Automated deployment of virtualization-based
research models of distributed computer systems

Andrey Zenzinov
Mechanics and mathematics department, Moscow State University
Institute of mechanics, Moscow State University
Moscow, Russia
andrey.zenzinov@gmail.com

Abstract—In the research and development of distributed
computer systems and related technologies it is appropriate to
use research models of such systems based on the virtual infras-
tructure. These models can simulate a large number of different
configurations of distributed systems. The paper presents an
approach to automate the creation of virtual models for one of the
classes of distributed systems used for scientific computing. Also
there considers the existing ways to automate some maintaining
processes and provides practical results obtained by the author
in the development and testing of prototype software tools to
create virtual models.

Index Terms—Distributed computer systems, Virtualization,
Automation, Grid computing

I. INTRODUCTION

Research and development of distributed computer systems
usually involves performing a lot of testing and development
activities. It seems useful to carry out experiments and tests
not on a production system, but on its research model created
specifically for the purposes of performing the experiments.
Virtualization-based research models of computer systems
may be used to accurately model software components of such
systems. This kind of models is widely used in the study of
distributed systems [1], [2].

Another possible use case for virtual research models is
development of parallel and distributed programs, e.g. client-
server applications, parallel computing programs. It is also
applicable to information security sphere, particularly in the
development of different monitoring and auditing systems.

With virtualization technologies it is possible to simu-
late distributed systems of various architecture. Also, the
virtualization-based approach significantly simplifies the pro-
cess of deploying the model and preparing the experiments.

The main idea of this approach is to use one or more
computers (virtualization hosts) with a set of deployed virtual
machines which run the software identical or similar to the
software in the production system. Similar approaches are
widely used, e.g. in cloud computing, to deploy multiple
computing nodes on a single physical host. The overhead of
running a set of virtual machines is relatively low on hosts
with hardware virtualization support.

In this research we consider grid computing systems de-
signed for parallel task execution as the object of modelling.
Typical examples of these systems are the distributed systems
based on the Globus Toolkit—a set of open source software

used for building grid computing systems. Distributed systems
of this kind usually do not require the use of virtualization
technologies to function, contrary to other types of distributed
systems, e.g. in cloud computing. This property of typical
grid computing systems simplifies the virtualization-based
modelling as nested virtualization is not required in this case.

In our research we consider evaluation of information
security properties of distributed systems as the goal of mod-
elling. The following attacks are particularly relevant to grid
computing systems: denial of service (DoS) and distributed
denial of service (DDoS) attacks; exploitation of software
vulnerabilities; attacks on the system’s infrastructure allowing
the attacker to eavesdrop and to substitute trusted components
of the system.

Different kinds of modelling parameters should be taken
into account, such as the system’s architecture, attacker loca-
tion, configuration and composition of security mechanisms,
and attack scenarios. Usually it is necessary to perform a
series of experiments for each configuration of parameters to
show the adequacy of the experiments’ coverage. Modelling
different variants of system’s architecture requires to iteratively
rebuild and redeploy the model, which may be performed at a
high degree of automation when using the virtualization-based
models.

II. WORKFLOW OF DISTRIBUTED SYSTEM DEPLOYMENT

The building process of the distributed system contains the
following steps:

¢ a set of nodes creation;

o OS installation and setting up on each node;

o additional software installation on each node;

« setting up distributed network.

All these processes takes a lot of time and it is a very
monotonous work, which requires carefulness and attention,
because mistakes can lead to system failure.

Suppose the operator performing the deployment processes
have got given system configuration, which describes nodes
of the distributed system, its network architecture, a set of
software tools installed on the nodes and other necessary
options. The distributed system and its virtual model are
being constructed following this configuration.

The operator should perform actions based on the algorithm,
which was described above. Some of these actions require
their completion, which can take a long time, e.g. disk image
copying, software installation, etc. The operator can make
mistakes, which may result in system performance loss.

It seems appropriate to reduce the amount of non-automated
actions to increase the reliability of deployment.

III. GOALS OF THE RESEARCH

The aim of the study is to automate the deployment and
setting up of virtual research model with given configuration
file. Let us require following options from the deployment
system:

« support for different types of nodes;

o nodes have a configured required software for remote
access to nodes, e.g. via SSH;

o the deployment system should work only with open
source software.

