
Beholder Framework
A Unified Real-Time Graphics API

Daniil Rodin

Institute of Mathematics and Computer Science

Ural Federal University

Yekaterinburg, Russia

Abstract—This paper describes Beholder Framework, which

is a set of libraries designed to provide a single low-level API for

modern real-time graphics that combines clarity of Direct3D 11

and portability of OpenGL. The first part of the paper describes

the architecture of the framework and its reasoning from the

point of view of developing a cross-platform graphics application.

The second part describes how the framework overcomes some

most notable pitfalls of supporting both Direct3D and OpenGL

that are caused by differences in design and object models of the

two APIs.

Keywords—real-time graphics; API; cross-platform; shaders;

Direct3D; OpenGL;

I. INTRODUCTION

Real-time graphics performance is achieved by utilizing
hardware capabilities of a GPU, and to access those capabilities
there exist two “competing” API families, namely Direct3D
and OpenGL. While OpenGL is the only option available
outside Windows platform, it has some significant drawbacks
when compared to Direct3D including overcomplicated API
[1] and worse driver performance [2]. For this reason,
developers, who are working on a cross-platform graphics
application that must also be competitive on Windows, have to
support both Direct3D and OpenGL, which is a tedious and
time-consuming work with many pitfalls that arise from the
design differences of Direct3D and OpenGL.

This paper describes a framework that solves those issues
by providing an API that is similar to Direct3D 11, while being
able to use both Direct3D and OpenGL as back-ends. The
former allows developers to use well-known and well-designed
programming interfaces without the need to learn completely
new ones. The later allows applications developed using the
framework to be portable across many platforms, while
maintaining the Direct3D level of driver support on Windows.

II. WHY OPENGL IS NOT SUFFICIENT

Since OpenGL provides a real-time graphics API that is
capable of running on different platforms, including Windows,
it might look like an obvious API of choice for cross-platform
development. But if you look at the list of best-selling games
[3] of the last ten years (2003 – 2012), you will notice that
almost every game that has a PC version [3] uses Direct3D as

main graphics API for Windows and most of them are
Direct3D (and thus, Windows) – only.

If OpenGL was at least near to being as powerful, stable,
and easy to use as Direct3D, it would be irrational for
developers to use Direct3D at all. Especially so for products
that are developed for multiple platforms, and thus, already
have OpenGL implementations.

These two facts bring us to a conclusion that, in comparison
to Direct3D, OpenGL has some significant drawbacks.

In summary, those drawbacks can be divided into three
groups.

The first reason of Direct3D dominance is that from the
Direct3D version 7 and up, OpenGL was behind in terms of
major features. For example, GPU-memory vertex buffers, that
are critical for hardware T&L (transform and lighting),
appeared in OpenGL after almost four years of being a part of
Direct3D, and it took the same amount of time to introduce
programmable shaders as a part of the standard after their
appearance in Direct3D 8. [4]

And even today, when the difference between Direct3D 11
and OpenGL 4.3 features is not that noticeable, some widely
used platforms and hardware do not support many important of
them for OpenGL. For example, OS X still only supports
OpenGL up to version 3.2. Another example is Intel graphics
hardware that is also limited to OpenGL 3.x, and even OpenGL
3.x implementation has some major unfixed bugs. For instance,
Intel HD3000 with current drivers does not correctly support
updating a uniform buffer more than once a frame, which is
important for efficient use of uniform buffers (a core OpenGL
feature since version 3.1).

The third OpenGL drawback is very subjective, but still
important. While trying to achieve backwards-compatibility,
Khronos Group (an organization behind OpenGL) was
developing OpenGL API by reusing old functions when
possible, at the cost of intelligibility (e.g. glBindBuffer,
glTexImage3D). This resulted in an overcomplicated API that
does not correspond well to even the terms that the
documentation is written in and still suffers from things like
bind-to-edit principle [1]. On the other hand, Direct3D is being
redesigned every major release to exactly match its capabilities,
which makes it significantly easier to use.

III. ALTERNATIVE SOLUTIONS

Beholder Framework is not the first solution for the
problem of combining Direct3D and OpenGL. In this section
we will discuss some notable existing tools that provide such
abstraction, and what are their differences from the Beholder
Framework.

A. OGRE

OGRE (Open Graphics Rendering Engine) [5] is a set of
C++ libraries that allow real-time rendering by describing a
visual scene graph that consists of camera, lights, and entities
with materials to draw, which are much higher-level terms than
what APIs like Direct3D and OpenGL provide.

