
Service-oriented control system for a differential
wheeled robot

Alexander Mangin, Lyubov Amiraslanova, Leonid Lagunov, Yuri Okulovsky

Ural Federal University
Yekaterinburg, Lenina str. 51

Email: yuri.okulovsky@gmail.com

Abstract—Double-wheeled robot is a classical yet populair
architecture for a mobile robot, and many algorithms are created
to control such robots. The main goal of the paper is to decompose
some of this algorithms into services in service-oriented system
with an original messaging model. We describe data types that are
common for robotics control, and ways to handle them in .NET
Framework. We bring a list of various services’ types, and each of
them can be implemented in several ways and linked with other
services in order to create flexible and highly adjustable control
system. Service-oriented systems are scalable, can be distributed
on many computers, and provides huge debugging capacities.The
service-oriented representation is also very useful when teaching
robotics, because each service is relatively simple, and therefore
algorithms can be presented to students gradually. In this paper,
we also focus on a particular services’ types, which provides
the correction of the robot by the feedback, decribe the original
algorithm to do so, and compare it with several others.

Index Terms—robotics, service-oriented approach, double-
wheeled robots

INTRODUCTION

A differential wheeled robot is a mobile robot whose
movement is based on two separately driven wheels, placed
on either side of the robot body. Examples of this architecture
are Roomba vacuum cleaner [2], Segway vehicle [6], various
research and educational robots (e.g., [7]).

Differential wheeled robot is a very simple and effective
architecture, both in mechanic and control means, and many
various algorithms were developed to control it. In this paper
we decompose some of these algorithms within the service-
oriented approach. In SOA, the functionality of the program
is decomposed into a bunch of services, which communicate
by TCP/IP protocol, or by shared memory, or by other means.
Each of the services performs a single and simple task, and
provides some result in response to an input in a contract-
defined format.

Service-oriented approach is widely used in robotics [12],
[17]. Its main advantages are as follows. The system can be
distributed among several computers, which is important, be-
cause the real robotics is very resource-expensive. The system
is also decentralized, which allows it to operate even if some
auxiliary parts stop working due to errors. The service-oriented
approach also has a great value in education. The service-
oriented decomposition allows making a step-by-step acquain-
tance with complex algorithms, by dividing them to small
and well-understandable parts, therefore simplifying teaching

the algorithms to students. The decomposition also facilitates
research and development. While running the algorithm, all
the information that passes between services can be stored in
logs and then viewed, which offers a great debugging feature.
Also, modern development techniques, like agile development,
become more applicable, because the parts that the algorithm
is divided into can be distributed between developers, can
evolve gradually, and can be thoroughly tested with unit and
functional tests.

Overall, service-oriented approach to robot’s control is one
of the most populair and promising. Many control system are
founded on it, and most prominent are Microsoft Robotics
Developer Studio [3] and Robotic Operating System [10], [5].
In [11] we propose RoboCoP, a Robotic Cooperation Pro-
tocol, which introduces an innovative messaging model into
service-oriented robotics. In RoboCoP, services have inputs
and outputs, which are interconnected in a strict topology.
For example, when analyzing images, a Camera services
output is plugged in to a Filter services input, and the Filter
in turn is connected to a Recognizer service in the save
way. So the signal propagates along the control system from
service to service, and is subsequently processed by them. This
messaging model is used in LabView [18], DirectShow [19]
and other software, but is new for robotics. For example, in
MRDS, services exchange messages via a central switch, in
ROS they use broadcast messaging model, etc. [11].

In [11], we implemented this new messaging model for
interconnection of independent applications with an open
and simple protocol. We also built a control system for a
manupulator’s control, and therefore assert the effectiviness
of our approach. In this paper, we bring another example
of decomposition into RoboCoP services, this time for the
control system for a differential wheeled robot. All the services
and algorithms, described in the paper, are implemented. The
system was tested on the real differential-wheeled robots
during the Intertational contest on autonomous robots control
“Eurobot” [1].

In section I, we describe the data types that are important
for control of the differential wheeled robot. We also describe
an innovative LINQ-style [15] approach to their processing. In
section II, we bring the service-oriented control systems for
differential wheeled robots, and in section III we explore the
peculiarities of some used algorithms.