The idea of last requirement is that we may need to modify
the code of some programs for further development. Different
tasks in a distributed system determines different types of
nodes. For example, we can divide grid nodes into several
types: compute nodes, gateway nodes, certificate distribution
nodes, task distribution nodes. These types have different
software and configurations. On the other side usually there
are not much kinds of nodes.

IV. WAYS TO AUTOMATION

Let us consider the process of deployment. It is divided
into the steps, as described above, and we’re using VMs to
emulate nodes. Network infrastructure is also virtualized.

It is convenient to use libvirt [3] for virtual system
management. Libvirt is an open source cross-platform
API, daemon and management tool for managing platform
virtualization. It provides unified controlling for most
hypervisors like KVM, Xen, VMware and others. There are
API for some popular programming languages like Python.
The idea of automation lies in using libvirt, well-known shell
scripting automation and programs written in Python.

OS installing is usually interactive. It contains a set of
specific questions about disk partitions, packages, users,
time zone, etc. These questions are obstacles for automated
OS installing. However, there are various solutions such as
network installation and using specified file with the answers.
These solutions have been successfully used in many modern
systems, e.g. compatible with the Debian GNU/Linux and
Red Hat Enterprise Linux.

Automation is also applicable to editing configuration files.
On the one hand, this implements with text processing tools
and specific actions using regular expressions. On the other
hand, there are special systems designed to automate the
configuration of OS and software — Chef and Puppet [4], [5].

V. RELATED WORKS

Automation of VM deployment is studied in IBM
developerWorks paper “Automate VM deployment [6].
In this paper the author propose to create separate virtual
machines on a given configuration. The described system
consists of two parts: Virtual Machine Deployment Manager
(VDM) and Virtual Machine Configuration Manager (VCM).
Configuration for each VM stored on special disk image.
Then it boots on the VM via virtual CD-ROM and configure
the system. The VDM handles user requests to deploy VM
such as cloning virtual images, configuring VM hardware
settings, and registering the VM to the VM hypervisor.

The VCM is installed in the VM template. After a system
starts, it will start automatically and launch the configuration
applications on the CD with configuration data.

The deployment process is illustrated on figure 1.

VM deployment manager VM templates

vmg [N

VDM SRC VM|SRC VM[SRC WM
i deploy || VTD w/ wi w/f
engine task vCM || vem | vCm

= '

A
VMCONFIG

En H VM VM VI
OJ 01O,

. WM Register VM |
ypenvisor »
sarver Power on WM ¥

VM hypervisor server

Fig. 1. Architecture of the automatic VM deployment framework

Using pre-configured VM templates and configuration files

is the main advantage in this paper. This system is based on
VMware virtualization and shell scripts. It supports Red Hat
Enterprise Linux, SuSE Linux and Windows.
There are also some disadvantages. Unfortunately, described
system does not support creating multiple copies of VM
template, which is essential for our research. Use of special
configuration CD seems redundant.

Another approach is presented in Vagrant system [7]. Va-
grant is an open source tool for building development envi-
ronment using virtual machines. The idea of this system is to
use already prepared VM images, called ’boxes”. You need
only three commands:

vagrant box add <name> <box url>
vagrant init <name>
vagrant up

These commands launches pre-configured VM with
specific configuration. You should create another box to

create a machine with different configuration. Configuration
parameters stores in “vagrantfile* which describes machine
settings such as hostname, network settings, SSH settings
and provider (hypervisor) settings. VirtualBox is a default
provider for Vagrant. But you can use other hypervisors like
VMware via special plugins. Additional software can be
installed using the Chef and Puppet.

This system is simple to use, there are Chef, Puppet, SSH,
Network File System (NFS) support — it is a major advantage.
There are multi-machine support: each machine describes
separately in “vagrantfile“. But concept using in Vagrant
suppose that there is a “master” machine and limited number
of ”slave machines. It is not convenient for large-scale
distributed system.

VMware presents “Auto Deploy“ technology in their
products [8]. Auto Deploy is based on the Preboot eXecution
Environment (PXE) — environment to boot computers using
a network interface. Another important part is vSphere
PowerCLI — a PowerShell based command line interface for
managing vSphere.

Unfortunately, Auto Deploy deals only with VMware
ESXi hypervisor and it only available in VMware vSphere
Enterprise Plus version, which is non-free.