While this was the most natural way of rendering in the
times of fixed-function pipeline, and thus, providing this
functionality in the engine was only a plus, nowadays
rendering systems that are not based on scene graph are
becoming more widespread because the approach to
performance optimizations has changed much since then [6, 7].
The other aspect of OGRE API being higher-level than
Direct3D and OpenGL is that it takes noticeably longer to
integrate new GPU features into it, since they must be well
integrated into a higher-level object model that was not
designed with those capabilities in mind.

Therefore, even though OGRE is providing rendering
support for both Direct3D and OpenGL, it is not suited for
those applications that require different object model or newer
GPU features.

B. Unity

Unity [8] is a cross-platform IDE and a game engine that
allows very fast creation of simple games that expose some
predefined advanced graphics techniques like lightmaps,
complex particle systems, and dynamic shadows.

Unity provides excellent tools for what it is designed for,
but has even less flexibility than OGRE in allowing
implementation of non-predefined techniques. It also forces an
IDE on the developer, which, while being superb for small
projects, is in many cases unacceptable for larger ones.

C. Unigine

Unigine [8] is a commercial game engine that supports
many platforms, including Windows, OS X, Linux, PlayStation
3, and others while using many advanced technologies and
utilizing low-level API to its limits. Having said that, Unigine
is still an engine which forces the developer to utilize the
graphics the specific way instead of providing a freedom like
low-level APIs do.

In comparison to all the discussed solutions, Beholder
Framework aims to provide the freedom of a low-level API
(namely, Direct3D 11) while maintaining portability of
supporting both Direct3D and OpenGL.

IV. BEHOLDER FRAMEWORK ARCHITECTURE

Beholder Framework is designed as a set of interfaces that
resemble Direct3D 11 API, and an extensible list of
implementations of those interfaces. The framework is being
developed as a set of .NET libraries using the C# language, but
it is designed in such a way that porting it to C/C++ will not
pose any significant problems if there will be a demand for
that.

All the interfaces and helper classes are stored in the
Beholder.dll .NET assembly including the main interface –
Beholder.IEye that is used to access all the implementation-
specific framework capabilities. In order to get an
implementation of this interface, one can, for example, load it
dynamically from another assembly. This is a preferred way
since it allows using any framework implementation without
recompiling an application. At the time of writing, there are
three implementations of the framework – for Direct3D 9,
Direct3D 11, and OpenGL 3.x/4.x.

When the instance of the Beholder.IEye is acquired, one
can use if to perform four kinds of tasks that are important for
initializing a graphics application. The first one is enumerating
graphics adapters available for the given system along with
their capabilities. By doing this, one can decide what pixel
formats to use, what display modes to ask the user to choose
from, and whether some specific features are available or not.
The second task is creating windows or preparing existing ones
for drawing and capturing user input. The third one is
initializing a graphics device, which is a main graphics object
that holds all the graphics resources and contexts (corresponds
to the ID3D11Device interface of Direct3D 11). Finally, the
fourth task that Beholder.IEye can be used for is initializing a
“game loop” – a specific kind of an infinite loop that allows the
application to interact with the OS normally.

Another useful feature that the framework provides at the
Beholder.IEye level is a validation layer. It is an
implementation of the interfaces that works like a proxy to a
real implementation while running a heavy validation on the
interface usage. This is useful for debugging purposes, and
since it is optional, it will not affect performance of a release
build.

When the device is initialized and the game loop is running,
an application can use Beholder Framework in almost the same
way it could use Direct3D with only minor differences. The
only exception to this is a shader language.

V. UNIFYING SHADERS

Even though both Direct3D 11 and OpenGL 4.3 have
similar graphics pipelines, and thus, same types of shaders,
they provide different languages to write them, namely HLSL
and GLSL respectively. Compare, for example, these versions
of a simple vertex shader in two languages:

A. HLSL
cbuffer Transform : register(b0)

{

 float4x4 World;

 float4x4 WorldInverseTranspose;

};

cbuffer CameraVertex : register(b1)

{

 float4x4 ViewProjection;

};

struct VS_Input

{

 float3 Position : Position;

 float3 Normal : Normal;

 float2 TexCoord : TexCoord;

};

struct VS_Output

{

 float4 Position : SV_Position;

 float3 WorldPosition : WorldPosition;

 float3 WorldNormal : WorldNormal;

 float2 TexCoord : TexCoord;

};

VS_Output main(VS_Input input)

