
series/ S.M. Chen // Cybernetics and Systems: An International Journal.

2002. – № 33. Р. 1–16.

[8]. Song, Q. Fuzzy time series and its models / Q. Song, B. Chissom // Fuzzy
Sets and Systems. 1993. № 54.- Р. 269–277.

[9]. Afanaseva T. V., Yarushkina N. G. Fuzzy Time series with fuzzy

tendency. In Vestnik Rostovskogo Gosudarstvennogo Universiteta Putey
Soobzjenia’ (Vestnik RGUPS) Rostov-on-Don, Russia, 2011.- P. 7-

16.(rus)

[10]. Perfilieva,I . et al. Relaxed Discrete F-Transform and its Application to
the Time Series Analysis / I Perfilieva, N Yarushkina, T Afanaseva // Da

Ruanetal (Eds.): Computational Intelligence. Foundations and

Applications (Proc.of the 9th Int. FLINS Conf.), pp. 249 --255, World
Scientific, Emei, Chengdu,China, 2-4 August, 2010.

[11]. Tanaka, H. Linear regression analysis with fuzzy model / H. Tanaka,

S. Uejima, K. Asai // IEEE Transactions on Systems, Man and
Cybernetics. 1982. № 12(6). Р. 903–907.

[12]. Yarushkina N., et al. Time Series Processing and Forecasting using
Soft Computing Tools. - Lecture Notes in Computer Science, Vol. 6743,

Proceedings of 13th International Conf. RSFDGrC-2011. Springer-

Verlag, Berlin Heidelberg, 2011, XIII.-p. 155-163.
[13]. Perfilieva,I . et al. Soft computing tools for time series analysis and

forecast/I. Perfilieva, N. Yarushkina, T. Afanasieva, A. Igonin, A.

Romanov, V. Shishkina Proceedings of the 9th Int. Conf. on Application
of Fuzzy Systems and Soft Computing (ICAFS 2010) Eds. R. A. Aliev,

K. W. Bonfig, M. Jamshidi, W. Pedrycz, I.B. Turksen, Prague, August

26-27, 2010, VERLAG b- Quadrat Verlag, pp. 50—60.

[14]. Gregory, Allan W.; Hansen, Bruce E. (1996). Residual-based tests for

cointegration in models with regime shifts. .Journal of

Econometrics 70 (1): 99–126.
[15]. Engle, Robert F.; Granger, Clive W. J. (1987). Co-integration and error

correction: Representation, estimation and testing. Econometrica 55 (2):

251–276. .
[16]. Granger, Clive. (1981) Some Properties of Time Series Data and Their

Use in Econometric Model Specification. Journal of Econometrics 16 (1):

121–130.
[17]. Yarushkina N.G. Osnovy teorii nechetkikh I gibridnykh sistem [The

fundamentals of fuzzy and hybrid systems theory]: tutorial / N.G.

Yarushkina. – Мoscow: Finansyistatistika, 2004. 320 p. (rus)
[18]. Tsenga, F. M. Fuzzy ARIMA model for forecasting the foreign

exchange market / F. M. Tsenga, G. H. Tzengb, H. C. Hsiao-Cheng Yua //

Fuzzy Sets and Systems. 2001. №118.
[19]. Pedrycz W., Chen S.M. (Eds). Time Series Analysis, Modeling and

Applications: A Computational Intelligence Perspective (e-book Google).

– Springer-Verlag, Berlin Heidelberg, 2013.- (Intelligent Systems
Reference Library, Vol. 47). 404 pp.

158 of 181

Detecting and highlighting text in images

Ivan Pakhomov

Department of Software Engineering

National Research University Higher School of Economics

Moscow, Russia

ivan_pahomov@mail.ru

Abstract— The work describes the problem of detecting and

highlighting text in images. For the comparison, it contains the

existing methods to solve this problem, advantages and

disadvantages of them and, as a result, own approach to solving

the task is proposed.

Keywords—text detection; images; recognition; classifiers;

classification features.

I. INTRODUCTION

Optical text recognition of the images is a very important

issue, which has significant amount of practical applications:

indexing photos and videos, mobile text recognition, robot

navigation.

Nowadays, a digital camera is available in almost all

modern phone, smartphone and tablet. The number of digital

photos and videos on the Internet is increasing significantly.

According to official statistics [1], 100 hours of video are

uploaded to video hosting service YouTube every minute.

Thus, there is a need to find a way to effectively manage these

multimedia resources and analyze their contents.

The text which contains high – level semantic information

is well suited to solve the problem. For example, the text

contained in images on the Internet often relates to the content

of web pages. The text on the covers of books and magazines

is often necessary for indexing: two books with identical

design but different titles will look the same if the text on the

cover is unknown. News headlines as well as subtitles usually

contain information about when and where the event occurred.

Moreover, in contrast to other information that can be

obtained from images, text is created by people, so it can

directly determine the contents without any calculations.

In the modern world, people are surrounded by a vast

amount of textual information such as labels, signs and

billboards. Unfortunately, not everyone has the opportunity to

use it. For example, a device that reads aloud can be useful for

the visually impaired. However, healthy people may also face

challenges, e.g. the problem of the language barrier in a

foreign country. For that category of people, there are

programs which can translate text from photos to the language

selected by the user.

Navigating using GPS or Glonass is convenient enough, but

it has some disadvantages. For example, in the places where

the satellite signal is not available, it cannot be used. That's

why, in case of an emergency, rescue robots need to use visual

information for orientation. House numbers, signs on the

buildings, road signs, various schemes – all of this can be

used, but only if robot can recognize the text on them. In

addition, there are many practical problems where it is

necessary to be able to automatically recognize the text in the

image: scan car numbers for automatic fixing of violations or

mapping various organizations using panoramic images of

streets.

In some cases, text selection has independent meaning. For

example, time of appearance of the title in the video news

shows the beginning of a new scene that can be used in

automatic video summarization. Or maybe there is a need to

attract the user's attention to some text.

K. Jung and colleagues [2] gave the definition of a system

for obtaining information from a text image, which consists of

four steps:

• Detection. In this step, it is determined whether there

is text in the image or not.

• Localization. At the second stage, the location of the

text is determined. Usually, the result of this step is a

rectangle, which contains text.

• Extraction. Highlighted text areas are cleared of

everything extraneous, background is removed. The text is

grouped into words and symbols.

• Recognition. At the last stage, there is a

transformation graphics to text.

Out of all stages, detection and localization of text are

critical to overall system performance. Moreover, these two

steps may be considered together. Finally, if the text is found,

its location is determined.

In recent years, there have been suggested large number of

methods to solve these problems, but quick and accurate

selection of text in the photos is still a significant problem

because of the large diversity of fonts, sizes, colors, methods

of spatial orientation. Often, the problem is exacerbated by

complex background, lighting changes, obstacles, image

distortion and loss of quality in compression.

In this paper, the task is to explore some of the currently

existing methods for the detection of text and to build own

system to detect and highlight text in the images of poor

quality.

II. RELATED WORKS

The existing methods for highlighting text can be divided
into two groups, based on the analysis of regions and on the
analysis of connected components. Methods, based on the
analysis of regions, perform texture analysis of the image
fragments. The vector of values, consisting of numerical

159 of 181

evaluations of different textural properties, is generated for
each fragment, called region. This vector is input to the input
classifier, which estimates the degree "text" of the region.
Then, adjacent text regions are combined to produce blocks of
text. From the fact that textural features of text areas differ
from the signs of non-text areas, such methods can detect text
even in noisy images.

Methods based on the analysis of connected components
divide the whole image into separate components of any kind,
for example, by color. Non-text components are discarded by
means of heuristics or classifiers. Because the number of found
segments is relatively small, these methods have a lower
computational cost, than methods based on the analysis of
regions, and the selected text components can be used directly
for recognition.

Although the existing methods claim impressive results,
there are several problems. The methods based on the analysis
of regions are relatively slow, and their performance is
sensitive to the text`s location. On the other hand, methods
based on analysis of connected components cannot accurately
segment text without information about the location and scale
of the text. Moreover, there are many non-text components that
are easily confused with the text in individual analysis. For
example, wheel of car can be taken for the letter "O". Some
works offer mixed approaches which use methods based on the
analysis of regions and analysis of connected components.

A. Analysis of regions

The system described in the paper [3] is an illustrative
example of the system based on the analysis of regions. Adam
Coates et al proposed an interesting approach based on learning
without a teacher to receive signs. They developed the system,
which consists of three stages:

• Unsupervised learning algorithm. It is used to get a set
of calculated features of image fragments, obtained from a
training set;

• The number of attributes is reduced by the use of
spatial association [4];

• The classifier is trained to select text.

At the first stage of the system, image fragments collection
of 8 by 8 pixel grayscale is assembled. All fragments are
pretreated. For this purpose, the intensity values and gradient of
each fragment are normalized, by subtracting the values of
these variables at each point of mathematical expectation and
by multiplying the resulting difference by the standard
deviation. Then, whitening [5] [6] based on the analysis of zero
components is applied. Whitening is used for pre-processing of
the vector`s features. It normalizes the values of the vectors, so
that the coefficients of variation of the individual values are
equal. The authors use square fragments side of 32 pixels. For
each area of 8 by 8 pixels in this fragment feature vector is
calculated. After that, averaging association is used, that is just
a new vector is calculated as the arithmetic average of all the
vectors, describing eight-pixel area. If this is not done, the
amount of information will increase many times.

There is using a sliding window method for detection. The
vector of signs is calculated for each thirty-second pixel image
fragment. These calculations are performed for differently
scaled images to detect text of different sizes. Then, each pixel
of the original image is assigned with the maximum result of
the classifier, got for all fragments at different scales. The
obtained values are binarized with a certain threshold, and the
result is a mask which indicates the presence of the text in the
image. By varying the threshold of binarization, it can obtain
different values of accuracy and completeness. Accuracy is
calculated as the ratio of correctly labeled pixels to the total
number of labeled pixels, completeness – as the ratio of the
number of correctly labeled pixels to the total number of pixels
that had to be mark.

This approach does not show the highest results (accuracy
of 61% at a density of 69%), but is interesting, because it does
not use some logically justified signs and gets them itself.

B. Analysis of connected components

In the paper [7], B. Epstein, E. Ofek, and E. Wexler
presented the allocation method of independent components
based on the operator of stroke width. The operator of stroke
width – a statement that assigns each pixel of the original
image to stroke width which it is most likely treated.

First, the verges are allocated using the Sobel operator.
Then, starting from a point on the selected face towards
increasing gradient for light text on a dark background, or
decreasing, for dark on light, all the pixels to the next face are
marked. For all the marked pixels, their stroke width equal to
their number is indicated. If a pixel has been previously
marked, the value of its stroke width varies insignificantly.
Neighboring pixels, for which the stroke widths differ by no
more than three times, are together grouped, and connected
components are formed. Next, the filtered components are
grouped into rows. At this stage, the components are filtered
further. For example, individual components are not
considered. Text within a line should have approximately the
same stroke width, the distance between characters, character
size. Additionally, the average color of adjacent characters is
compared.