We should consider CFEngine. It is an open source
configuration management system widely used for managing
large numbers of hosts that run heterogeneous operating
systems. There is support for a wide range of architectures:
Windows (cygwin), Linux, Mac OS X, Solaris, AIX, HPUX,
and other UNIX-systems. This system is not directly related
to virtualization, but it is a proven tool for large systems.
The main idea is to use unified configurations that describe
required state of the system.

CFEngine automates file system operations, service man-
agement and system settings cloning.

VI. REQUIREMENTS FOR THE DEPLOYMENT SYSTEM

After the review of existing approaches to automation, let
us formulate the requirements for the deployment system:

« using of general configuration;

« VM templates using;

« the ability to create a set of clones of the template VM;

o automated initialization;

« ability to making manual setting up.

Using of the general configuration assumes unified method
of describing various systems with general parameters.
It means that there is a unified set of parameters for all
modelling systems. Requirements for configuration with these
parameters are described below. If the simulated system
contains of a large number of repetitive nodes, it seems
appropriate to use a special VM templates. In this case you
should make requested number of copies and possibly add

some changes to their configuration. There are two ways
of cloning VMs: complete cloning — copying the template
disk image; incremental cloning — the base image used in
the “read-only* mode, and changes of clone’s settings saved
in separate files. The second way can significantly reduce
disk space usage and deployment time. This economy is
particularly noticeable in the large series of experiments.
We should note that there is an analogue of this approach
applied to memory. It is KSM (Kernel SamePage Merging)
technology. There is also KSM modification — UKSM (Ultra
KSM).

As to the requirement of ability to manual setting up, it
may be necessary when the experiment requires operator
interaction.

A. Requirements for configuration file

We should request following for general configurations.
General configuration should describe:

« all the types of VMs and number of creating copies;

o the parameters for each VM type (e.g., allocated re-
sources, path to disk image);

¢ virtualization parameters (type of hypervisor);

o network settings;

o post-install scripts.

This set of parameters is enough to creating wide class of
research models.

VII. AUTHOR’S APPROACH

At present time, we have created an automatic system
to deploy a VM using the libvirt library. It supports the
deployment of the model of a distributed system based on
a set of VM types. Figure 2 schematically shows the general
scheme of polygon.

node-1-1 node-1-4
192.168.100.2 192.168.100.6

(networkl 192.168.100.0/24 O
192.168.100.1
gw-l 192.168.122.1
(network?2 192.168.122.0/24 O
node-2-1 node-2-8

192.168.122.2 192.168.122.10

Fig. 2. System diagram

An algorithm includes following steps:

e creating a universal configuration in JSON (figure 3);

o preparing VM template disk images;

« incremental cloning of template images, network settings
customization;

« creating XML-descriptions for each VM instance;

o creating a set of VMs based on these XML-descriptions
via libvirt methods.

The first two steps are making manually by the operator,

and the rest is automated.

{
"type" “kym",
"machines" : {
tgwt o |
‘number" @ 1,
"memory" : "H24288",
"disk" “/images/1.1img",
"network" [networkl, network?2]
b,
"node-1" : {
"number" : 4,
“memory"” "262144",
"disk" "/Simages/Z2.img",
"network" @ [networkl]
o
"Mode-2" @ {
‘number" : 8,
"memory" : "262144",
"disk" “/images/3.1img",
"metwork" [network?]
}
b
"netconfig” "Network.cfg"
}

Fig. 3. Example configuration of the test model

Figure 3 shows the configuration of the system consisting
of three types of nodes: “gw* (1l item), “node-1* (4 items)
and “node-2* (8 items). There specified the size of allocated
memory and the path to disk image for each type of nodes.
”Network* option contains a list of used virtual networks,
which are described in the configuration file "Network.cfg*
(figure 4).

“Network1* in this example — is the network connecting
nodes of type “node-1“, and "network2* connecting node-2*
nodes. "Gw-1“ node plays the role of the router and has
connected to both networks.

It should be noted that the operator sets the configuration
manually, but the rest is automated. Deployed system have
automatically configured remote access via SSH and the keys
stores on the host machine.

A. Deployment on a distributed host system

There are also a possibility to use distributed host system
for deployment. It means that you have a number of physical

{
"networks" : {
"metworkl" : {
"range_start" : "192.168.100.2",
"range _end" : "192.168.100.255",
"gateway" "192.168.100.1",
"netmask” "255.255.255.0",
"nat" "yesg"”
I,
"network2"
"range_start" : "192.168.122.2",
"range_end" : "192.168.122.255",
"gateway" "192.168.122.1",
"netmask” "255.255.255.0",
"mat" "yes"
1
}
}

Fig. 4. Example configuration of the network (Network.cfg)

machines and the operator can deploy a large-scale distributed
system based on several host machines. For example, if we
have four hosts with 100 VMs, summary there are 400 VMs.

