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Abstract — The problem dealt with in this paper is the design of a 

parallel embedded system with the minimal number of 

processors. The system is designed to solve signal processing 

tasks using data collected from antenna arrays. Simulated 

annealing algorithm is used to find the minimal number of 

processors and the optimal system configuration. 
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I.  INTRODUCTION 

Antenna array is hardware used to collect data from the 
environment, it is often employed in areas such as 
radiolocation and hydroacoustics [1]. Radiolocation tools have 
to process signals with a fixed frequency and have hard 
deadlines for the data processing time. At the same time, the 
size of the antenna array is limited, therefore, in order to 
maintain high accuracy, algorithms with significant 
computational cost have to be used to process signals. The co-
design problem of finding the minimal necessary number of 
processors and scheduling the signal processing tasks on it 
arises in this relation. This paper suggests the application of 
simulated annealing algorithm to this problem. The purpose of 
this work is to show how the simulated annealing algorithm 
(discussed, for instance, in [2] and [3]) can work with real-
world industrial problems. 

In Section 2 we define the problem of scheduling for 
systems with antenna arrays and show the structure of signal 
processing algorithms used in such systems. It is explained 
how this problem can be formulated in the way that allows to 
use simulated annealing. The simulated annealing algorithm 
itself is discussed in Section 3. Experimental results obtained 
with the algorithm are given in Section 4.  

II. PROBLEM FORMULATION 

Systems used in radiolocation and hydroacoustics use a set 
of sensors to collect data from the environment. This set is 
called antenna array, and it is the most valuable and 
complicated part of the system. The size of the antenna array is 
fixed, so it is preferable and cheaper to build the system with a 
smaller antenna array and effective performance.  

The problem solved with the antenna array system is 
finding the coordinates of the source of the signal. Traditional 
signal processing algorithms are based on fast Fourier 

transforms (FFT). However, their potential solution capabilities 
are limited by the sizes of the antenna array. With a small array, 
the FFT will be performed on a small set of points, which can 
lead to low accuracy. Alternative methods based on automatic 
interference filtration [4] and on correlation matrix expansion 
(also shortened to CME) [5] can give accurate results even with 
smaller antenna arrays. They use several samples collected 
with the small array over a period of time to get very precise 
solutions. However, their computational complexity is 
significantly higher. 

Assume that the antenna array has K elements (sensors) and 
works in frequency interval (-B, B). The interval is split into L 
parts, and each of them is processed separately until the final 
result is computed on the last stage of the algorithm. We also 
need the number of support vectors used in CME method, Mθ. 

The sampling frequency is 1/=aB, where a≥2.5 is the 
coefficient in the Kotelnikov-Nyquist theorem. The system 
waits until a sample of n points is collected from the sensors, 
and then starts the processing algorithm. Therefore, the 

execution deadline is n/, the time until the new sample is 
collected. If the deadline is broken, the sensors’ buffer will 
overflow. 
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3
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5 
Computing signal 
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O(K) K
2
 K 

6 
Vector 

multiplication 
O(K) K 1 

7 Vector comparison O(K) 1 K 

8 Vector comparison O(LK) K - 

Table 1. Steps of the CME method 



The steps of the algorithm, their respective computational 
complexities and the size of the data processed on each step are 
shown in Table 1. For simplicity, all figures are given only for 
the CME method. However, the general scheme of the 
automatic filtration method is the same, the difference lies on 
step 5, where the complexity becomes O(K

2
). 

The signal processing runs on a multiprocessor system. It is 
assumed that processors are identical. Processors have fixed 
clock rate and reliability. The processors are interconnected, 
data transfer rate is fixed. 

The workflow of the program is shown in Figure 6. The 
nodes represent subprograms and the edges represent 
dependencies between them. First, preprocessing, including 
FFT, is applied to the collected data, and the corresponding 
nodes are in the topmost row. They implement steps 1-3 from 
Table 3. The number of nodes is the same as K, the size of the 
antenna array. Then all data is sent to each of the L 
subprocesses and CME is performed. The CME can be divided 
into steps; each step implies some operations on the matrix 
(nodes CME_i_stage_j, where i runs from 1 to L, and j 
enumerates the stages). In Figure 6, there are three stages that 
correspond to steps 4 and 5 in Table 1. In the latter half the 
CME is broken into Mθ parallel threads for step 6 and joined 
into one thread on step 7 (nodes CME_i_pstage_j_k, where i 
runs from 1 to L, j runs from 1 to Mθ, and k enumerates the 
stages).  Then all data is collected for final processing on step 8 
(CME_final). 