The results stated in the article [7] are very high: 71%
accuracy at a density of 60%. It is important to emphasize, that
this algorithm is quite fast, 15 times faster than the closest
analogue. It is unknown how and on what machines its
performance was tested. Also, due to the fact that the
connected components have already been allocated, it does not
need additional text extraction. As disadvantages, should be
noted that, all the freestanding symbols and non-horizontal
lines are discarded when filtering. This circumstance greatly
reduces the completeness.

C. Kumar and A. Perrault [8] implemented the algorithm
described in the previous article [7] in the Nokia mobile phone
N900. In the process of implementation, they encountered
some difficulties. For example, they could not simultaneously
find light text on a dark background and dark on light: for this
they needed to run a search twice. In addition, they had to
change or omit some filtering rules components, due to poor

160 of 181

results. In the course of such improvements, the results on a
specially selected set of data: 99% of accuracy, 100% of
completeness.

The disadvantages of this method can be seen from most of
its description. Like all methods based on analysis of the
connected components, this approach filters out a single
character. Like in most methods, it is impossible to distinguish
handwritten text and text with merging characters, because it
will stand out as one component and discarded during
filtration.

C. Hybrid method

The hybrid method is an attempt to combine the analysis of
independent components and the analysis of regions to
highlight text. Thus, in [9] a system consisting of three stages is
proposed. In the first pretreatment step, an analysis region is
used to find regions which can contain text. The gradient
direction histogram is used as a feature, and the cascade
classifier is used as a classifier. It should be noted that the
purpose of this step is not an accurate selection of the text, but
the definition of the probability that in a given area may be
text. To do this, for each piece of image, regardless of whether
it is accepted or rejected, we translate the output values of the
classifier in the posterior probability using a calibration method
of the classifier. Thus, probability maps are constructed for
each image in the pyramid, and then they are projected to the
original image and create a map of probabilities for the original
image. This card is used to make adaptive binarization by
Niblack adapted algorithm, in which each component is
assigned a certain intensity value. The next step is a transition
to the independent components analysis. To do this, we
consider only the components with certain intensity values.

To analyze the components the conditional random field
model is used with the following features:

• Normalized width and height.

• The ratio of width to height.

• The ratio of the number of pixels belonging to the
component number of pixels belonging to the minimum
bounding rectangle.

• The average value of the probability that the pixels
inside the components are part of the text. For this feature,
there is using the map of probabilities, obtained in the analysis
phase regions.

• Compact – the ratio between the area of a rectangle
describing the square perimeter and components. It allows
filtering out components having a complex shape.

• The average value of the gradient at the boundary
components.

From the analysis of signs, it can be clearly seen that this
approach allows us to find the rows of any shape, but filters
out–standing characters. The results of testing the system
described: 67% accuracy, completeness 69%. The speed of this
method is far superior to methods based on the analysis of

regions, but inferior to the methods based on analysis of
components.

III. PROPOSED APPROACH

Based on the research, following way to solve the problem
is proposed as the improvement: to build a classifier stage by
stage (by cascade) using boosting algorithm to enhance the
weak classifiers (decision trees).

Boosting algorithms such as discrete AdaBoost, real
AdaBoost, LogitBoost, Gentle AdaBoost, are used in pattern
recognition problems, because they are poorly exposed
retraining, compared with other machine learning algorithms.
Moreover, the use of boosting allows easy use of the feature
vector of high dimensionality.

All boosting algorithms are close in their structure, so
therefore from now will be considered real AdaBoost, which,
according to the results presented in this paper [10] is the best
of all algorithms for boosting two-class classification.

A. AdaBoost

Real AdaBoost classifier [11] is a generalization of discrete
AdaBoost [12]. Consider both of them.

Suppose we have training set () () where
 – vector of features, and – class label. Then the
classifier:

 () ∑ ()

where () – weak classifier, which returns a value from
the set -1,1, and – constants. The result of the classifier is
defined as the sign of the function ():

 (())

AdaBoost trains weak classifiers on a weighted training set,
increasing the weight of the elements that were incorrectly
classified. These steps are repeated for all the weighted values,
and then the final classifier is represented as a linear
combination of the classifiers received for each of the steps.
Below is a detailed algorithm of discrete AdaBoost:

1. Initial weights are specified:

2. For each

a. Train classifier () using a
weighted training set.

b. Calculate the classification error

 ((())) (

) ,

 – the mathematical expectation
calculated for the weighted training set, and
 () – identifier of the set S.

c. Refresh weights

 [(())]

161 of 181

 and normalize them, so

that ∑ ∑

At each iteration, the weights of
misclassified vectors are increased by the
value determined by the classification
weighted error.

d. The result: (∑ ()
)

L. Breiman [13] demonstrated that the use of classifiers

based on trees as weak classifiers gives good results. Besides,
various tests have shown that increasing the number of
classifiers increases the accuracy of the algorithm on the test
sets, which demonstrates the stability of AdaBoost to
overfitting.

Real AdaBoost is a generalization of discrete AdaBoost.

It uses predictors that return the probability of belonging to the

class. The set of values of the weak classifier is already in the

field of real numbers. (()) – defines a class and

 () – the probability. Below is the algorithm of real

AdaBoost:

1. Initial weights are specified:

2. For each

a. () () []

b. ()

 (

 ()

 ()
)

c. Refresh weights [()]

 and normalize them, so

that ∑ ∑

d. The result: (∑ ()
)

To reduce the computation time for these models without a
significant loss in accuracy technique of circumcision is used.
In the course of the algorithm, while the number of trees is
increasing, large number of examples from the training set is
classified correctly. Therefore, weight of these examples is
decreased. Examples with low weights give a small
contribution to training of the weak classifiers. Therefore, these
examples may be removed at training, without a lot of harm to
the learning outcomes of the weak classifier. For this purpose
the threshold value may be specified for cutting the training set.
It should be noted that this procedure is repeated for each weak
classifier, and these clipped examples can be used for training
in the following stages.

B. Decision trees

 Decision tree – is a balanced binary tree, which can be used
for classification and for regression tasks. The procedure of the
prediction begins with the root vertex. From the each non-leaf
vertex prediction procedure goes to the left or right, depending
on the value of the specified variable feature vector, whose
index is stored in the current node. The value of the variable is
compared with a threshold value stored in the node. If the value

is less than the threshold, the procedure goes to the left,
otherwise – to the right. Each node uses a pair of index and
variable threshold. This pair is called a partition. When it
reaches a leaf node, the value stored in it is used as a result of
the classifier. Trees are built recursively starting from the root
node. All the training set is used to split root. At each node, the
best split is chosen using some criterion. In machine learning
classification Gini impurity is used [13]. This criterion is a
measure of how often a randomly chosen element from the set
would be incorrectly labeled if it were randomly labeled
according to the distribution of labels in the subset. To compute
Gini impurity for a set of items, suppose takes on values in
 and let be the fraction of items labeled with
value in the set:

 () ∑ ()

∑(
)

 ∑

All data are separated in accordance with the selected partition
into two subsets, which are used for training of the left and
right subtrees. Recursive procedure can stop at one of the
following cases:

 maximum depth of the tree is reached;

 power training set in the node is less than a given
threshold, and is not representative;

 all examples in the node belong to the same set, or, in
the case of the regression, the variation between them
is small;

 the best selected separation does not give significant
gain in comparison with a random choice.

C. Viola–Johns classifier

P. Viola and M. Jones [14] presented an interesting
approach to the construction of classifiers, which they used to
find human faces in the image. This idea is to build a cascade
of multiple classifiers, and discard individual fragments
gradually, at each step.

It is well known that more complex classification function
is more accurate, but its ability to generalize is smaller.
Minimization of structural risks provides a formal method for
selecting classifier with the right balance of complexity and
correctness, in the case, where the main factor is to reduce the
errors.

Another important limitation is the computational
complexity. The computation time and error – completely
different things, that's why it is theoretically impossible to
choose an optimal balance. Nevertheless, for many
classification functions computation time depends on the
structural complexity. In such cases, the cost reduction of time
depends on the complexity reduction. Nevertheless, the
computation time depends on the structural complexity for
many classification functions. . In such cases, the reduction of
time cost depends on the reducing the complexity.

But this direct analogy does not work in applications where
the balance between the marks strongly shifted towards any
class. For example, when you select text, there are thousands of

162 of 181

fragments without the text and only a small part contains the
text. Oddly enough, there are good results can be achieved with
a sufficiently high percentage of correctly classified fragments
and very fast classification.

The key point is that despite the fact that it is impossible to
build a simple classifier with a very low error rate, but, in some
cases, it is possible to build a classifier, which is practically
never wrong to classify text areas.

For example, it is possible to create a very fast classifier,
which is correct in the text fields, but wrong in 90% of cases on
the non-text areas. Such a detector can be used for pre-filtering:
if the fragment is marked as "no text", it immediately
discarded, and if the fragment is marked as "text", it requires an
additional classification. Sequence of such classifiers (each
following is harder, slower and more accurate that the last) is a
cascade of classifiers.

For classification, slightly modified AdaBoost can be used.
Normal AdaBoost tries to minimize the total error at each step,
but we want to minimize the number of misclassified text
regions. The idea is to change the balance of the scales in favor
of the data with positive marks. But this is not enough just to
change the balance in the first step, because AdaBoost weights
will be changed and the second weak classifier will be
symmetric. Therefore, it is necessary in addition to the initial
balance variation, to change the standard AdaBoost formula:

 [

 (√) ()]

 where k – positive versus negative
preference coefficient.

IV. FEATURES FOR CLASSIFICATION

In the classification a large number of different features is
used. There are ten the most commonly used:

 The standard deviation of intensity

If the value of the intensity varies very slightly
within the limits image fragment, it is likely that
this fragment does not contain any text.

 The standard deviation of the gradient

 This criterion shows the range of values of
the gradient within the fragment. Can filter out
solid areas, but requires additional calculation of
the gradient values.

 Entropy

Can be calculated by the formula:

 () ∑ () ()

 Statistics of derivative by X

This feature uses the observations described in the
article [9], consisting of the different values of the
derivative in different regions containing the text

 Statistics of derivative by Y

Is identical to statistics of derivative by X

 Histogram of gradient values

Before calculating characteristic values, original
image fragment is always scaled to the size of 20
by 20 pixels, thereby obviating the need for
normalization values of the histogram. Values
divided into twenty equal intervals, whereby this
feature gives us the twenty values.

 Histogram of the intensity values

Is identical to the histogram of gradient values

 Histogram of intensity gradient

This histogram is built on two values. All
quantities that are included in one interval of
intensity histogram are divided into intervals by
value gradient Splitting happens for twenty
intervals. In total, the result is four hundreds
values.

 Histogram of bar width

The idea of this feature is that the bar width
distribution in text areas are different from the bar
width distribution in non-next areas. Before
calculating, the image is compressed to a size of
20 by 20 pixels, to increase the speed of operation,
because the transform is a time-consuming
operation. All values are distributed, as in other
characters, using histograms, at the twenty slots.

 Separation of Gaussians

This feature shows how many divided the
expectations of Gaussians. If they almost merge
with each other, then the background and text are
not distinguishable. Can be calculated by the
formula:

 () ()

where () – the mathematical expectation of
the Gaussian;

255 – the maximum difference in the intensities of
eight-bit image.