Distributed deployment system requires following:

e all hosts are connected to the VPN-network;

« there are one controlling host (Deployment Server);

o NFS-server is installed on the Deployment Server;

« configuration file "hosts.json® (figure 5) is stored on the
DS contains IP-addresses of all hosts;

o DS have remote access to other hosts via SSH.

{
"hosts" @ {
"Deployment Server" : {
"address" "10.8.0.1",
"config" "server _conf.json",
“netconfig” "server_netw. json”
},
"host1" :
"address" "10.8.0.4",
“config" "host1 _conf. json",
“netconfig” "hostl netw. json"
b,
"host2" @ {
"address" "10.8.0.8",
“config" "host2 conf. json",
"metconfig” "host2 netw. json"
}
b

Fig. 5. Example configuration of the distributed deployment system

To start deployment process the operator should launch
server application on DS, and then launch client applications
on hosts.

C 0

.

W Deployment Server

(VPN network 10.8.0.0/24 0O
| I
s 10.8.0.4 g 10.8.0.8
hostl host2
hostl network 10.8.3.0/24 () (host2 network 10.8.5.0/24()

99 - 88 80 - 98

Fig. 6. Distributed system diagram

Figure 6 shows a distributed system with general NFS-store.
Additionally, there are possibility to allow access to host’s
virtual networks to other hosts using VPN-tunnel.

VIII. EXPERIMENTS

Using the developed software was made a series of
experiments on the parallel tasks execution. Experiments
showed that deployed virtual model of the distributed
computer system satisfies the requirements for the system
functions. Particularly, the created nodes can execute remotely
received tasks.

The test were conducted using remote access via SSH.
There were created program scripts which launches DDoS-
attack against one chosen node automatically, while the other
nodes were attacking. Simulated attacks were successful. A
network access to the victim VM was blocked.

The scenario of the experiment is parameterized, i.e. you
can change parameters of the experiment such as number
of nodes, addresses, launching tasks, but the used script is
universal.

The experiments were performed with Intel i5-3450 based
system with 16 GB RAM. There was deployed a model
of distributed system consisting of 200 nodes on this host.
Elapsed time of deployment was 24 minutes. Deduplication
technologies such as UKSM led to this result. At the launch
time the memory use was 14 GB, and one hour later it was
reduced to 7 GB.

IX. CONCLUSION

As a result of this research we have created a software
prototype for deploying a virtual model of a distributed com-
puter system. Virtualization-based models of grid computing
systems, produced with the help of the developed software,

were used to simulate various processes in such systems
including their regular functioning and the reaction to denial-
of-service attacks.

Further work is planned to add support for automated
deployment of the software for distributed and parallel com-
puting, such as the Globus Toolkit and MPI implementations.
Beside that, we plan to add support for nested virtualization
in order to create virtualization-based models for the systems
which use virtualization technologies by themselves—cloud
computing systems being a notable example.

REFERENCES

[1] Grossman, R., et al. The open cloud testbed: A wide area testbed for
cloud computing utilizing high performance network services. Preprint
arXiv:0907.4810. 2009.

[2] Krestis A., et al. Implementing and evaluating scheduling
policies in gLite middleware // Concurrency and Com-
putations: Practice and Experience. Wiley, 2012. URL:

http://www.ceid.upatras.gr/faculty/manos/files/papers/cpe_2832_Rev_EV.pdf

[3] Libivrt. The virtualization API. URL: http://libvirt.org

[4] Chef. // Opscode. URL: http://www.opscode.com/chef/

[S] Puppet Labs: IT Automation Software for System Administrators. //
Puppet Labs. 2013. URL: https://puppetlabs.com/

[6] Yong Kui Wang, Jie Li. Automate VM Deployment // IBM.COM. 2009.
URL: http://www.ibm.com/developerworks/linux/library/l-auto-deploy-
vm/

[7] Vagrant // HashiCorp. 2013. URL: http://www.vagrantup.com/

[8] VMware vSphere Auto Deploy: Server Provisioning // VMware.
2013. URL: http://www.vmware.com/products/datacenter-
virtualization/vsphere/auto-deploy.html