{

 VS_Output output;

 float4 worldPosition4 = mul(float4(input.Position, 1.0), World);

 output.Position = mul(worldPosition4, ViewProjection);

 output.WorldPosition = worldPosition4.xyz;

 output.WorldNormal = normalize(

 mul(float4(input.Normal, 0.0), WorldInverseTranspose).xyz);

 output.TexCoord = input.TexCoord;

 return bs_output;

}

B. GLSL
#version 150

layout(binding = 0, std140) uniform Transform

{

 mat4x4 World;

 mat4x4 WorldInverseTranspose;

};

layout(binding = 1, std140) uniform CameraVertex

{

 mat4x4 ViewProjection;

};

in vec3 inPosition;

in vec3 inNormal;

in vec2 inTexCoord;

out vec3 outWorldPosition;

out vec3 outWorldNormal;

out vec2 outTexCoord;

void main()

{

 vec4 worldPosition4 = vec4(inPosition, 1.0) * World;

 gl_Position = worldPosition4 * ViewProjection;

 outWorldPosition = worldPosition4.xyz;

 outWorldNormal = normalize(

 (vec4(inNormal, 0.0) * WorldInverseTranspose).xyz);

 outTexCoord = inTexCoord;

}

As you can see, even though the shader is the same, the
syntax is very different. Some notable differences are: many
cases of different naming of same keywords (e.g. types),
different operator and intrinsic function sets (e.g. while GLSL
uses ‘*’ operator for matrix multiplication, in HLSL ‘*’ means
per-component multiplication, and for matrix multiplication
mul function is used instead), different input/output declaration
approaches, and many others. Also notice how in HLSL output
position is a regular output variable with a special HLSL
semantic SV_Position (‘SV’ stands for ‘Special Value’), while
in GLSL a built-in gl_Position variable is used instead.

To enable writing shaders for both APIs simultaneously,
one would naturally want to introduce a language (maybe
similar to one of the existing ones) that will be parsed and then
translated to the API-specific language. And as you will see,
Beholder Framework does that for uniform buffers,
input/output, and special parameters (e.g. tessellation type). But
because fully parsing and analyzing C-like code requires too

much time-commitment, the author decided to take a slightly
easier approach for the current version of the framework.

Here is the same shader written in the ‘Beholder Shader
Language’:

%meta

Name = DiffuseSpecularVS

ProfileDX9 = vs_2_0

ProfileDX10 = vs_4_0

ProfileGL3 = 150

%ubuffers

ubuffer Transform : slot = 0, slotGL3 = 0, slotDX9 = c0

 float4x4 World

 float4x4 WorldInverseTranspose

ubuffer CameraVertex : slot = 1, slotGL3 = 1, slotDX9 = c8

 float4x4 ViewProjection

%input

float3 Position : SDX9 = POSITION, SDX10 = %name, SGL3 = %name

float3 Normal : SDX9 = NORMAL, SDX10 = %name, SGL3 = %name

float2 TexCoord : SDX9 = TEXCOORD, SDX10 = %name, SGL3 = %name

%output

float4 Position: SDX9=POSITION0, SDX10=SV_Position, SGL3=gl_Position

float3 WorldNormal : SDX9 = TEXCOORD0, SDX10 = %name, SGL3 = %name

float3 WorldPosition : SDX9 = TEXCOORD1, SDX10 = %name, SGL3 = %name

float2 TexCoord : SDX9 = TEXCOORD2, SDX10 = %name, SGL3 = %name

%code_main

 float4 worldPosition4 = mul(float4(INPUT(Position), 1.0), World);

 OUTPUT(Position) = mul(worldPosition4, ViewProjection);

 OUTPUT(WorldPosition) = worldPosition4.xyz;

 OUTPUT(WorldNormal) = normalize(

 mul(float4(INPUT(Normal), 0.0), WorldInverseTranspose).xyz);

 OUTPUT(TexCoord) = INPUT(TexCoord);

As you can see, %meta, %ubuffers, %input, and %output
blocks can be easily parsed using a finite-state automaton and
translated into either HLSL or GLSL in an obvious way
(slotDX9 and SDX9 are needed for vs_2_0 HLSL profile used
by Direct3D 9). But to translate the code inside the main
function, the author had to use a more ‘exotic’ tool – C macros,
which, fortunately, are supported by both HLSL and GLSL.

Using macros helps to level out many of the language
differences. Type names are translated easily, so are many
intrinsic functions. Input and output macros for GLSL while
being not so obvious are, nevertheless, absolutely possible. For
example, input/output declaration that is generated by the
framework for OpenGL looks simply like this.