Thus, using the features listed above, as well as
combinations thereof, different results can be obtained, as
different speed and precision. For example, we may proceed
from operation speed characteristics: at the first cascades we
can use faster but less accurate features and slower but more
accurate on the latter.

163 of 181

V. LOW QUALITY IMAGES

There is pretreatment required, for the images with low
resolution and quality to remove noise, to smooth background
and to enhance the contrast between text and background. For
this purpose, Weiner filter [15] is suitable. Also, in this case,
the bilateral filter is appropriate to use. Bilateral filter allows to
enhance the contrast between areas of different colors and to
make transitions sharper. The latter is particularly important in
cases where the text is almost completely blends into the
background.

For example, in figure 1 graph of the results of the classifier
on the worst images of the bilateral filter parameters: radius
and range of weight. It can be seen that the harmonic mean
varies widely and can exceed eight times the results obtained
without pre-filtering.

VI. RESULTS

 The system was developed using C++ programming

language. It was trained and tested on ICDAR 2013 data sets.

Testing was carried out according to the procedure, described

in the article [3]. All fragments of the image, which were

classified and labeled as text, formed a mask. For the true

values markup dataset was used. Further, completeness and

accuracy were calculated using the following formulas:

where: – the number of pixels classified as text;

 – the number of pixels classified as non-text;

 – the number of text pixels classified as text;

 – the number of non-text pixels classified as –

non-text.

 The results of the classifier for now: accuracy – 51%

completeness – 88%. Figure 2 shows the image on which the

classifier showed the best result. This image characterized by

very good contrast between text and background, weak

blurring and it is easily readable.

 Figure 3 presents image on which the classifier showed

the worst results. The text on this image almost merges with

the background, and the stones, that stood out as the text, look

much clearer.

 Of course, there is still much work to optimize a system

highlighting and detecting text, but the most importantly, the

valuable theoretical basis has been laid, and, on this basis, it is

possible to construct an effective and power system to solve

not only this problem, but related problems too.

CONCLUSIONS AND FURTHER WORK

 The problem of this paper is considered upon the problem

of detecting and highlighting text in images. Its importance in

today's multimedia world was emphasized and the possibility

of its application was described. Further, the most known and

widely used approaches to solving the problem were

considered as well as their pros and cons, and possible update

options. On this basis, the more optimal approach was offered

and the nuances of the implementation were discussed as well

as results. As already mentioned above, the proposed system

has a great list of practical applications, but immediate plans

include the solution of graphic content indexing problem in the

video, and, possibly, porting it to the mobile device to create a

mobile application for the recognition of text from the photos

taken on the device.

REFERENCES

[1] YouTube Press (2014). YouTube Official Statistics. Retrieved April 1,

2014, from http://www.youtube.com/yt/press/statistics.html

[2] Jung K., Kim K., Jain Anil K. Text information extraction in images and
video: a survey. Pattern Recognition, 2004, 37(5), 977–997.

[3] Coates A., Carpenter B., Satheesh S. Text Detection and Character
Recognition in Scene Images with Unsupervised Feature Learning.

Fig. 1. Use of bilateral filter

Fig. 2. Image with the best classifier`s result

Fig. 3. Image with the worst classifier`s result

164 of 181

Document Analysis and Recognition, ICDAR 2011 International
Conference, 2011, 440-445.

[4] Boureau Y.L., Bach F., LeCun, Y. Learning mid-level features for
recognition. Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference, 2559–2566.

[5] Hyvarinen A., Oja E. Independent component analysis: algorithms and
applications. Neural Networks Oxford, 2000, 13(4-5), 411– 430.

[6] Picard Rosalind W. Decorrelating and then Whitening data. Retrieved
December 25, 2013, from
http://courses.media.mit.edu/2010fall/mas622j/whiten.pdf

[7] Epshtein B., Eyal O., Yonatan W. Detecting Text in Natural Scenes with
Stroke Width Transform. Retrieved December 20, 2013, from
http://www.math.tau.ac.il/~turkel/imagepapers/text_detection.pdf

[8] Kumar S., Perrault A. Text Detection on Nokia N900 Using Stroke Width
Transform. Retrieved November 19, 2013, from
http://www.cs.cornell.edu/courses/cs4670/2010fa/projects/final/results/g
roup_of_arp86_sk2357/Writeup.pdf

[9] Yi-Feng P., Xinwen H., Cheng-Lin L. A Hybrid Approach to Detect and
Localize Texts in Natural Scene Images, 2011, NJ, USA: Trans. Img.
Proc. Piscataway.

[10] Friedman Jerome, Hastie Trevor, Tibshirani Robert. Additive Logistic
Regression: a Statistical View of Boosting. Annals of Statistics. 1998. Т.
28. с. 2000.

[11] Schapire Robert E., Singer Yoram. Improved Boosting Algorithms
Using Confidence-rated Predictions. Machine Learning. 1999. Т. 37, №
3. С. 297– 336.

[12] Freund Yoav, Schapire Robert E. Experiments with a New Boosting
Algorithm. ICML. Morgan Kaufmann, 1996. С. 148– 156

[13] Breiman, L., Friedman, J. H. Classification and regression trees.
Wadsworth Publishing Company, 1984.

[14] Viola Paul, Jones Michael. Fast and Robust Classification using
Asymmetric AdaBoost and a Detector Cascade. Advances in Neural
Information Processing System 14. MIT Press, 2001. С. 1311–1318.

[15] Wiener Norbert. Extrapolation, Interpolation, and Smoothing of
Stationary Time Series. The MIT Press, 1964.

Fig. 2. Image with the best classifier`s result

165 of 181

Using multidimensional ontology of electronic

document for solving semantic indexing problem

Lanin V.

Department of Business Informatics

National Research University Higher School of Economics

Perm, Russia

lanin@perm.ru; mistika93@mail.ru

Sokolov G.

Computer science department

Perm State National Research University

Perm, Russia

sokolovgeorge@gmail.com

Abstract – The paper describes an approach to semantic

indexing of electronic documents based on ontology that

describes the structure, type of document and its contents. In

addition, existing ontology descriptions of documents are

considered and the differences between the proposed

multidimensional ontology from them are described. The solution

of the problem of analysis of administrative regulations is

described as an application of the approach. An algorithm for

implementing semantic indexing based on multi-agent paradigm

is proposed.

Keywords –multidimensional ontology, semantic indexing,

intellectual agents

I. INTRODUCTION

Transition from processing structured data to unstructured
data processing is observed in modern information systems.
New classes of systems, such as social networking, corporate
portals, wiki-resources, etc. became an integral part of the
information process. The key point of such systems is
"content", which concept can be generalized to "electronic
document." Unstructured nature of information raises the
question of the transition from traditional indexing documents
based on unrelated keywords («bag of words») to the so-called
semantic (conceptual) indexing. Semantic (conceptual)
document indexing is an indexing, in which synonyms are
reduced to the same concept, and disambiguation are separated
into different conceptual units [3].

Semantic index of document can become the basis for
solving many problems in the processing of electronic
documents, in particular, their search, analysis and
classification, cataloging and efficient storage, generation and
support their life cycle. It’s needed to have consolidated
knowledge about their structure and content.

Base of semantic index is ontological resource in that
following information about the following aspects of electronic
documents is needed: electronic document format; type of
electronic document; the structure of an electronic document.

When ontological resource is created, it includes concepts
related to all three aforementioned aspects of a document
information representation. Each of them is described by
ontology. Concepts of the various aspects have to be linked.
Thus, a single ontology of electronic documents is being

created. In addition, the resource should support the ability to
expand and specify the settings on the solution of specific
problems arising in the processing of documents in a variety of
information systems throughout their life cycle.

Thus, in the paper existing ontology resources for
describing documents will be examined, an approach to the
description of multidimensional ontology will be proposed and
an algorithm for semantic indexing based on multi-agent
approach will be provided.

II. EXISTING DOCUMENT ONTOLOGY

Dublin core [4] – is a set of metadata used to describe
documents of various types (publications, audio records, video
records). This set specification has status of official
international standard (ISO: 15836 2003). The standard has
two levels: Simple, comprising 15 elements and Qualified
having three additional elements and element refinements (or
qualifiers), which refine semantics of the elements. The main
feature of Dublin Core is that every element is optional and
might be repeated. Dublin Core is a powerful instrument used
to describe resources of various types. The fact that it is
widespread and flexible is its overwhelming advantage.
However, it describes documents tags, i.e. information having
indirect correlation with the document content. In this case it is
impossible to describe other aspects of the electronic
document.

Project ontologies «docOnto» [3] developed by German
research group KWARC (Knowledge Adaptation and
Reasoning for Content) differ from other projects oriented on
formal structure description development (CNXML document
ontology) and document semantics (OMDoc document
ontology). Members of this group also develop mechanisms of
semantic document indexing and tools for document
processing. CNXML document ontology (Connexions Markup
Language) describes such terms as paragraph, section,
reference etc. Ontology is formalized on UML. It gives
detailed description of the document. Unfortunately, work in
this direction is frozen, last changes date back 2007. One more
direction in document ontologies creation is semantics
description of documents for narrow subjects, where
documents are well formalized, for example mathematical
OMDoc documents. Mathematical Terms, theorems and
several other terms are included in ontology.

166 of 181

Document ontology SHOE [5] describes most types of
documents. Academic papers are given particular emphasis.
Dublin Core reference books and Document Classifier PubMed
were the resource.

Document Ontology of Research Centre Linked Data DERI
is developed by scholars of Irish Institute DERI (Digital
Enterprise Research Institute) and is described in RDFS and
OWL-DL [9]. Terms referring project activity documentation
are given I the ontology. Developers purposefully refused
modelling structure and document content to accommodate
flexibility and interoperability.

Muninn project document ontology became the result of
processing archive documents of the First World War within
the project Muninn WW1 [7]. The Ontology describes
bibliography, origins and storage description of the digital
item. Most ontology classes are child classes of FOAF. That
decision was compatibility possible, on the other hand, make
adding additional features of document processing possible, i.e.
features for representation document pages, copyright
description, etc. One of the main ontology classes is Document,
which is integrate class of FOAF Document and Creative
Commons Works. Page class describes document pages, in its
turn, Image class describes digital page image. Description of
different document aspects, document structure in particular, is
a significant benefit of this ontology. However, structure
description is initially oriented on digital images of archive
documents.

Each listed above document ontology has its advantages
and disadvantages. We create own ontology specialized on
academic paper description.

III. USING SAMPLE

Consider the example of the proposed approach based on
the work with electronic administrative regulations (EAR) [9].
The basic approach to the development of software tools to
support the EAR conduct is ontological modeling. Used in the
process ontologies are placed in multi-level repository [10],
which contains the domain ontology and ontology normative-
reference documents. Domain ontology defines the terms used
in the documents, namely it describes concepts such as
"process", "operation", "artist", etc., in addition, there are
included the various classifiers. Ontology of normative-
reference documents, in particular, the ontology of the
regulation (Fig. 1) describe the structure of the characteristic
elements of documents.

As a result of text description analysis (decomposition) will
be built a conceptual model of regulation that, first, to allow it
to verify (check structure, identify duplication of information,
etc.), and secondly, will link the fragments of a text document
with the relevant concepts of the ontology. In addition, the
conceptual model of documents could be used to set the
"semantic" relationships between different documents and
visualization of these links.