I. PRESENTING AND PROCESSING ROBOTICS DATA

A. Data types

Service-oriented control system consists of services, which
transform the information from one type to another. In this
section we describe the important data types in our system.
The most fundamental structure is a differential wheeled
movement (DWM), which is a tuple(v0,l, v0,r, v1,l, v1,r, T)
wherev0, s are linear speeds of left (s = l) and right (s = r)
wheels at the beginning of movement,v1, s are speeds at the
end of movement, andT is a time the movement lasts. One
DWM describes the movement with constant acceleration of
wheels, which is a reasonable physical model of real engines.

Let as be an acceleration of the corresponding wheel,
as =

v1,s−v0,s
T

. Let a be the linear acceleration of the robots
coordinate system,a = ar+al

2 . Similarly, vs(t) is a speed of
the corresponding wheel at the timet, so vs(t) = v0,s + ast,
and v(t) is the linear speed of the robot,v(t) = vl(t)+vr(t)

2 .
We can now compute a directionα(t) as follows

α(t) =
Br(t)−Bl(t)

∆

where∆ is the distance between wheel, andBs(t) is the total
path covered bys-th wheel at the timet, Bs(t) = v0,st+

ast
2

2 .
The curvatureR(t) of the robot trajectory can be obtained as
R(t) = ∆

2
vr(t)−vl(t)
vr(t)+vl(t)

.
LetL(t) be the offset of the robot at timet along the tangent

of the direction at timet = 0, andh(t) be the offset at the
normal to the initial direction. It can be shown that

L(t) =

∫ t

0

v(τ) cos(α(τ))dτ

h(t) =

∫ t

0

v(τ) sin(α(τ))dτ

Depending on DWM, the robot covers trajectories of differ-
ent shape.

1) The straight line whenv0,l = v0,r andv1,l = v1,r, and
L(t) = v(0)t+ at2/2.

2) The turn at the spot whenv0,l = −v0,r and v1,l =
−v1,r. In this case,L(t) = h(t) = 0, andα(t) gives the
direction of the robot at the timet.

3) The circle arc whenv0,l/v0,r = v1,l/v1,r, so R(t) =
R is constant, andL(t) = R cosα(t) and h(t) =
R sinα(t).

4) The spiral arc whenal = ar and vl(0) 6= vr(0). Let
q(t) = (vr(t)− vl(t))/∆, and in this case

L(t) =
1

q

[

v(0) sin tq + at sin tq +
a

q
(1− cos tq)

]

h(t) =
1

q

[

v(0)(1 − cos tq)− at cos tq
a

q
sin tq

]

5) The clothoid segment otherwise.

Clothoid is the most general case, and one need Fresnel inte-
gralsS(t) =

∫ t

0
sinπτ2/2dτ andC(t) =

∫ t

0
sinπτ2/2dτ to

compute the robots location. Let us consider some intermediate
values:

X =
ar + al
ar − al

vc(t) =
vr(t) + vl(t)

2
+X

vr(t)− vl(t)

2

∆c = ∆X/2

U(t) =
vr(t)− vl(t)

2∆|ar − al|

δ = sign(ar − al)

With this definitions, we computeL(t) andh(t) as follows

L(t) = ∆c sinα(t) + Vc(C(t) cosU(t) + S(t) sinU(t))

h(t) = ∆c(cosα(t)−1)+ δVc(S(t) cosU(t)+C(t) sinU(r))

To specify the shape the robot should cover, we use data
structures, called geometries. Currently, there are threege-
ometries available: the straight line, which is parametrized
by its length; the turn on the spot, which depends on the
desired angle; and the circle arc. We can set the arc by its
radius and the total rotation angle, or by the radius and the
total distance that should be covered. Spirals and clothoids
are not implemented, because they are hard to define, and
generally, by our opinion, the benefits of their use are greatly
overwhelmed by the complexity of their handling.

Another important kind of data is sensors measurements.
Encoders are devices that count the rotations of wheels and
store the measurements in EncodersData structure. Encoders
are considered the most fundamental sensors, and many algo-
rithms use them. Accelerometers and gyroscopes are some-
times used to collect data about acceleration and direction
of the robot. This data is used in the processed format
of NavigatorData, which consists of the robots basis in 2-
dimensional space and of the time when measurements were
taken. Aside from using in control algorithms, the series of
NavigatorData is also used for drawing charts.

When measurements are considered, it is convenient to
introduce spans between them. NavigatorDataSpan contains
a time interval between two NavigatorData, and displacement
of the last basis relatively to the first one. Encoders data span
contains a time interval and differences of distances performed
by the left and the right wheels.

B. Conversions

Let us examine some possible conversions between the
described data types. This conversions are widely used in
control algorithms, to answer the questions like “where a
robot, driven by a given DWM, is situated”.