#define INPUT(x) bs_to_vertex_##x

in float3 bs_to_vertex_Position;

in float3 bs_to_vertex_Normal;

in float2 bs_to_vertex_TexCoord;

#define OUTPUT(x) bs_to_pixel_##x

#define bs_to_pixel_Position gl_Position

out float3 bs_to_pixel_WorldPosition;

out float3 bs_to_pixel_WorldNormal;

out float2 bs_to_pixel_TexCoord;

While using macros does not make the unified shader
language as beautiful and concise as it could be if it was being
parsed and analyzed completely, it still makes writing a shader
for all APIs at once not much harder than writing a single
shader for a specific API, which is the main goal of a unified
shader language.

VI. PITFALLS OF USING OPENGL AS DIRECT3D

Since Direct3D and OpenGL are being developed
independently and only the fact that they must work with the
same hardware makes them be based on similar concepts, it
comes with no surprise that the APIs have many subtle
differences that complicate the process of making one API

work like another. In this section we will discuss the most
notable of such differences and ways to overcome them.

A. Rendering to a Swap Chain

While Direct3D, being tightly integrated into Windows
infrastructure, applies the same restrictions for both on-screen
(swap chain) render targets and off-screen ones, in OpenGL the
restriction can be unexpectedly different. For example, at the
time of writing, Intel HD3000 on Windows does not support
multisampling and several depth-stencil formats for on-screen
rendering that it supports for off-screen rendering using
OpenGL.

To counter this, Beholder Framework uses a special off-
screen render target and an off-screen depth-stencil surface
when a developer wants to render to a swap chain, and then
copies render target contents to the screen when Present
method of a swap chain is called. This may seem like overkill,
but as you will see in the next section, it has more benefits to it
than just being an easy way to overcome OpenGL limitations.

B. Coordinate Systems

Despite the common statement that “Direct3D uses row
vectors with left hand world coordinates while OpenGL uses
column vectors with right hand world coordinates”, it is simply
not true. When using shaders, an API itself does not even use
the concept of world coordinates, and, as demonstrated in the
previous section, GLSL has the same capabilities of working
with row vectors (which means doing vector-matrix
multiplication instead of a matrix-vector one) as HLSL.
Nevertheless, there are still two notable differences between
OpenGL and Direct3D pipelines that are related to coordinate
systems.

The first difference is Z range of homogeneous clip space.
While Direct3D rasterizer clips vertex with position p when
p.z / p.w is outside of [0,1] range, for OpenGL this range is
[-1,1]. Usually, for cross-platform applications it is
recommended to use different projection matrices for Direct3D
and OpenGL to overcome this issue [10]. But since we are
controlling the shader code, this problem can be solved in a
much more elegant way by simply appending the following
code to the last OpenGL shader before rasterization:

gl_Position.z = 2.0 * gl_Position.z - gl_Position.w;

This way, Z coordinate of a vertex will be in the correct
range, and since the Z coordinate is not used for anything else
other than clipping at the rasterization stage, this will make
Direct3D and OpenGL behave the same way.

The second coordinate-related difference is texture
coordinate orientation. Direct3D considers the Y coordinate of
a texture to be directed top-down, while OpenGL considers it
to be directed bottom-up.

While the natural workaround for this difference would
seem to be modifying all the texture-access code in GLSL
shaders, such modification will significantly affect
performance of shaders that do many texture-related
operations. But since the problem lies in texture coordinates,

which are used to access the texture data, it can be also solved
by inverting the data itself.

For texture data that comes from CPU side this is actually
as easy as feeding OpenGL the same data that is being fed to
Direct3D. Since OpenGL expects the data in bottom-up order,
it can be inverted by feeding in in top-down order, in which it
is expected by Direct3D.

For texture data that is generated on the GPU using render-
to-texture mechanisms the easiest way to invert the resulting
texture is just to invert the scene before rasterization by
appending the following code to the last shader before the
rasterization stage (the same place where we appended the Z-
adjusting code):

gl_Position.y = -gl_Position.y;

This will make off-screen rendering work properly, but
when rendering a final image to the swap chain, it will appear
upside-down. But, as you can remember, we are actually using
a special off-screen render target for swap-chain drawing. And
thus, to solve this problem, we only need to invert the image
when copying it to the screen.