Next, consider how ontologies are used in multi-agent
semantic indexing algorithm. Domain ontologies used at
semantic analysis step. Ontologies that describe the structure of
the document (for example, the aforementioned ontology of

regulatory-reference documents) are used at the stage of
structural analysis. All ontological resources described in RDF-
format. Consider in more detail the steps of the analysis of
documents used in the algorithm based on semantic indexing
agents (fig. 1).

IV. MULTI-AGENT SEMANTIC INDEXING ALGORITHM

A. Document analyses steps

Simplifying the problem we assume that first step of text
analysis process was made (for instance using Yandex
Mystem[11]), i.e. a set of morphological descriptors for each
word have been obtained. All others steps are performed by
agent-based semantic indexing. As it could be seen on fig. 1
syntax analysis is not used because it has high time complexity.
Instead of this words order in sentence is considered.

Next step is a semantic analysis. The result of the semantic
analysis is a semantic descriptor of plain text that binds the
morphological descriptors to the elements of the domain
ontology. Stop words are skipped.

Next step is a structural analysis. The structural analysis
uses document’s structure, ontology that describes structure
and semantic descriptors of plain text. At this step every
concept of structural ontology tries to binds to corresponding
structural document element. The result of structural analysis
is semantic descriptor of whole text.

Descriptors (morphological, semantic) are a set of tags,
which marks each words in the text.

Fig. 1. Steps of document analyses

B. Agent-based solution

Further let us consider the process of building a semantic
index based on multi-agent approach (see Fig. 2).

167 of 181

Fig. 2. Steps of solution

Agents have access to a domain ontology, structural
ontology, morphological descriptors and electronic documents
which will be indexed. Indexing process is produced on the
sentences in the text. Sentences are processed sequentially by
agents. The agents form a "team" to index the particular
sentence. Thus, agents in the system after the start of the
indexing are divided into teams.

C. Agent Types

The following types of agents are identified in the system,
according to the functional separation:

Team Lead First Level Agent - TLFL agent,

Team Lead Second Level Agent - TLSL agent,

Word Indexer Agent - WI agent,

Index Writer Agent - IW agent.

The task of WI agent is accessing to the domain ontology
and obtaining the set of possible semantic tags for the indexed
word. An input word is passed to the WI agent for indexing
with the parameters obtained at the stage of morphological
analysis. Resulting set of possible semantic tags is passed to the
TLSL agent.

TLSL agent binds to morphological descriptors of the
sentence and distributes words to all available WI agents.
TLSL agent finishes its work on the sentence when the
consistent semantic descriptor is formed and written to the
document. TLSL agent plans actions for the WI agents and
participates in the auction for the resolution of contradictions.
After building a consistent semantic descriptor TLSL agent

transmits the generated semantic descriptor of the sentence to
IW agent who writes semantic tags to the document.

TLFL agent binds to morphological descriptors of the
document and distributes descriptors of the sentences to all
available TLSL agents. TLFL agent monitors the work of
TLSL agents. If the work on the sentence is completed TLSL
agent gives TLFL agent a new sentence. In addition, TLFL
agent conducts an auction among TLSL agents to resolve
ambiguity in the descriptors (see details in section «Agent
negotiation»). Besides TLSL agents perform structural
analysis. They distribute parts of structural ontology to TLSL
agents.

D. Agent communication

Agents communicate through language FIPA ACL (Agent
Communication Language developed by FIPA) [8]. Two types
of actions are used. They are inform (inform about anything)
and perform (execution of an action).

Inform action type is implemented in the following cases:

WI agent informs the TLSL agent of completion of
indexing word and give it the set of possible semantic tags;
content of the communication is as follows: (id, tags), where
the id is the identifier word that came to be indexed, tags are
returned set of possible semantic tags;

TLSL agent informs the TLFL agent of completion of
indexing sentence with a specific identifier; content of this
message contains an identifier of indexed sentence.

Perform action type is implemented in the following cases:

TLFL agent gives to the TLSL agent a task to index a
sentence with a specific descriptor; content will look like this:
(id, descriptor), where the id is the identifier of the sentence,
descriptor is descriptor of the sentence received as a result of
syntactic and semantic analysis;

TLSL agent gives a task to the WI agent to index a word
with specific id; content will look like this: (id, word,
parameters), where id is ID of the word, word is the word for
indexing, parameters are parameters obtained at the stage of
morphological and syntactic analysis;

TLSL agent gives a task to the IW agent to write semantic
tag of specific word; content is as follows: (word, tag), where
the word is an indexed word, tag is just a semantic tag of
indexed word.

E. Planning

The planning is dynamic. TLSL agents themselves form a
team of agents from the available WI agents. A count of
needed WI agents depends on structure of a sentence. With a
lack of WI agents at the time of formation of the team TLSL
agent may designate to perform indexing of few words at once
to the same WI agent. TLFL agent monitors the performance of
work of TLSL agents and if they are released it assigns them
new sentences for indexing. Completing of work of the agents
(WI and TLSL) monitored not only by sending their
corresponding messages of inform type, but also change their
states (agent states) in the meaning of "vacant."

Morphological

descriptors

Semantic

descriptors

Agent Agent

Agent

Domain

Ontology

Structural

Ontology

168 of 181

F. Agent knowledge bases

WI agents and IW agents are primitive reflex agents
working in the mode of stimulus-response. Their main function
is a simple, no inference, execution of work. In the knowledge
bases of these agents are only procedural steps.

Knowledge bases of TLFL and TLSL agents represent
productions with embedded procedural actions. In fact, the
script actions are necessary for the distribution of work
between agents. Accordingly TLSL agent knowledge base
contains a script for word distribution among WI agents, and
TLFL agent knowledge base includes a script for sentences
distribution between agents TLSL.

G. Agent negotiation

TLFL agent conducts an auction among agents TLSL, each
of which has a contextual memory (training component). Every
TLSL agent using the contextual memory votes for a one
option of sematic descriptor of the sentence. Option of
semantic descriptor of the sentence with the highest number of
votes will be considered as a true semantic descriptor of the
sentence. The set of all consistent semantic descriptors of the
sentences form the document semantic descriptor.

V. CONCLUSION

Unlike existing ontologies describing documents

multidimensional ontology represents the document structure,

which allows to consider this information during indexing

process. In developing ontologies it included the mechanisms

for integration with domain ontologies and expanding of

ontology - adding new "aspects", which also expands the scope

of the decision. The proposed multiagent approach creates

preconditions for solving the optimization problem of parallel

execution of semantic indexing.
Also planned that the developed ontology and algorithms

will be used in a number of projects related to the development
of domain-specific languages (Domain Specific Languages,
DSL) for different domains based on linguistic tools
MetaLanguage.

VI. ACKNOWLEDGEMENTS

The reported study was supported by RFBR, research
project No. 14-07-31273.

REFERENCES

[1] Segaran T., Evans C., Taylor J. Programming the Semantic Web,

O'Reilly Media, 2009.

[2] Lukashevich N.V., Dobrov B.V. Bilingual information retrieval based
on the automatic conceptual indexing // Computational linguistics and
intelligent technologies. Proceedings of the International Conference
“Dialogue-2003”. Protvino. June 11-16 2003y. / Ed. by
I.M.Kobozevoy, N.I.Laufer, V.P.Selegeya - M.: Science, 2003. -
pp.425-432.

[3] CNXML/DocumentOntology
http://mathweb.org/wiki/CNXML/DocumentOntology

[4] Dublin Core Metadata Element Set, Version 1.1
http://dublincore.org/documents/dces/

[5] Document Ontology (draft)
http://www.cs.umd.edu/projects/plus/SHOE/ onts/docmnt1.0.html

[6] Grishman. R. TIPSTER Architecture Design Document Version 2.3.
Technical report, DARPA, 1997.
http://www.itl.nist.gov/div894/894.02/related_projects/tipster/.

[7] Muninn Documents Ontology http://rdf.muninn-
project.org/ontologies/documents.html

[8] XML Languages http://cnx.org/help/authoring/xml

[9] Lanin VV Lyadova LN Technology of support maintenance of
electronic administrative regulations based on ontological models / /
Proceedings of the All-Russian conference with international
participation "Knowledge-Ontology-Theory." Novosibirsk, 2011, pp.
38-46 V.2.

[10] Lanin V.V. Using multi-level ontology repository for electronic
document analysis / / Proceedings of international scientific
conference "Intelligent systems» (AIS'08) and "Intelligent CAD»
(CAD-2008). Scientific publication in 4 vols. T. 1. - Moscow:
Fizmatlit 2008. Pp. 202-206.

[11] Program for morphological analysis of text in Russian “Mystem”.
[Electronic resource] [Mode of
access:http://company.yandex.ru/technologies/mystem/] [Checked at:
24.06.12]

169 of 181

Generation of Domain-Specific Languages

on the Basis of Ontologies

Alexander O. Sukhov

Department of Business Informatics

National Research University Higher School of Economics

Perm, Russian Federation

E-mail: Sukhov.psu@gmail.com

Abstract — Usage of visual domain-specific languages in

software engineering allows to simplify the process of software

creation and to attract to it the experts in domain, who are not

professional programmers. However creation new domain-

specific language is the nontrivial task, therefore the problem of

automation of their development process is the topical task. For

the automation, designing of visual modeling languages it is

offered to use the ontologies received as a result of the analysis of

text corpus. In article, the approach to automatic creation of

visual modeling languages on the basis of domain ontologies is

considered.

Keywords — domain-specific modeling languages; ontologies;

DSM-platform; MetaLanguage; metagraphs.

I. INTRODUCTION

The domain-specific modeling languages (DSMLs), which
are designed to solve a particular class of problems in a specific
domain, are increasingly used at software development and
maintenance process. Unlike the general-purpose languages,
DSMLs are more expressive, easy to use and clear to various
categories of users, as they operate with domain terms, which
are familiar to users [1, 2]. For this reason now a large number
of DSMLs is designed for creation of systems in different
domains: artificial intelligence systems, distributed systems,
mobile applications, real-time and embedded systems,
simulation systems, etc. [3-7].

Despite of all DSMLs advantages they have one big
disadvantage – complexity of their designing. If general-
purpose languages allow to create models irrespectively to
domain, in case of DSMLs for each domain, and in some cases,
for each task, it is necessary to create a new domain-specific
language. Another shortcoming of visual domain-specific
language is that it is necessary to create convenient graphical
editors to work with it. Therefore, a problem of automation of
DSMLs development process is rather topical.

To support the process of development and maintenance of
DSMLs the special kind of software – language workbench
(DSM-platform) is used. Usage at DSMLs creation of a
language workbench considerably simplifies the process of
their designing. There are various DSM-platforms for creating
visual DSMLs with the ability of determining user’s graphical
notation: MetaEdit+, Microsoft DSL Tools, Eclipse GMF,

QReal, etc. However, these tools do not allow to automatic
create DSMLs.

This problem can be solved by the development of methods
and tools, which will allow on the basis of a set of documents,
available in domain, to build a conceptual domain model and
automatically design a modeling language, which corresponds
to singularities of domain, needs of various categories of
users [8].

Let’s consider the most advanced language
workbenches [9].

