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Abstract—In this research it was considered the particular
case of a railway problem, specifically, the construction of orders
delivery schedule for one locomotive plying among three railway
stations. In this paper it was suggested a polynomial algorithm
and were shown the results of a computing experiment.

I. INTRODUCTION

Nowadays, problems of the rail planning are attracting
attention of specialists due to the fact that they are challenging,
tough, nontrivial and, what is more important, are of practical
significance.

In this research we consider the problem of making up
a freight train and the routes on the railway. It is necessary
from the set of orders available at the stations to determine
time-scheduling and destination routing by railways in order
to minimize the total completion time.

In this paper it was studied the particular case of the
problem, specifically, the construction of orders delivery sched-
ules among 3 railway stations by one locomotive (Fig. 1).
Application of dynamic programming is very effective for the
solution of this problem. In this paper it was suggested a
polynomial algorithm and shown the results of the computing
experiment.

II. PROBLEM STATEMENT

At each station there is a set of orders available for delivery.
Each order is characterized by a release date and a destination
station. If the order consists of a few cars k > 1 then for each
car there will be created a separate order.

Let us introduce the following notations:

• q – the maximal number of the cars (wagons);

• O – set of all orders;

• n – total number of orders;

• nij – set of orders available for delivery between
stations i and j;

• Jijk – k-th order for delivery from station i to desti-
nation station j;

• rijk – release time of the orders;

• pij – travelling time.
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Fig. 1. The railway station location

To simplify the description of our algorithm we will assume
that pij = p ∀i 6= j.

The objective function which tries to minimize total com-
pletion time is the following:

minF =
∑

Jijk∈O

Cijk, (1)

where Cijk is the completion time to destination station.
Also, this function describes the average time of order delivery
so it can be rewritten in the form:

F =
∑

Jijk∈O

Cijk − rijk
n

.

This problem is the generalization of the two stations
problem for which polynomial algorithms are known.

It is not difficult to notice that the locomotive can have the
following strategies of its route management.

1. Moving. If the locomotive stays at any station, moving
is possible in one from two directions with maximum of orders
available but not more than q.

2. Waiting. This point is possible if the total number of
orders available for delivery is less than q (cars capacity of



a train). And this mode is impossible if the flow of the new
orders is not expected.

3. Idle. This mode is necessary if the number of orders is
not available for delivery. Obviously, the ”idle” is impossible
to use twice in succession. Also, the locomotive can idle only
after departure to the station or at the starting time.

It is easy to show that using of these strategies does not cut
optimal schedule that minimize the objective function. There-
fore, let us assume that the locomotive movement satisfies
these rules.

Definition 1. Let us suppose, that the locomotive is in the
state S(s, t, k12, k23, k31, k13, k32, k21) if at the time moment
t ∈ T , it is at the station s and by the current time moment has
been delivered k12 orders from the first to the second station,
k23 orders from the second to the third station and etc.

Let the objective function value of the state
S(s, t, k12, k23, k31, k13, k32, k21) be denoted by
C(s, t, k12, k23, k31, k13, k32, k21)

The transition from one state to another occurs according to
the strategies mentioned above. In this case, if the locomotive
can move from the state S1 to S2 directly, then the objective
value of the state can be calculated with the help of the
following formula:

C2 = C1 + (t′ + p) ∗ k,

where t′ is the time moment from the state S1 and k is
the number of the orders delivery when transforming into the
new state.

The objective function value does not change if the loco-
motive moves to another station in idle or waiting mode.

In the case of different travelling times p12, p23, p13 the
set of possible moments of the locomotive departure equals to

T = {t = rijk +m1p12 +m2p23 +m3p13}∪

∪{t = m1p12 +m2p23 +m3p13},

where i, j ∈ {1, 2, 3}, k ∈ {1, . . . , nij}, m1 + m2 + m3 ∈
{0, . . . , 2n−1}. It means that the power of the set T is O(n5).

III. CONCEPTS OF THE ALGORITHM

The main idea of the algorithm is the following: first of
all, the graph of states in ascending order of t is built. The
states are generated by the strategies mentioned above. From
the same two states in the tree remains the only one that has a
lower value of objective function. The solution to the problem
is to reach the state which has the lowest value of the objective
function from the set of the states completed:

min
s,t

C(s, t, n12, n23, n31, n13, n32, n21).

Complexity of the algorithm is estimated by the total
number of states in the graph. Since the number of time
moments t from the set T is O(n2), the total number of
states can be estimated as O(n2

∏
i 6=j

(nij+1)) or O(m8), where

m = max
ij

nij .

One of the key moments of our approach is the merge of
the same nodes. The states are considered equal if at the time
moment t both locomotives are on the same station and the
numbers of the orders delivered to each station are also equal.
Obviously, from two states in the tree remains the only one
that has a lower value of the objective function. If the state
was added to the tree before, the algorithm will replace it,
otherwise we choose just added one.

This situation is represented in the Fig. 2. As you can see
the value of the state S(1,7,2,0,0,0,0,2) equals to 22, if its
parents were enclosed in the quadrilateral and equals to 24,
if its parents were enclosed in the pentagon. This condition
can be an important factor in choosing between them (parent’
branch). Thereby, on each step it is necessary a full tree survey.