DWM can be converted to NavigatorDataSpan. Backwards
conversion is impossible because some displacements, e.g.a
shift to the right side, cannot be achieved by the differential
wheeled robot at all. DWM and EncodersDataSpan are mutu-
ally convertible.

DWM and geometries are conventionally convertible. DWM
can be converted to a geometry, but since spirals and clothoids

Fig. 1. A map of conversions between robotics data types

are not implemented, this conversion currently works only
for a limited set of DWM. Many DWMs corresponds to one
geometry, and for movement planning, we should consider
velocity and acceleration limitations, the finishing speedof
the robot at the previous path, and so on. Therefore, turning
geometry into DWM can be done in several ways, and we
should use a proper service to achieve it. However, converting
geometry to some DWM is useful, and therefore we intro-
duced a normalized DWM for lines, circles and turns. A
normalized DWM is a DWM without acceleration, and has
max(v0,l, v0,r, v1,l, v1,r) = 1. This conversion is used only for
further conversion to NavigatorDataSpan and NavigatorData,
in order to draw charts for geometries.

Two measurements NavigatorData and EncodersData can
be converted into a span between them of the corresponding
NavigatorDataSpan and EncodersDataSpan types. A measure-
ment and a corresponding span can be converted into the final
measurement. We call this types of conversion spreading and
accumulating, and they can be applied to arbitrary measure-
ments.

Finally, we define symmetric data, i.e. data that can be natu-
rally divided into “left” and “right” part. For example, DWM
and EncodersData are symmetric. DWM can be subdivided
into DWMHalf that describes the command for one wheel,
and EncodersData can be subdevided into EncodersDataHalf
that descbes the wheels state.

The map of these methods is shown in the Figure 1, where
L-R/W arrows depicts transformations of symmetric data, S/A
corresponds to spreading and accumulating, and Conv denotes
conversions. In Figure 1 we may see, that any data type can be
turned into NavigatorData, and therefore drawn at the chart.

C. Conversions of series

Control algorithms usually deal with the series of robotics
data, and so we developed means to handle such series.
.NET Framework provides an incredibly powerful and con-
venient tool for series processing, named language-integrated
queries, LINQ. An example of LINQ is shown in the
Listing 1. The code in the example processes IntArray, a
collection of integers. The collection is filtered with the
lambdanumber=>number>=10 , which maps an integer

into boolean value. With this lambda, all the integers less
than 10 will be thrown off. Then the resulting collection
is sorted, and converted into a collection of strings. Fi-
nally, the collection of strings is aggregated with the lambda
(stacker,str)=>stacker+","+str, i.e. strings are
subsequently accumulated in a stacker through commas. LINQ
changes the very view on how the collections should be
processed, and increases enormously the codes readabilityand
reliability.

Listing 1 The LINQ code for processing collections
IntArray

.Where(number => number>=10)

.OrderBy(number => number)

.Select(number=>number.ToString())

.Accumulate(
(stacker,str)=>stacker+","+str);

We have developed the following LINQ extensions for
handling robotics data:

1) Conversion extensions. For example,
encSpans.ToDWM().ToNavigatorDataSpans()
gets a sequence of displacements that corresponds to
initial encoders data.

2) Spreading and accumulating. For example,
navData.Spread().Accumulate(newBasis)
shifts the navData from initial basis to the new one.

3) SymmetricData handling. For example,
encData.Lefts() and dwms.Lefts() give
the states and commands correspondingly for the left
wheel.

Our extensions are compatible with the original LINQ, for
example,

encData.Lefts()
.Select

(spanHalf => spanHalf.Distace)
.Sum()

gives the total distance, covered by the left wheel.
The tricky moment in our LINQ implementation is

to support adequate type-inference. On other words,
how the extension methodSpread knows if it
should return the sequence of EncodersDataSpan
or NavigatorsDataSpan, depending on its arguments,
EncodersData or NavigatorData? To do that, we developed
the generic interfaces, presented in the Listing 2. The
type TSpan in the methodSpread is determined from
the argument, and because NavigatorData implements
interface ISpannableDeviceData<NavigatorData,
NavigatorDataSpan>, TSpan is assign to
NavigatorDataSpan. This implementation is extendable,
because the methodSpread will appear for any type that
supports ISpannableDeviceData.