II. RELATED WORKS

MetaEdit+ is a multiplatform language workbench that
enables users to simultaneously work with several projects,
each of which can have a few models [10]. At usage of this
DSM-platform, besides a possibility of domain-specific
language creation, the developer receives the CASE tool into
which this language is integrated. MetaEdit+ allows to use
several DSMLs at system creation.

The approach based on metamodels (models of modeling
languages) interpretation, instead of code generation, which is
used in MetaEdit+ allows changing the DSMLs definition at
run-time.

DSL Tools [11] and Eclipse GMF [12] technologies
provide the user with advanced IDE MS Visual Studio and
Eclipse respectively. State Machine Designer [13], in fact, is an
add-on to DSL Tools, which eliminates some of its
shortcomings. However, the State Machine Designer allows
creating DSMLs only using UML Activity Diagrams that
considerably limits the range of solving tasks.

Multiplatform system QReal [14, 15] allows to define
metamodels both in visual and textual view, therefore
developers have a possibility to select the most suitable for
them format of language description representation.
Availability of an interpreter of behavioral diagrams and a
debugger of the generated code puts this system in one row
with tools MS DSL Tools, Eclipse GMF, which use for these
purposes IDE.

This paper is supported by the Russian Foundation for Basic Research
(grant 14-07-31330).

170 of 181

The analysis of DSM-platforms has revealed the following
main restrictions inherent in the majority of the considered
systems [16]:

1. Impossibility of multilevel modeling. Presence of such
possibility would allow making changes at
metalanguage description, to extend it with new
constructions, thus bringing the metalanguage to the
specifics of domain.

2. Modification of DSMLs description leads to necessity
of regeneration of language editor: for modification
DSMLs at first it is necessary to change its metamodel,
to regenerate the source code of the editor, and only
then it is possible to begin build models.

3. “Excess” functionality of the language workbench,
which is not used at DSMLs creation. This functionality
complicates the study of tools by the users, which are
not professional programmers.

4. Lack of tools of horizontal models transformation.
These means allow not only to create unified system
description on the basis of the models constructed at
various stages of system development, but also to
generate source code according to user-specified
template or to make conversion of the model described
with one modeling language to model fulfilled in other
graphical notation.

Moreover, the considered tools do not allow to fulfill
automatic construction of DSMLs on the basis of domain
analysis. This possibility allows to:

 simplify the process of DSMLs creating;

 create DSMLs, approached to specific domain;

 attract to DSMLs development process the users, who
are not the professional programmers.

Thus, it is possible to say that creation of methods and tools
of automatic DSMLs creation is the topical task, the solution of
which will significantly simplify the process of visual domain-
specific languages designing for various domains, and also will
submit a possibility of involvement the experts in the process
of development and maintenance of information systems.

For development of methods and tools for automatic of
visual DSMLs designing, it is necessary to solve the following
tasks:

1. Construct a mathematical model, which will allow to
unify describe domain ontologies and metamodels of
visual languages.

2. Develop rules of ontologies transformation in
constructions of visual modeling languages.

3. Develop metrics and methods of comparing of
DSMLs, which submit a possibility to estimate
proximity of generated automatically domain-specific
languages to domain specificity.

4. Implement the developed methods in dynamic library.

5. Integrate the created library into the MetaLanguage
system.

6. Perform approbation of the received results by
development of visual modeling languages for various
domains.

III. METALANGUAGE SYSTEM

The MetaLanguage system eliminates some restrictions of
the considered DSM-platforms.

This language workbench is designed to create visual
dynamic adaptable domain-specific modeling languages,
construct models using these languages and transform of the
created models in various textual and graphical notations
[17, 18].

A. Metalanguage of MetaLanguage System

One of the basic elements of language workbench is the
metalanguage (meta-metamodel) – language for describing of
other languages (metamodels). Thanks to presence of
metalanguage, the DSM-platform allows to create domain-
specific languages for the various domains that operate with
familiar to user concepts. The main difference between
metalanguages of MetaLanguage system from the MOF (Meta
Object Facility) approach, used in the majority of DSM-
platforms, is that thanks to interpretation of models at various
abstraction levels, instead of the source code generation on
their basis, it is possible to modify of DSML’s constructions in
dynamic, during models creation. Besides, the process of
metamodel creation becomes multilevel, so having defined a
metamodel and having selected it as a metalanguage, the
developer can use this meta-metamodel for creation of other
metamodels, and this process can be infinite.

The basic elements of the metalanguage of MetaLanguage
system are entity, relationship and constraint [19].

The entity describes a particular construction of modeling
language, i.e. it is the domain object, important from the point
of view of the solving problem.

Visual language constructions in rare cases exist
independently, more often they are in some way related to each
other, therefore at metamodel creation importantly not only to
define the basic language constructions, but also correctly
specify the relationships. The relationship is used for
describing a physical or conceptual links between entities.
Metamodel allows to create three types of relationships:
association, aggregation, inheritance.

In practice quite often, there are cases when it is necessary
to impose some constraints on entities and relationships
between them. Some of constraints are set by metamodel
structure, and others are described on some language.

Let’s consider an example. Fig. 1 shows a fragment of
metamodel for UML Use Case diagrams. The metamodel
contains two entities “Actor” and “Use Case”.

The entity “Use Case” has following attributes: “Name”,
“Description”, “Creation_Date”. The attribute “Name” has a
string type and defines the Use Case name. The attribute

171 of 181

“Description” sets the short description of the Use Case. The
attribute of entity “Actor” is a string attribute “Name”, which
specifies the name of the Actor.

Use Case

Name: String

Description: Text

Creation_Date: Date

Actor

Name: String
Actor_PartUse_Case_Part

Fig. 1. Fragment of metamodel for UML Use Case diagrams

B. Architecture of MetaLanguage System

The architecture of MetaLanguage system is presented in
Fig. 2. Uniform storage of all information about the system is
the repository. It contains information about metamodels,
models, entities, relationships, attributes, constraints.
Information about the models and metamodels is stored
uniformly, that allows to work with it by a single tool. The
browser of models allows to load/save metamodels together
with the models, created on their basis, to fulfill over
metamodels and models various operations (editing, constraint
checking, transformation, etc.). The graphical editor is the
component, which provides the user the tools for metamodels
and models creation. The validator allows to check constraints
specified by user at metamodel describing. The transformer is
the component that provides the ability to fulfill horizontal
transformations of models to text on target programming
language or to visual models, described in other graphical
notation.

Graphical

Editor

Models Browser

Transformer

Validator

Metamodel

Source

model

Model
List of

errors

Target

model

Transformation

rules

Model

Meta-

models

Repository

Metamodel

Model

Model

Model

Metamodel

Model

Model

Model

Fig. 2. Architecture of MetaLanguage system

Having described the basic components of a MetaLanguage
system, let’s consider how visual domain-specific modeling
languages are designed.

Process of DSML definition begins with metamodel
creation. For this purpose, it is necessary to specify the main
constructions of created language, to define relationships

between them, to set constraints imposed on the metamodel
entities and relationships. After building of metamodel the
developer gets a customizable extensible visual modeling
language.

Then using created DSML, the user should design models
containing objects that describe specific domain concepts and
links between them.

The validator should check up whether model satisfies to
constraints, which were imposed on metamodel elements.

Then the developer can save the constructed metamodels
and models in the form of XML-files or transform these
models to other textual or graphical notation.

At metamodel modification, the system automatically
makes all necessary changes in the models, which are created
on the basis of this metamodel.

For automatic creation of DSMLs, it is necessary that the
language workbench on the basis of domain description
fulfilled creation of language’s metamodel. Since the structure
of the metalanguage of MetaLanguage system is similar to
ontologies description languages, then it was decided to use
ontologies as the basis of automatic DSMLs designing. There
are various systems for the automatic construction of
ontologies on the basis of a text corpus: OwlExporter [20],
OntoGrid [21], etc. These systems allow to fulfill ontology
creation on the basis of initial set of documents. The resulting
ontology will be used by the MetaLanguage system for
automatic creation of visual DSMLs (see Fig. 3).

IV. AUTOMATIC CREATION OF DSMLS

Formally ontology is the tuple O = {T, R, I}, where

 T is the finite nonempty set of domain concepts;

 R is the finite set of relationships between concepts;

 I is the finite set of interpretation of ontology concepts
and relationships.

Thus, it is possible to say that the ontology is a directed
labeled graph. The metamodel of visual modeling language is a
graph also. For this reason the formalism that allows to
describe domain ontology and metamodel of visual DSML in
unified form is a labeled graph.

There are several types of graphs that can be used for
representation of visual languages and ontologies: the classical
graphs, digraphs, multigraphs, pseudographs, hi-graphs,
hypergraphs, metagraphs and others.

System of

ontologies

extraction

MetaLanguage

system

Ontology

Text

corpus

Metamodel

of DSML

Fig. 3. Automatic creation of metamodel of DSML

172 of 181

As an analysis result of various types of graph it has been
defined that the most appropriate formalism for describing the
syntax of visual modeling languages in MetaLanguage system
are pseudo-metagraphs [22].

Metagraph is an ordered pair (,)G V E , where V is a

finite nonempty set of nodes, E is a set of edges. Each edge

(,), ,k i j i je V V V V V connects two subsets of nodes.

This type of graphs allows to reduce the number of graph
arcs and to make the model more structured, logical. Therefore,
in the metamodel graph the attributes and constraints of each
entity and relationship are united in the separate sets. The
model becomes more demonstrative, clear and corresponding
to the solving task.

A. Metamodel Graph

Let’s describe with usage of this formalism a metamodel of
a visual modeling language.

Let { },iEnt ent i (is a set of natural numbers) is a

set of metamodel entities, number of set elements is potentially
unlimited, but at every fixed point in time is finite.

The set of metamodel relationships denotes as

{ },kRel rel k , number of set elements is potentially

unlimited, but at every fixed point in time is finite.

Let’s introduce the following designations:

 { }, 1, ,
ji iEAttr eattr i Ent j is the set of

metamodel graph nodes, which corresponds to entities
attributes;

 { }, 1, ,
lk kRAttr rattr k Rel l is the set of

metamodel graph nodes, which corresponds to
relationships attributes;

 { }, 1, ,
ji iERest erest i Ent j is the set of

metamodel graph nodes, which corresponds to
constraints imposed on entities;

 { }, 1, ,
lk kRRest rrest k Rel l is the set of

metamodel graph nodes, which corresponds to
constraints imposed on relationships;

 { }, 1,iEEA eea i Ent is the set of metamodel

graph arcs connecting each entity with the set of its
attributes;

 { }, 1,kERA era k Rel is the set of metamodel

graph arcs connecting each relationship with the set of
its attributes;

 { }, 1,iEER eer i Ent is the set of metamodel

graph arcs connecting each entity with the set of its
constraints;

 { }, 1,kERR err k Rel is the set of metamodel

graph arcs connecting each relationship with the set of
its constraints;

 { },iEERR eerr i is the set of arcs corresponding

to links between entities and relationships.

The number of elements of sets iEAttr , kRAttr , iERest ,

kRRest , EEA, ERA, EER, ERR, EERR potentially is not

limited, but it is finite at every fixed point in time.