All nodes perform simple computations with matrices and 
vectors, such as FFT or matrix multiplications, so the 
complexity of each subprogram (also called ‘task’ hereafter) is 
known. Since processor performance is known, it is possible to 
calculate the execution time of each node, as well as the 
amount of data sent between the nodes. So, we reach the 
following mathematical problem statement [2]. 

The signal processing program can be represented with its 
data flow graph G = {V, E}, where V is the set of vertices 
(corresponding to the tasks) and E is the set of edges 
(corresponding to the dependencies of the tasks). Each vertex is 
marked by the time of execution of the corresponding task and 
each edge is marked by the time of data transfer. The set of 
processors denoted by M is given. 

Processor redundancy implies adding a new processor to 
the system and using it to run the same tasks as on some 
existing processor. In this case the system fails if both 
processors fail. The additional processor is used as hot spare, 
i.e. it receives the same data and performs the same operations 
as the primary processor, but sends data only if the primary one 
fails. With switch architecture used, this does not cause any 
delays in the work of the system. 

A schedule for the program is defined by task allocation, 
the correspondence of each task with one of the processors, and 
task order, the order of execution of the task on the processor. 
Formally, a schedule is defined as a pair (S, D) where S is a set 
of triplets (v, m, n) where v ∈V, m ∈M, n ∈ℕ, so that ∀v ∈V : 
∃!s=(vi, mi, ni) ∈S:vi=v; and ∀si=(vi, mi, ni) ∈S, ∀sj=(vj, mj, nj) 
∈S: (si≠sj ∧ mi=mj ) ⇒ ni≠nj. 

D is a multiset of elements of the set of processors. 
Substantially m and n denote the placement of the task on a 
processor and the order of execution for each version of each 
task. The multiset D denotes the spare processors: if processor 
m has k spares, it appears in D k times. 

A schedule can be represented with a graph. The vertices of 
the graph are the elements of S. If the corresponding tasks are 
connected with an edge in the graph G, the same edge is added 
to the schedule graph. Additional edges are inserted for all 
pairs of tasks placed on the same processor right next to each 
other.  

According to the definition, there can be only one instance 
of each task in the schedule, and all tasks on any processor 
have different numbers. Besides these, one more limitation 
must be introduced to guarantee that the program can be 
executed completely. A schedule S is correct by definition if its 
graph has no cycles. Otherwise the system would reach a 
deadlock where two processors are waiting for data from each 
other forever. 

For every correct schedule the following functions are 
defined: t(S) – time of execution of the whole program, R(S) – 
reliability of the system, M(S) – the number of processors used. 

Given the program G, tdir, the hard deadline of the program, 
and Rdir, the required reliability of the system, the schedule S 
that satisfies both constraints (t(S) < tdir and R(S) > Rdir) and 
requires the minimal number of processors is to be found. 

Theorem  1. The optimization problem formulated above is 
NP-hard. 

III. SIMULATED ANNEALING ALGORITHM 

 
The proposed algorithm of solution is based on simulated 

annealing [6]. For simplicity, the model used in this study does 
not consider software reliability, so operations and structures 
related to that are omitted here. This does not affect the 
algorithm’s performance because it simply works as if the 
software reliability is always maximal. 

The following three operations on schedules are used. 

Add spare processor and Delete spare processor. Adds or 
removes a hot spare to the selected processor.  

Move vertex. This operation changes the order of tasks on a 
processor or moves a task on another processor. It is obligatory 
to make sure that no cycles appear after this operation. The 
analytic form of the necessary and sufficient condition of the 
correctness of this operation is given in [4]. 