Listing 2 The hierarchy of interfaces for the correct type-
inference
public interface

ISpannableDeviceData<TData, TSpan>
{ ... }

public interface
IDeviceDataSpan<TData, TSpan>

{ ... }

public class NavigatorData
: ISpannableDeviceData

<NavigatorData, NavigatorDataSpan>
{ ... }

public class NavigatorDataSpan
: IDeviceDataSpan

<NavigatorData,NavigatorDataSpan>
{ ... }

public class Helpers {
public static IEnumerable<TSpan>

Spread<TData, TSpan>
(this IEnumerable

<ISpannableDeviceData
<TData,TSpan>> data)

{ ... }
}

II. SERVICE-ORIENTED DECOMPOSITION OF CONTROL

ALGORITHMS

In this section we offer the decomposition of a control
system for a differential wheeled robot into services, which
process data, described in the previous section. The whole
control process is represented as a sequence of small and
simple algorithms, each representing a single responsibility:
creating a path for robot to go, processing data from sensors,
etc. Such sequences can be best described in schematic way,
as in the Figure 2. We should stress, that such decomposition
is in fact half of the work while creating a service-oriented
control system, because it is not easy to invent he design that
looks naturally, is easy to expand and allows implementation
of different kinds of control algorithms.

Here boxes are services that run simultaneously and pro-
cesses data, which is depicted as arrows. The work of the
control system starts, when it accepts a task from the user.
The task can be expressed as a WayTask type, which is a
collection of points that are to be visited by the robot. WayTask
can be processed by the Pathfinder service to the collection
of geometries that represents the desired path. The simplest
strategy is to go from one point to another and then to turn
the robot on the spot in the direction of the next point. More
sophisticated versions were also developed [14].

In fact, more than one control system is depicted in the

Fig. 2. Service-oriented decomposition of the control system for double
wheeled robot

Figure 2, because each type of the data can be processed in
many ways. Instead of going to the Pathfinder, WayTask can
be used for the direct control of the robot, which is performed
by the W-Corrector service. Note the important difference
between W-Corrector and Pathfinder. Pathfinder completes its
job at once, and we call such services “functional services”,
because they are a program model of a single function. Unlike
Pathfinder, when W-Corrector receives the task, it starts a
continuous process of the robots control. Corrector performs
an iteration for each 50-200 milliseconds, depending on its
settings. At each iteration, it collects the sensors data from
the Source service, which plays the role of a buffer for
the measurements; then it determines the best command at
the current time, and sends it further. The algorithm of W-
Corrector is described in the section III.

The collection of Geometry can also be processed by its
own G-Corrector. The idea of G-Corrector is that in order to
follow the line, turn and circle geometries, the robot completes
some given distance by one of its wheel, and travel along with
the constant rate of its left and right speeds (1 for line, -1 for
turn, another constant for a circle). The peculiarities of G-
Correction is also described in the section III.

The collection of geometry may instead go to the Pathdriver,
which converts geometries into DWM commands. Again,
various strategies are possible: to stop completely after each
geometry, which is very accurate but time-consuming, or to
proceed to the next geometry maintaining non-zero speed. The

Pathdriveris not the corrector: it completes the job at once,
taking a collection of geometry and producing a collection of
DWM, therefore being a functional service. This collection
is later processed by the D-Corrector, also described in the
section III.

When the DWM is produced by some of the Correctors, it
may be sent to the robot. In this case, the speeds should be
converted into discrete signals, representing the duty cycles
in the pulse-width modulation. This is done by the Calibrator
service, which provides the correspondence between speeds
and signals. The correspondence is established in the calibra-
tion process, when signals are sent to the robot, and then the
rotation speed of engines is measured by encoders. Complex
Calibrators may correct that correspondence while the robot
is operating.

The program model of the real robot is a Robot service,
which accepts discrete signals and produce the measurements
of gyroscopes, accelerometers and encoders. The Robotis not
the functional service: it does not return the measurementsin
response to the command. Instead, it produces measurements
constantly and asynchronously. Robot service communicates
with a controller board, Open Robotics [4] in our case. This
board contains ATMega128 controller, slots for servos, I2C
and analogous sensors, can be connected to PC via USB-
UART adapter or Bluetooth adapter, and can be augmented
with the amplifier board for ommutator motors. We have
developed our own firmware for this board, which accepts
commands in DWM format, manages servos and continuously
examines sensors, collects the data and sends it to the computer
in text format. It improves the built-in firmware, because
sensors are monitored constantly, while built-in firmware re-
quires sending a command to get sensors data. Other versions
of Robot service can be developed for other boards and
firmwares.