The metamodel graph is the directed pseudo-metagraph

(,)GMM V E , where V is a nonempty set of graph nodes, E

is set of graph arcs and these sets are defined by (1) and (2):

1 1

Ent Ent

i i
i i

V Ent EAttr ERest

1 1

Rel Rel

k k
k k

Rel RAttr RRest

,

(1)

E EEA EER ERA ERR EERR . (2)

Let’s consider an example. We will construct a metamodel
graph for the entity “Use Case” of UML Use Case diagrams.
Metamodel of this diagram type is shown in Fig. 1. Attributes
of the entity “Use Case” are “Name”, “Description”,
“Creation_Date”, i.e. for given entity

iEAttr {“Name”, “Description”, “Creation_Date”}.

The metamodel graph corresponding to a fragment of the
“Use Case” entity is shown in Fig. 4.

Name

eeai

Use Case

(enti)

Description Creation_Date
EAttri

Fig. 4. Fragment of metamodel graph for “Use Case” entity

As can be seen from the figure

iERest , { }iEEA eea , EER , EERR .

B. Ontology Graph

Let’s introduce the following designations:

 { },iT t i is the set of ontology graph nodes,

which corresponds to concepts of ontology;

 { }, 1, ,
ji iOAttr oattr i T j is the set of

ontology graph nodes, which corresponds to concept
attributes, which are not relationships;

 { }, 1, ,
ji iOInst oinst i T j is the set of

ontology graph nodes, which corresponds to concept
instances;

173 of 181

 { },iORel orel i is the set of ontology graph

nodes corresponding to relationships between
concepts.

 { }, 1,iOA oa i T is the set of ontology graph arcs

connecting each concept with the set of its attributes;

 { }, 1,iOI oi i T is the set of ontology graph arcs

connecting each concept with the set of its instances;

 { },iTR tr i is the set of ontology graph arcs

corresponding to links between concepts and
relationships.

The number of elements of sets T, iOAttr , iOInst , ORel,

OA, OI, TR potentially is not limited, but it is finite at every
fixed point in time.

The ontology graph is the directed pseudo-metagraph

(,)GO VO EO , where VO is a nonempty set of graph nodes,

EO is set of graph arcs and these sets are defined by (3) and
(4):

1

T

i i
i

VO T OAttr OInst ORel

, (3)

EO OA OI TR . (4)

C. Mapping of Ontology Graph to Metamodel Graph

At mapping of a domain ontology to a modelling language
metamodel it is necessary to fulfill the following algorithm:

1. To eliminate synonymy (to merge nodes containing
synonymic concepts).

2. To delete instances of concepts and “is instance”
relationships.

3. For each concept of ontology to create in a metamodel
an entity with the concept’s attributes.

4. For each “is a” relationship of ontology to create an
inheritance relationship in a metamodel.

5. For each “is part of” relationship of ontology to create
an aggregate relationship in a metamodel.

6. For other relationships of ontology to create an
association relationship in a metamodel.

According to this algorithm, let’s determine the mapping of
the ontology graph to the metamodel graph, this mapping
corresponds to operation of automatic creation of the
metamodel graph.

Let’s introduce the following designations:

 { },iOInh oinh i is the set of ontology graph

nodes corresponding to “is a” relationships between
concepts;

 { },iOAggr oaggr i is the set of ontology graph

nodes corresponding to “is part of” relationships
between concepts;

 { },iOInstR oinstr i is the set of ontology graph

nodes corresponding to “is instance” relationships
between concepts;

 { },iRInh rinh i is the set of metamodel graph

nodes corresponding to inheritance relationships;

 { },iRAggr raggr i is the set of metamodel

graph nodes corresponding to aggregation
relationships;

 { },iRAssoc rassoc i is the set of metamodel

graph nodes corresponding to association relationships
between concepts.

The number of elements of sets OInh, OAggr, OInstR,
RInh, RAggr, RAssoc potentially is not limited, but it is finite at
every fixed point in time.

The mapping :conc T Ent for each ontology concept

puts in correspondence a metamodel entity.

The mapping :attr OAttr EAttr for each ontology

concept’s attribute puts in correspondence a metamodel
entity’s attribute.

The mapping :inh OInh RInh for each ontology “is a”

relationship puts in correspondence a metamodel inheritance
relationship.

The mapping :aggr OAggr RAggr for each ontology

“is part of” relationship puts in correspondence a metamodel
aggregation relationship.

The mapping : /assoc ORel OInh OAggr OInstR

RAssoc for each other ontology relationship puts in

correspondence a metamodel association relationship.

The mapping :ar OA EEA for each arc ioa of ontology

graph puts in correspondence an arc ieea of metamodel graph.

The mapping :rr TR EERR for each arc itr of ontology

graph puts in correspondence an arc ieerr of metamodel graph.

Thus, the creation of the metamodel graph on the basis of
ontology graph is determined by mappings conc, attr, inh,
aggr, assoc, ar, rr.

D. “Smart House” Description Language

Let’s consider an example. Suppose that it is necessary to
construct a visual modeling language for creation of models of
“Smart House” systems.

At first, let’s analyze the components, which can be a part
of “Smart House” systems. The basic elements of systems of
this type are:

 life-support systems: heating, air conditioning and
ventilation, lighting, security;

 sensors (devices that are responsible for obtaining of
various readings and their sending to a central panel):

174 of 181

motion, leakings, fire and a smoke, closing/opening of
object;

 system management tools: voice control, remote
control (from a remote computer, phone, etc.), touch
control (control by using of the touch screen of a
central panel);

 central panel, which is responsible for receiving of data
from sensors, management of life-support systems and
obtaining of commands from the user.

The ontology received as a result of the analysis of a text
corpus is presented in Fig. 5.

Life-support

system

Security

system

Heating

system

Lighting

system

is_a

is_a is_a

Air conditioning

and ventilation

system
is_a

Sensor

Fire

sensor

Closing/opening

sensor

Motion sensor

is_a

is_a
is_a

Leakings

sensor
is_a

Temperature and

humidity sensor

is_a

Central

panel

System

management tool

Fulfill

control

Send

information

Interact

Fig. 5. Ontology of the strucure of “Smart House” system

Concept “Life-support system” is the parent for concepts
“Heating system”, “Air conditioning and ventilation system”,
“Lighting system”, “Security system”. Concept “Sensor” is the
parent for concepts corresponding to all types of system
sensors. The relationship “Send information” connects the

concept “Sensor” with the concept “Central panel”. The
relationship “Interact” describes the interaction of the concepts
“Life-support system” and “Central panel”. The relationship
“Fulfill control” connects the concepts “System management
tool” and “Central panel”.

In this case, according to the considered earlier algorithm,
the MetaLanguage system has constructed the metamodel
presented in Fig. 6.

Fig. 6. Metamodel of “Smart House” Description Language

Fig. 7 shows one of many possible models of “Smart
House” system, constructed in MetaLanguage system with the
usage of designed DSML.

Fig. 7. Model of “Smart House” system

175 of 181

V. CONCLUSION AND FUTURE WORKS

The DSMLs creation is a difficult task. To automate the
designing of visual modeling languages the approach, allowing
on the basis of domain ontology to generate a language
description, is offered. It allows reducing complexity and time
of DSMLs development, and gives the chance to
nonprofessional programmers to develop their own languages.
In the future, it is planned to develop metrics and methods of
comparing of DSMLs, which submit a possibility to estimate
proximity of generated automatically domain-specific
languages to domain specificity and to generate visual DSMLs
for other domains.

REFERENCES

[1] Hutchinson J., Rouncefield M., Whittle J. Model driven engineering
practices in industry. Proceedings of the 33rd International Conference
on Software Engineering, New York, 2011, pp. 633–642.

[2] Velter M. MD*/DSL best practices Update March 2011. Available at:
http://www.voelter.de/data/pub/DSLBestPractices-2011Update.pdf.

[3] Bryksin T.А., Litvinov YU.V. Sreda vizual'nogo programmirovaniya
robotov QReal: Robots. Materialy mezhdunarodnoj konferentsii
“Informatsionnye tekhnologii v obrazovanii i nauke”, 2011, pp. 332-334
(in Russian).

[4] Erwig M., Walkingshaw E. A DSL for Explaining Probabilistic
Reasoning. Proceedings of the 2nd international conference on Software
Language Engineering, 2009, pp. 164-173.

[5] Mezhuev V.I. Predmetno-orientirovannoe modelirovanie
raspredelennykh prilozhenij real'nogo vremeni. Sistemy obrabotki
informatsii, 2010, no. 5(86), pp. 98-103 (in Russian).

[6] Walter R., Masuch M. PULP Scription: A DSL for Mobile HTML5
Game Applications. Proceedings of the 11th International Conference on
Entertainment Computing, 2012, pp. 504-510.

[7] Sukhov А.O. Integratsiya sistem imitatsionnogo modelirovaniya i
predmetno-orientirovannykh yazykov opisaniya biznes-protsessov.
Matematika programmnykh sistem, 2009, vol. 6, pp. 79-84 (in Russian).

[8] Sukhov А.O. Razrabotka predmetno-orientirovannykh yazykov na
osnove ontologij. Sbornik tezisov konferentsii “Sovremennye problemy
matematiki i ee prikladnye aspekty”, 2013, pp. 45-45 (in Russian).

[9] Sukhov А.O. Sravnenie sistem razrabotki vizual'nykh predmetno-
orientirovannykh yazykov. Matematika programmnykh sistem, 2012,
vol. 9, pp. 84-111 (in Russian).

[10] Tolvanen J.-P., Pohjonen R., Kelly S. Advanced Tooling for Domain-
Specific Modeling: MetaEdit+. Proceedings of the 7th OOPSLA
Workshop on Domain-Specific Modeling at OOPSLA, 2007, pp. 48-55.

[11] Cook S., Jones G., Kent S., Wills A.C. Domain-Specific Development
with Visual Studio DSL Tools. Reading: Addison-Wesley, 2007, 560 p.

[12] Kelly S. Comparison of Eclipse EMF/GEF and MetaEdit+ for DSM.
Proceedings of the 19th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications at OOPSLA,
2004, pp. 87-96.

[13] Larionov А.V. Razrabotka vizual'nogo yazyka avtomatnogo
programmirovaniya. Available at:
http://is.ifmo.ru/papers/StateMachineDesigner.pdf (accessed 3 April
2014) (in Russian).

[14] Terekhov А.N., Bryksin T.А., Litvinov YU.V. QReal: platforma
vizual'nogo predmetno-orientirovannogo modelirovaniya.
Programmnaya inzheneriya, 2013, no. 6, pp. 11-19 (in Russian).

[15] Terekhov А.N., Bryksin T.А., Litvinov YU.V., Smirnov K.K.,
Nikandrov G.А., Ivanov V.YU., Takun E.I. Аrkhitektura sredy
vizual'nogo modelirovaniya QReal. Sistemnoe programmirovanie, 2009,
vol. 4, pp. 171-196 (in Russian).

[16] Sukhov А.O. Sravnenie sistem razrabotki vizual'nykh predmetno-
orientirovannykh yazykov. Matematika programmnykh sistem, 2012,
no 9, pp. 84-111 (in Russian).