C. Vertex Array Objects and Framebuffer Objects

Starting from version 3.0, OpenGL uses what is called
“Vertex Array Objects” (usually called VAOs) to store vertex
attribute mappings. This makes them seem to be equivalent to
Direct3D Input Layout objects and makes one want to use
VAOs the same way. Unfortunately, VAOs do not only contain
vertex attribute mappings, but also the exact vertex buffers that
will be used. That means that for them to be used as
encapsulated vertex attribute mapping, there must be a separate
VAO for each combination of vertex layout, vertex buffers,
and vertex shader. Since, compared to just layout-shader
combinations, such combination will most likely be different
for almost every draw call in a frame, there will be no benefit
from using different VAOs at all. Therefore, Beholder
Framework uses a single VAO that is being partially modified
on every draw call where necessary.

Unlike Direct3D 11 that uses “Render Target Views” and
“Depth-Stencil Views” upon usual textures to enable render-to-
texture functionality, OpenGL uses a special type of objects
called “Framebuffer Objects” (usually called FBOs). When
actually doing rendering to a texture, FBO can simply be used
like a part of the device context that contains current render
target and depth-stencil surface. But clearing render targets and
depth-stencil surfaces, which in Direct3D is done using a
simple functions ClearRenderTargetView and
ClearDepthStencilView, in OpenGL also requires an FBO.
Furthermore, this FBO must be “complete”, which means that
render target and depth-stencil surface currently attached to it
must be compatible.

When clearing a render target, this compatibility can be
easily achieved by simply detaching depth-stencil from the
FBO. But when clearing a depth-stencil surface, there must be
a render target attached with dimensions not less than ones of
the depth-stencil surface.

Therefore, to implement Direct3D 11 – like interface for
render-to-texture functionality on OpenGL while minimizing
the number of OpenGL API calls, Beholder Framework uses
three separate FBOs for drawing, clearing render targets, and
clearing depth-stencil surfaces. Render target FBO has depth-
stencil always detached, and depth-stencil FBO uses a dummy
renderbuffer object that is large enough for the depth-stencil
surface being cleared.

VII. CONCLUSION AND FUTURE WORK

Supporting both Direct3D and OpenGL at the lowest level
possible is not an easy task, but, as described in this paper, a
plausible one. At the moment of writing a large part of
Direct3D 11 API is implemented for Direct3D 9, Direct3D 11,
and OpenGL 3.x/4.x and the project’s source code is available
on GitHub [11].

After collecting public opinion on the project, the author
plans to implement the missing parts that include staging
resources, stream output (transform feedback), compute
shaders, and queries. After that the priorities will be a better
shader language and more out-of-the-box utility like text
rendering using sprite fonts.

REFERENCES

[1] About ‘bind-to-edit’ issues of OpenGL API. http://www.g-truc.net/post-
0279.html#menu

[2] Performance comparison of Direct3D and OpenGL using Unigine
benchmarks. http://www.g-truc.net/post-0547.html

[3] List of best-selling PC video games.
http://en.wikipedia.org/wiki/List_of_best-selling_PC_video_games

[4] History of competition between OpenGL and Direct3D.
http://programmers.stackexchange.com/questions/60544/why-do-game-
developers-prefer-windows/88055#88055

[5] Official site of the OGRE project. http://www.ogre3d.org/

[6] “Scenegraphs: Past, Present, and Future”.
http://www.realityprime.com/blog/2007/06/scenegraphs-past-present-
and-future/

[7] Noel Llopis. “High-Performance Programming with Data-Oriented
Design” Game Engine Gems 2. Edited by Eric Lengyel. A K Peters Ltd.
Natick, Massachusetts 2011.

[8] Official site of Unity project. http://unity3d.com/

[9] Official site of Unigine project. http://unigine.com/

[10] Wojciech Sterna. “Porting Code between Direct3D9 and OpenGL 2.0”
GPU Pro. Edited by Wolfgang Engel. A K Peters Ltd. Natic,
Massachusetts 2010.

[11] Beholder Framework repository on GitHub.
https://github.com/Zulkir/Beholder

http://www.g-truc.net/post-0279.html#menu
http://www.g-truc.net/post-0279.html#menu
http://www.g-truc.net/post-0547.html
http://en.wikipedia.org/wiki/List_of_best-selling_PC_video_games
http://programmers.stackexchange.com/questions/60544/why-do-game-developers-prefer-windows/88055#88055
http://programmers.stackexchange.com/questions/60544/why-do-game-developers-prefer-windows/88055#88055
http://www.ogre3d.org/
http://www.realityprime.com/blog/2007/06/scenegraphs-past-present-and-future/
http://www.realityprime.com/blog/2007/06/scenegraphs-past-present-and-future/
http://unity3d.com/
http://unigine.com/
https://github.com/Zulkir/Beholder