Instead of going to Robot, the initial DWM may be passed to
Emulator, which is used for debugging. Emulator is a software
that applies DWM commands to the robots current locations,
computes due values of accelerometers, gyroscopes, and other
sensors, adds noise into control action and feedback.

Measurements, generated by the Robot or the Emulator
services, are used to get more programmer-friendly infor-
mation about robots location, i.e. NavigatorData, by simple
integration or Kalmans filter [8]. Alternatively, NavigatorData
can be obtained directly from Emulator, but, of course, not
from Robot. All measurements are stored in buffers of Source
service, and when corrector starts the iteration, it reads the
buffers.

III. T HE CORRECTION ALGORITHMS

A. D-Correction

D-correction is the most trivial correction algorithm, andis
a variation of the PID-controller [16]. At each iterationi, the
due state of robot isdi vector, which is a pair of distances,
covered by the left and the right wheel. Due vectors are
computed by D-corrector from the input, which is a collection
of DWM, and therefore can be converted into a collection of

EncoderDataSpan. Real state of the robot can be obtained from
encoders, and, assuming the work of the encoders is synchro-
nized with iterations of D-Corrector, a serieri of real states
on each iteration can be achieved. PID controller computes
the next control action as a weighted sum of three terms. Let
ei = ri − di, i.e. the error at the iterationi, and proportional
term at the iterationk is TP = ek. Integration termTI
is defined as

∑k

i=0 ek∆T , where∆T is the time between
correction iterations, and derivative termTD =

ek−ek−1

∆T
. The

resulting valueck = dk+gPTP +gITI+gDTD, wheregP , gI
andgI are the weights of corresponding terms. Soc = (cl, cr)
is the state of the robot that should be achieved by the next
iteration, and consists of the desired distances for both wheels.
D-Corrector should now construct DWM. Letvi,l andvi,r be
the end velocities of DWM, assigned at(i − 1)-th iteration,
v0,l = v0,r = 0. Therfore, ati-th iteration D-corrector should
construct DWM with starting speedvi−1,r andvi−1,l such that
this DWM covers distancescl andcr within the time∆T , and
thereforevi,s = 2cs

∆T
+ vi−1,s for s ∈ {l, r}.

B. G-Correction

In D-correction, DWMs are used as a source of control
actions. In G-correction, the geometries are. Suppose we need
to travel along a circle, or line, or turn on the spot. The only
thing needed to be done is to cover some distanceL by one
of the wheels, e.g. the left one, while keeping a constant rate
k between the speeds of the left and right wheels. For the
line k = 1, for the turn on the spotk = −1, for an arc of a
circle k depends on circles radius. We have implemented G1-
Correction, using encoders to get the current speed values,and
PID-controller to maintain the proper value ofk.

C. W-Correction

Way task is a set of points with coordinates(xi, yi) for i =
1, . . . , n. For eachi we construct a vector fieldFi, which indi-
cates the proper vector of robots speed in point(x, y) while it
heads toward(xi, yi). Let Fi(x, y) = (wi,x(x, y), wi,y(x, y)),
and

wi,x(x, y) = k(x, y)(x − xi)

wi,y(x, y) = k(x, y)(y − yi)

andk(x, y) > 0 is a normalizing coefficient such that

||(wi,x(x, y), wi,y(x, y)|| =

= min







vmax,
√

2||(x− xi, y − yi)||amax,
√

2||(x− xi−1, y − yi−1)||amax,







where vmax and amax are maximum allowed speed and
acceleration of the robot. This definition ofF assures that
if the robot is heading to the point(xi, yi), and is found in the
point (x, y), it should direct to(xi, yi) with allowed speed,
and also should be able to stop with the allowed acceleration.

When W-Corrector drives the robot toi − th point and
constructs the next DWM, it uses the sensors measurement
to determine the current state: location(x, y), direction φ,

speeds of the left and the right wheelsvl andvr, linear speed
v = vl+vr

2 and torsionq = vl
vr

. If (x, y) is close enough to
(xi, yi), W-Corrector incrementsi. Then it calculates the due
speed vector(wx, wy) = Fi(x, y), its modulew and direction
ψ. The W-Corrector asserts new linear speed tov, which
equals tovcv if v < w, and to v/cv otherwise. Similarly,
new torsionq is increased bycq if direction ψ is on the left
side fromφ, and decreased otherwise. Finally, usingv and
q, speedsvl and vr are obtained from it, and new DWM is
constructed.