[17] Sukhov A.O., Lyadova L.N. MetaLanguage: a Tool for Creating Visual
Domain-Specific Modeling Languages. Proceedings of the 6th
Spring/Summer Young Researchers’ Colloquium on Software
Engineering, 2012, pp. 42-53.

[18] Sukhov А.O. Instrumental'nye sredstva sozdaniya vizual'nykh
predmetno-orientirovannykh yazykov modelirovaniya. Fundamental'nye
issledovaniya, 2013, no 4, vol. 4, pp. 848-852 (in Russian).

[19] Lyadova L.N., Sukhov А.O. Yazykovoj instrumentarij sistemy
MetaLanguage. Matematika programmnykh sistem, 2008, vol. 5,
pp. 40-51 (in Russian).

[20] Witte R., Khamis N., Rilling J. Flexible Ontology Population from Text:
The OwlExporter. Available at: http://www.lrec-
conf.org/proceedings/lrec2010/pdf/932_Paper.pdf.

[21] Gusev V.D., Zavertajlov А.V, Zagorujko N.G., Kovalyov S.P.,
Nalyotov А.M., Salomatina N.V. System “OntoGrid” for construction of
ontologies. Available at: http://www.dialog-
21.ru/Archive/2005/Zagoruiko%20Gusev%20Zavertailov/ZagoruykoNG
.htm (in Russian).

[22] Sukhov А.O. Аnaliz formalizmov opisaniya vizual'nykh yazykov
modelirovaniya. Sovremennye problemy nauki i obrazovaniya, 2012,
no 2. Available at: http://www.science-education.ru/102-5655 (in
Russian).

176 of 181

Dynamic Information Model Interactions:
design and implementation of database-driven

workflow approach

Aleksej Petrov
Yaroslavl State University

Yaroslavl, Russia
e-mail: axel petroff@mail.ru

Abstract—Workflow approach to create complex data pro-
cessing mechanisms in object-oriented DBMS DIM is considered.
Focusing on design and implementation, background and reasons
of interactions research are discussed.

I. INTRODUCTION

A. DIM overview

Dynamic information model or DIM is an experimental
database management system (DBMS), which investigation
was caused by the desire of creation fully-operational object-
oriented (OO) database.

Today, there are databases of two most popular types
widely presented in the market and available for users:

1) relational;
2) object-oriented.

Relational databases in most cases has top performance
between all others, but also has a great pitfall — insuffi-
cient flexibility. In contrast with them, OO databases can
often be very flexible, but has serious drawbacks concerning
data manipulations techniques and data integrity maintenance
mechanisms.

In general, DIM developing is an attempt to combine best
features from relational and objective databases. As in any
OO system, in DIM, data is presented in the form of classified
objects. Specialized query language ODQL was designed for
DIM to give users ability to query and modify data [1].
Current implementation uses underlying relational database as
a physical data storage [2].

Most important features of DIM are:

1) data model is described by finite amount of objects,
which can have their own lifetimes;

2) every object is described by a set of properties;
3) every class of objects can be considered as a set of

objects;
4) classes of objects can be linked with each other using

some relations: inheritance, inclusion, interaction or
history;

5) relations of classes can produce respective relations
between objects of those classes or inner inheritance
and inner inclusion relations between that objects;

6) object definition contains not only values of its prop-
erties, but also depends on links between objects and
values of inherited properties and inherited links;

7) objects properties are changed in discrete points in
time and determined by deterministic laws of objects
interactions;

8) execution of interaction between objects (classes) can
lead to massive dynamic changes of their objects
(classes), which may end the lifetime of some ob-
jects (classes) and start the lifetime of other objects
(classes).

Data querying (i.e. ODQL queries execution) algorithms
and implementation mechanisms were finely described earlier
in previous works. However, modern database systems are
targeted not only to store & fetch data, they are also intended
to use for processing data.

B. Problem statement

Data processing is simply the most important aspect of
any computer program activity. In case of big amounts of data
(which are usually stored in a database) it’s desirable to put
processing mechanisms as close to data as possible — inside
the database.

We suppose that it is very important to have a user-
friendly interface for developing database-driven application
logic using standardized modules.

C. Database-oriented data processing approaches

If talking about relational database systems, it’s widely
known that not only SQL is used to manage data. Most
RDBMS vendors exposed their systems to work with pow-
erful programming languages, based on SQL. For example:
PL\SQL from Oracle, T-SQL from Microsoft for SQL Server
or PostgreSQL’s PL/pgSQL. Those languages sometimes has
a tricky syntax, but, together with triggers mechanisms, they
give users a lot of possibilities to efficiently process data in
different ways.

But, turning to object-oriented ones, it’s not so easy to find
out programming languages oriented on OO databases. For
example, NoSQL databases, such as MongoDB, which mostly
stores data, do not give users mechanisms to write data pro-
cessing modules inside DB. Most well-known object-oriented
databases, which use OQL [3] language as a primary data

177 of 181

management language provide limited mechanisms to combine
queries with data manipulation instructions. For these systems
it’s possible to use embedded OQL code blocks (in O2 ODMG
Database System) or embed objective queries into application
code, written in some general purpose programming language:
C++, Java, etc. But they also do not provide programming
languages deeply integrated into database core.

As discussed above, widely used relational DBMSes usu-
ally provide ability to create application’s logic in form of
code modules, some OO DBMSes usually also do it in a
limited way. Currently, DIM is following SQL approach: PL
\ODQL and DIM-FL domain specific languages are injected
to use them for processing data. Although, it is possible to
inject application logic into database, it fact, in many cases
this approach is not convenient.

D. Solution approach

Using modern declarative programming techniques, in sim-
ple terms, problem can be solved as adaptation of workflow
application’s design methodology for DIM database. Consid-
ered examples on databases currently do not provide such
mechanisms out-of-box.

After analyzing these disadvantages, some big steps to
integrate user-friendly & handy data processing mechanisms
into DIM were taken, in details they are discussed further in the
paper. Chapter 2 is devoted to describe existing DIM data pro-
cessing techniques. In the 3rd chapter theoretical explanations
of developing workflow approach are given, and finally, in the
chapter 4, DIM infrastructure, workflow engine and IDE ”DIM
Developer”, which has been created to develop application’s
logic within DIM, implementations are considered in detail.

II. DATA PROCESSING IN DIM: PL \ODQL, DIM-FL
AND INTERACTIONS CONCEPTS

Although ODQL is expressive, relatively simple and pow-
erful language, nevertheless it was developed only as data-
management language. To perform more complex tasks of data
processing 2 extra languages were introduced: PL \ODQL
(Programming language for DIM) and DIM-FL (DIM Formula
language).

A. PL \ODQL

PL \ODQL was developed as an extension of ODQL and
has incorporated the best features from PL \SQL, Tutorial
D and OQL languages [5]. Under the strong influence of PL
\SQL, PL extension for ODQL was developed as procedural,
to simplify studying for future developers. PL \ODQL gives
developer a power of a full-valued programming language.

B. DIM-FL

DIM-FL is a specialized formula-style language, which
was added to create even more simple mechanism than PL
\ODQL to automate calculation intensive, but not complex
tasks [6]. DIM-FL statements are treated as formulas, which
are evaluated during formula module execution.

Such a division of responsibility helps to implement data
processing algorithms in a more natural way: if a special

calculation standing order exists as a math formula, it is better
to use DIM-FL, otherwise, if only a step-by-step algorithm
exists — the best choice is PL \ODQL.

C. DIM interactions concepts

As it was mentioned above, DIM DBMS is objective;
however, simplified procedural design of PL \ODQL and
DIM-FL languages breaks down object-oriented methodology.
To resolve this digression, were introduced DIM interactions.

Interaction is an atomic part of processing data within the
DIM ecosystem. In a daily life’s terms data processing is a
deal. When we think about a deal, we always keep in mind that
someone initiates a deal, processes a deal (usually a human),
also deal is somehow processed by some processor (usually
a mechanism), and a result of a deal is saved in some place.
Thus, deal processing consists of four aspects. In terms of OO
design principles, it is possible to encapsulate deal processing
logic and all the objects, which take part in action, in a special
class – interaction class.

Of course, in some ways it brakes native encapsulation,
because such an approach splits classes data from theirs logic.
Nevertheless, using Interactions makes it possible to return
to pure object oriented design methodology, because user
operates with objects only, there is no need to write complex
procedural code on the top level of application programming
infrastructure. Moreover, Interaction execution is symmetrical
with respect to all objects it consist from.

Interactions are the key point of data processing in DIM.

Fig. 1. DIM interaction relation scheme

To be clear, the object, which takes part in interaction can
act in one of four roles:

• From

• To

• What

• How

From, to and what objects are presented in the form of
ODQL queries. Unlike them, how class object is treated as a
body of interaction and it is written in a special DIM-SCRIPT
language.

DIM-SCRIPT is a simple language with several kinds of
instructions, which drives Interaction execution. The language
has 2 types of instructions:

178 of 181

1) Module launch instructions: EXECUTE / CALCU-
LATE – to call PL \ODQL and DIM-FL modules
within Interaction;

2) WHAT / FROM / TO instructions which point, with
the help of ODQL queries, what objects take part in
Interaction execution.

If objects, involved in Interaction are not set within Interac-
tion body (obtained from WHAT, FROM, TO queries), they
have to be passed as parameters from the outside.

Interactions are widely used by DIM framework itself.
Manipulations with classes, objects, properties and many other
actions are Interactions. This technique opens perspective to
standardize auditing and logging mechanisms, and to simplify
development of modifying actions.

III. MOVING TO WORKFLOW DESIGN

Although Interaction is a powerful abstraction over real
life process, many processes cannot be presented as atomic
operations. They often consist of many sequential or parallel
steps.

The most understandable way to extend interactions func-
tionality and flexibility is to aggregate them into oriented
graphs. In terms of programming, application’s logic graphs
are often called workflows.

Graphs, by definition, consist of nodes and edges. In
this case, interactions are treated as nodes. In addition, by
design, such graphs have only one starting node (node without
incoming edges). So, when first workflow node is called, it
launches a chain of interactions executions.

Nodes are executed in order they are linked with each other
using graph edges.

This approach also makes it possible to implement parallel
tasks execution. However, this improvement has serious limits.
For example: it is mostly impossible to correctly process same
data object simultaneously by several interactions. Lets figure
out main limitation for parallel executions of Interactions:
objects, which act as What objects have to be different for
every parallel task.

Graph are expected to include a set of parameters, which
are used to store intermediate values, passed between interac-
tions. These parameters should have particular type, or class,
which can be defined by using SELECT CLASS ... ODQL
query.

Now, it is time to introduce mechanism to control Inter-
actions execution. As for single Interaction, it does not make
serious sense when the Interaction was executed, because it
does not trigger many changes. However, with workflows, this
problem is critical: accidental launch can completely change
data without possibility to stop the flow. To eliminate this,
2 modes of execution are introduced: automatic and manual.
If Interaction is in manual execution mode, while executing
workflow, executor process should freeze at this point, and
wait until user approves this execution from database client.
Interactions in this case are called required.

Such approach gives some pros:

• no need to use third-party software, implementing
workflow engine;

• as close to data as possible, no need to transfer big
amounts of data out of storage during data processing;

• great simplification in development comparing to de-
veloping and debugging very tricky SQL triggers
chains.