In the simpliest implementation of the algorithm the so-
lution tree can be stored in the memory. But this approach
it not optimal. For minimization of the memory used and
increasing the performance this work suggests the other tree
representations in the memory and also creats a garbage
collector. In the RAM arestored only the states which belong
to [ti − p; tk], where ti is the current time moment, p is the
traveling time and tk is the maximum value of the time of
the set T . States that do not satisfy this condition should be
relocated to the hard disk. They will be needed later when it
is necessary to build and show a full branch of the tree.

During the tree creation process, as well as for the branch
and bound scheme, one of the important factors is a cutting off
an ”unpromising” branch. We obtain the upper bound C when
the first complete state (all orders were delivered) is received.

After that, the algorithm tries to check the execution of the
inequation for all of the following states in order to cut off the
nodes that have the worst value of the objective function:

C ′ +
∑
Jijk

[max{t, rijk + p}] > C,

where C ′ is the value of the current state, t is the current
time moment. The left side of the inequation is the lower
bound for the current state (all unfulfilled orders delivered to
the destination after they are received immediately).

In order to illustrate our approach, let us the following
example and set n=6, r1,2=r2,3=r3,1={1,3}, q=2, p=2. The
locomotive at the initial time t = 0 is at the station 1 and has
the following options:

• to stay at the station s = 1 until the time of order
receipt t = 1, thus go to state S(1, 1, 0, 0, 0, 0, 0, 0);

• to move to the station s = 2 by the idle,
S(2, 2, 0, 0, 0, 0, 0, 0);

• to move to the station s = 3 by the idle,
S(3, 2, 0, 0, 0, 0, 0, 0).

If at the initial time t=0, the locomotive stays at the station
s=1 until the time of order receipt then it is possible to deliver
the first order available either to the station s=2 at the next
time moment, S(2, 3, 1, 0, 0, 0, 0, 0), or to stay at the station
s=1 until the time of order receipt, S(1, 3, 0, 0, 0, 0, 0, 0). If
at the initial time t=0 the locomotive moves to the station



Fig. 2. The same states merging process

(1,0,0,0,0,0,0,0)

(1,1,0,0,0,0,0,0) (2,2,0,0,0,0,0,0) (3,2,0,0,0,0,0,0)

(3,4,0,1,0,0,0,0) (2,3,0,0,0,0,0,0)

(3,5,0,2,0,0,0,0)

(1,7,0,2,2,0,0,0)

(2,9,2,2,2,0,0,0)

Fig. 3. The part of states graph

s=2 by the idle, then at the next time moment the locomotive
can transport all orders available to the station s=3 or stay
at the station s=2 until the time of the order receipt. In
the latter case the locomotive has the only one choice: to
carry all orders available at this time moment to the station
s=3, S(3, 5, 0, 2, 0, 0, 0, 0). It should be noted that for the
locomotive there are no any other options for the transition
from the previous state. When the locomotive stays at the
station s=3, he has the only one possible way: to carry all
orders available to the station s=1, S(1, 7, 0, 2, 2, 0, 0, 0). After
that the locomotive can ship remaining orders to the station
s=2, S(2, 9, 2, 2, 2, 0, 0, 0) and in this state the locomotive
delivers all orders available. The part of states graph is shown
in the Fig. 3

IV. COMPUTING EXPERIMENT

Table I shows the results of a computing experiment. The
first column contains input parameters – time moments, the
second column contains the total number of orders, the third –
the number of the nodes in the tree if the problem was solved
through the blind search, the fourth – the number of theoretical
nodes, in the last one - the number of the nodes which were
obtained in practice. In all examples set p = 2, q = 2. Also,

TABLE I. RESULTS OF COMPUTING EXPERIMENT

input values cars
count

blind
search

theoretic
dynamic
prgrm.

practic
dynamic
prgrm.

r1,2 = r2,3 = r3,1 =
{1, 3} 6 327 648 38

r1,2 = r2,3 = r3,1 =
r1,3 = r3,2 = r2,1 =

{1, 3}
12 351 753 387

r1,2 = r2,3 = r3,1 =
r1,3 = r3,2 = r2,1 =

{1, 3, 5}
18 377 166 212 2 260

r1,2 = r2,3 = r3,1 =
r1,3 = r3,2 = r2,1 =

{1, 3, 5, 7}
240 3725

1 154 289
852 1 268 585

from this table it may be seen that the practical complexity is
much lower than it is theoretical estimation.

V. CONCLUSION

In this research it was analysed the problem of making
up a freight train and its routes on the railway. Also, it was
proposed a polynomial algorithm for the construction of orders
delivery schedules for one locomotive plying among 3 railway
stations. As an example, were represented the steps of making
up a freight train and destination routing in order to minimize
the total completion time. Also, there were shown the results of
the computing experiments, the upper bound of the complexity
and the total number of nodes while solving the problem
by different approaches. The complexity of this algorithm is
O(n8) operations.

Future research

• Creation of a fast and accurate technique to determine
a lower bound for cutting off an unpromising branch;

• Consideration of more complex arrangement of the
stations in the limits of which a locomotive will have
an opportunity to deliver orders;

• Investigation of the case when orders are delivered by
means of several locomotives;

• Improvement of the algorithm performance and de-
creasing the RAM usage;

• Parallelizing the algorithm.
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