D. Comparison of correction algorithms

We have implemented aforementioned algorithms and tested
them to choose the best one for Eurobot competitions [1]. The
preliminary results of comparison are as follows.

• D-correction is a very accurate algorithm, but is hardly
compatible with electronics we possess. The problem is
that in the end of movement, the small but frequent os-
cillations occurs, driving wheels backwards and forwards
to achieve the requested position. Such oscillations puts
out of action the motors amplifiers.

• W-correction is a great way to understand the control of
the robot, and to visualize the correction algorithms. Still,
further researches are needed to ascertain its effectiveness
and obtain optimal values for its coefficients.

• G-correction is currently our best solution to correction.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we presented a decomposition of a control
system for a double wheeled robot into a bunch of services.
We have developed the architecture of services, as well as
the services themselves, and were able to use this system for
control of an autonomous double wheeled robot in Eurobot
2013 competitions.

The primary direction of our future works is to introduce
more correction algorithms. For example, we are developing
the G-correction algorithm, which uses gyroscope data, and
the services for elimination of gyroscope noise. Also, we are
developing more sophisticated services for conversion of ac-
celerometers and gyroscope measurements into NavigatorData
for using it in D-Correction algorithms. Also, we plan the
further decomposition of D-correction into fields generator and
fields driver, and work on different sources of vector fields,
such as geometries.

Other planned works in the area of double wheeled robots
control includes the following topics.

• Shifting the current SOA Framework, RoboCoP, to a
better solution, based on Redis [9] common memory
service.

• Integrating emulator, described in [13], into the system
for better visual feedback about robots location, and for
getting emulated images from camera.

• Publishing the solution and some of the developed algo-
rithms for an open access of community.

• Thorough statistical comparison for correction algo-
rithms.

V. ACKNOWLEDGMENTS

We thank Pavel Egorov for valuable commentaries and
suggestions, which help us design W-correction algorithm.

The work is supported by RFFI grant 12-01-31168, “In-
telligent algorithms for planning and correction of robot’s
movements”.

REFERENCES

[1] Eurobot competitions.http://eurobot.org.
[2] The irobot company. irobot roomba.

http://www.irobot.ru/aboutrobots.aspx.
[3] Microsoft robotics developer studio. http://msdn.microsoft.com/en-

us/robotics/default.aspx.
[4] Open robotics.http://roboforum.ru/wiki/OpenRobotics.
[5] Robotics operating system.http://www.ros.org.
[6] Thesegway company. segway.http://www.segway.com/.
[7] The willow garage company. turtlebot.http://turtlebot.com/.
[8] A. V. Balakrishnan. Kalman filtering theory. Optimization Software,

Inc., Publications Division, 1984.
[9] J. L. Carlson.Redis in Action. Manning, 2012.

[10] J. L. Foote, E. Berger, R. Wheeler, and A. Ng.
Ros: an open-source robot operating system.
http://www.robotics.stanford.edu/ ang/papers/icraoss09-ROS.pdf,
2009.

[11] D. O. Kononchuk, V. I. Kandoba, S. A. Zhigalov, P. Y. Abduramanov,
and Y. S. Okulovsky. Robocop: a protocol for service-oriented robot
control system. InProceedings of international conference on Research
and Education in Robotics - Eurobot 2011. Springer, 2011.

[12] J. Kramer and M. Scheutz. Development environments forautonomous
mobile robots: A survey.Autonomous Robots, 22:132, 2007.

[13] M. Kropotov, A. Ryabykh, and Y. Okulovsky. Eurosim - therobotics
emulator (russian). InProceedings of the International (43-th Russian)
Conference ”The contemporary problems of mathematics”, 2012.

[14] A. Mangin and Y. Okulovsky. The implementation of the control
system for double wheeled robot (russian). InProceedings of the
International (44-th Russian) Conference ”The contemporary problems
of mathematics”, 2013.

[15] F. Marguerie, S. Eichert, and J. Wooley.LINQ in Action. Manning,
2008.

[16] R. C. Panda, editor.Introduction to PID Controllers - Theory, Tuning
and Application to Frontier Areas. InTech, 2012.

[17] M. Somby. Software platforms for service robotics.
http://www.linuxfordevices.com/c/a/Linux-For-Devices-
Articles/Updated-review-of-robotics-software-platforms/, 2008.

[18] J. Travis.LabVIEW for Everyone. Prentice Hall, 2001.
[19] P. Turcan and M. Wasson.Fundamentals of Audio and Video Program-

ming for Games (Pro-Developer). Microsoft Press, 2004.