IV. INTERACTIONS IMPLEMENTATION AND DESIGN

A. DIM infrastructure implementation

Interactions execute in a common DIM DBMS environ-
ment, which is in turn, a Java-based add-on to Oracle RDBMS
running within a database server. DIM infrastructure consist of
several modules:

1) Metalevel, provides translation between DIM objects
and Oracle relational database records, it acts as a
physical data storage and can be replaced with some
other underlying data storage system;

2) ODQL queries translator and executor, provides data
fetching and manipulating using textual queries [4];

3) PL \ODQL interpreter;
4) DIM-FL interpreter;
5) DIM-SCRIPT interpreter;
6) Interaction processor.

Fig. 2. DIM interactions infrastructure

Query translator (discussed in detail in [4]), is used to
create inner objective form of queries. From textual query it
produces query objects that should be cached for further usage.

Interpreters are currently pure interpreters, that executes
statement-after-statement, but they are under intensive process
of rewriting into native PL \ODQL / DIM-FL / DIM-SCRIPT
to Java bytecode builders to improve performance.

B. Interactions implementation within DIM DBMS

In terms of DIM, interactions and interaction graphs are
just special classes, which are stored in Metalevel, as any other
plain DIM classes. Interactions are combined into graphs by
using inclusion relation links which mark that interaction is
a part of some graph and by using special Link class objects
(included into graph class object) which reflect structure of
graphs in order they link interactions with each other.

Moreover, interaction inside a graph can use objects not
only from from, to or what queries result, but also parameters
can be passed from graph execution process scope. To keep
ability to use interactions in different graphs, information
about parameter mapping is excluded from interactions objects.

179 of 181

Parameters descriptions are stored in GraphParameter objects,
and mapping information is kept in Mapping objects, that are
included in graph and linked with interactions which are parts
of the graph. Mapping objects link graph parameters with
interactions. GraphParameter objects link parameters inside
interaction with graph parameters. Inner property means a role
in what object should be mapped into interaction: from, to or
what.

Fig. 3. Interactions graph classes scheme

The processor itself takes control over Interaction work-
flows execution state and over steps between nodes. In addi-
tion, it prevent conflicts with parallel execution by terminating
incorrect graph execution process.

Fig. 4. Interactions processor

When processor receives a call to launch an interaction,
first, it loads interaction class and then determines whether
current interaction is a starting node of interaction graph or
not. If its true, then the processor loads interaction graph (loads
all containing interactions and builds structure from containing
links objects). On the next step, control of execution moves to
so-called state machine executor (because this machine can has
multiple active states: interactions can be launched in parallel).

Execution of single interaction is delegated to Interaction
executor. Single interaction execution process itself drops into
several phases:

1) Determining objects, which are taking part in execu-
tion (objects in roles what, to and from), by launching
specific ODQL queries or mapping outer parameters;

2) Checking whether objects in role what of interactions,
which are executing in parallel, are not equal — to
prevent data corruption;

3) Checking fulfillment of preconditions, by launching
special check PL \ODQL procedure (if it breaks with
exception — preconditions are not satisfied);

4) Execution of module, by delegating calls to PL
\ODQL and DIM-FL interpreters.

When single interaction execution involves execution of
interaction’s graph, situation becomes a lot of trickier. Every
user of database can call many interaction, and for each
of them DIM instantiates state machine executor, that holds
status of actively executing interactions and controls jumps
between interactions of a graph. After finishing execution
of the first node it makes a jump to consequent interaction
nodes of a graph, and then single interaction executor repeats
its job: check conditions and launch interaction’s body. It’s
very important that interactions in graph can be marked as
manual, i.e. they can be executed only manually by user. In
this case, state machine executor pauses graph execution and
stores its state in special GraphState class object. User can
resume execution: he has to approve blocker interaction launch
from the DIM database client to continue interaction’s graph
execution or reject them to kill paused interaction’s graph
execution. If execution was killed, then GraphState object is
removed from DIM.

All actions, taken by interaction processor, are passed
through auditing mechanisms who attentively log execution
parameters into special ExecutionLog records: durations, times,
objects, results and initiators.

C. Interactions design – DIM developer

Designing application logic within DIM DBMS is often a
very elaborate task for user. Here are some difficulties:

1) writing complex queries to obtain necessary objects;
2) creating modules in different programming lan-

guages, such as PL \ODQL, DIM-FL and DIM-
SCRIPT;

3) designing interaction workflow graphs in textual
form, i.e. user has to manually create classes and links
using ODQL queries.

To give users an opportunity to create DIM DBMS appli-
cations rapidly and easily, it became very important to develop
convenient database-oriented IDE — ”DIM Developer”. ”DIM
Developer” is a standalone client application, written in Java
and using Swing interface library, which connects to the DIM
database server through the network protocols. It can be used
as a database client to simply execute ODQL queries and
display results, fetched from storage, but mostly it’s intended
to act as a rich developing environment.

This IDE allows user to manage DIM objects using friendly
step-by-step interface. Using existing wizards, one can visually
create classes, objects (DIM Navigator [7]), application mod-
ules and interactions. For example, interaction creation splits
into three steps:

1) Choosing objects, which will take part in interaction
execution. This operation can be accomplished with
help of DIM Navigator or built-in ODQL query
builder, or by using plain text editor to manually write
the select queries.

2) Customization of interaction. The main purpose of
this step is to define preconditions, fulfillment of

180 of 181

which will act as a gate at interaction launch. More-
over, it is very important to select execution mode:
automatic or manual, because if manual execution
mode is selected, then this interaction will become
blocker node in workflows. Such blocker nodes are
become required interactions — user need to approve
these nodes’ executions manually.

3) Developing the body of interaction. Using code editor
developer should write some lines of code in DIM-
SCRIPT, describing calls of PL \ODQL functions
and DIM-FL modules.

Developing PL \ODQL modules in DIM Developer is quite
similar to creating, for example, PL \SQL packages in well-
known IDE Oracle PL \SQL developer. Programming DIM-FL
modules is even simpler, due to possibility to use native visual
math notation of formulas.

Fig. 5. Developing PL \ODQL module in DIM Developer

One of the most important feature of the IDE is the ability
to visually create interaction graphs or workflows. Developer
just picks up necessary interactions and links them using
edges, and after these manipulations, one receives completely-
operational business workflow.

Fig. 6. Simple interactions graph developing example

V. CONCLUSION

As a result of this research was created object-oriented
database framework, which implements database-driven work-
flow engine as a part of DBMS. Also were strictly postulated
conditions for Interactions execution and steps between In-
teraction nodes in a special workflow interactions’ graphs. For
users convenience, was created a RAD tool ”DIM Developer”,
which is currently a unique tool for DIM system that allows to
intuitively create sophisticated application logic from ready-to-
use Interactions or create new ones, using its rich infrastruc-
ture.

Considered approach of data processing organization can
be very useful in case of dividing large amount of work
between different specialists. Manager can give business logic
creation work out to analysts (because in this case it isn’t
necessary to use programming languages), sophisticated math-
ematical calculations programming — to engineers, and devel-
oping of system logic – to developers. Moreover, all these tasks
can be done within one system.

REFERENCES

[1] Rublev V.S., Yazyk obektnykh zaprosov dinamicheskoj informatsion-
noj modeli DIM // Modelirovanie i analiz informatsionnykh system.—
Yaroslavl:YarGU, 2010, vol. 17, 3, pp. 144-161

[2] Rublev V.S., Kajbyshev A.Sh. Organizatsiya khraneniya dannykh I
vypolneniya zaprosov v dinamicheskoj informatsionnoj modeli DIM //
Yaroslavskij pedagogicheskij vestnik.— 2012, vol. 3 (Estestvenne nauki),
1, pp. 7-20.

[3] Hector Garcia-Molina. Database systems. The complete book // Pearson
Prentice Hall.— 2008

[4] Petrov A.N. ODQL query execution mechanism // Science Drive-2013:
doklady molodezhnoj nauchnoj shkoly.— Yaroslavl:YarGU, 2013, pp.
99-103.

[5] Rublev V.S., Petrov A.N. Yazyk PL \ODQL I mnozhestva s indeksami //
Yaroslavskij pedagogicheskij vestnik.— 2012, vol 3 (Estestvenne nauki),
4, pp. 74-83.

[6] Pisarenko D.S. Yazyk matematicheskikh formul DIM-FL Dinamicheskoj
informatsionnoj modeli DIM // Studencheskie zametki po informatike i
matematike: Sbornik nauchnykh statej studentov i aspirantov fakulteta
IVT. Yarosalvl: YarGU, 2008, vol. 5, pp. 88-96.

[7] Antonov D.V. Navigator DIM // Zametki po informatike i matematike:
sbornik nauchnykh statej.— Yaroslavl: YarGU, 2013, 5, pp. 10-13.

181 of 181

	01_title.doc
	02_annotation.doc
	03_content.doc
	04_foreword.doc
	05_committee.doc
	Committees
	Program Committee Chairs
	Program Committee
	Organizing Committee Chairs and Secretaries
	 Referees

	01_syrcose2014.pdf
	02_syrcose2014.pdf
	03_syrcose2014.pdf
	04_syrcose2014.pdf
	05_syrcose2014.pdf
	06_syrcose2014.pdf
	07_syrcose2014.pdf
	08_syrcose2014.pdf
	09_syrcose2014.pdf
	10_syrcose2014.pdf
	Introduction
	Simulation system requirements analysis
	Events source
	Model time
	How behaviour is modelled
	Abstractness
	General requirements

	Related work
	Architecture
	Interaction with simulation environment
	Synchronous interaction
	Asynchronous interaction

	Execution architecture

	Integration
	Conclusion
	References

	11_syrcose2014.pdf
	12_syrcose2014.pdf
	13_syrcose2014.pdf
	14_syrcose2014.pdf
	15_syrcose2014.pdf
	Introduction
	DPMine Language Basic Elements
	Model Definition
	Schemes, Blocks, Ports, and Connections Concept
	Block
	Port
	Connector
	Scheme

	Model Execution
	Block Execution
	Scheme Execution
	Model Executor
	Resource Transferring

	Model Storage
	Graphical Frontend
	Qt Graphics View Framework
	Custom Block Renderers

	Conclusion
	References

	16_syrcose2014.pdf
	Introduction
	Framework structure
	Plugin Manager
	Resources
	Projects and Solution Manager
	Perspectives

	Plug-in lifecycle
	Loading
	Registration
	Further Maintenance

	Plug-in example
	Lifecycle of a component
	Plug-in Work

	Conclusion
	References

	17_syrcose2014.pdf
	18_syrcose2014.pdf
	19_syrcose2014.pdf
	20_syrcose2014.pdf
	21_syrcose2014.pdf
	22_syrcose2014.pdf
	23_syrcose2014.pdf
	Introduction
	Graph-based Input Representation
	Abstract Translation Algorithm
	Evaluation
	Conclusion and Future Work
	References

	24_syrcose2014.pdf
	25_syrcose2014.pdf
	26_syrcose2014.pdf
	27_syrcose2014.pdf
	28_syrcose2014.pdf
	29_syrcose2014.pdf
	30_syrcose2014.pdf
	31_syrcose2014.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