Theorem 2. If A and B are correct schedules, there exists a 
sequence of operations that transforms A to B such that all 
interim schedules are correct. 

Each iteration of the algorithm consists of the following 
steps: 

Step 1. Current approximation is evaluated and the 
operation to be performed is selected. 



Step 2. Parameters for the operation are selected and the 
operation is applied.  

Step 3. If the resulting schedule is better than the current 
one, it is accepted as the new approximation. If the resulting 
schedule is worse, it is accepted with a certain probability. 

Step 4. Repeat from step 1. 

The number of iterations of the algorithm is pre-determined. 

If the reliability of the system is lower than required, spare 
processors and versions should be added, otherwise they can be 
deleted. If the time of execution exceeds the deadline the 
possible solutions are deleting versions or moving vertices. The 
selection of the operation is not deterministic so that the 
algorithm can avoid endless loops. 

When the operation is selected, its parameters have to be 
chosen. For each operation the selection of its parameters is 
nondeterministic, however, heuristics are employed to help the 
algorithm move in the direction where the new schedule is 
more likely to be better. 

The selection of the operation is not deterministic so that 
the algorithm can avoid endless loops. The reliability limit and 
the deadline can either be satisfied or not. Probability of 
selecting each operation, possibly zero, is defined for each of 
the four possible situations depending on the time and 
reliability constraints (tdir and Rdir): both constraints satisfied, 
both constraints not satisfied, reliability constraint is satisfied 
while the time constraint is not, and vice versa. These 
probabilities are given before the start of the algorithm as its 
settings.  

Some operations cannot be applied in some cases. For 
example, if none of the processors have spare copies it is 
impossible to delete processors and if all versions are already 
used it is impossible to add more versions. Such cases can be 
detected before selecting the operation, so impossible 
operations are not considered. 

When the operation is selected, its parameters have to be 
chosen. 

Add spare processor. Processors with fewer spares have 
higher probability of being selected for this operation.  

Delete spare processor. A spare of a random processor is 
deleted. The probability is proportional to the number of spare 
processors.  

The probabilities for these operations are set with the 
intention to keep balance between the reliability of all 
components of the system.  

Move vertex. If t(S) < tdir,  the main objective is to reduce 
the number of processors. With a probability of pcut the 
following operation is performed: the processor with the least 
tasks is selected and all tasks assigned to it are moved to other 
processors. With a probability of 1-pcut  the movement of a 
task is decided by one of the three strategies described below. 

If t(S) > tdir,  it is necessary to reduce the time of execution 
of the schedule. It can be achieved either by moving several 
tasks to a new processor or reallocating some tasks. The 

parameters for the operation are chosen according to one of the 
three strategies: delay reduction, idle time reduction or mixed.  

Delay reduction strategy. The idea of this strategy emerges 
from the assumption that if the time of the start of each task is 
equal to the length of the critical path to this task in graph G, 
the schedule is optimal. The length of the critical path is the 
sum of the lengths of all the tasks forming the path and it 
represents the earliest time when the execution of the task can 
begin.  

For each element s it is possible to calculate the earliest 
time when s can start, i.e. when all the tasks preceding the 
current one are completed. The difference between this time 
and the moment when the execution of s actually starts 
according to the current schedule is called the delay of task s. If 
some task has a high delay, it means that some task preceding 
it is blocking its work, so the task before the one with a high 
delay has to be moved to another processor. 

The task before the task with the highest delay is selected 
for Move Vertex operation. If the operation is not accepted, on 
the next iteration the task before the task with the second 
highest delay is selected, and so on. The position (pair (m, n) 
from the triplet) is selected randomly among the positions 
where the task can be moved without breaking the correctness 
condition. 

Figure 1 gives an example of delay reduction. Task 3 does 
not depend on task 4, so moving task 4 to the first processor 
reduces the delay of task 3, and the total time decreases 
accordingly. 

 

Figure 1.  Delay reduction strategy 

Idle time reduction strategy. This strategy is based on the 
assumption that in the best schedule the total time when the 
processors are idle and no tasks are executed due to waiting for 
data transfer to end is minimal.  

For each position (m, n) the idle time is defined as follows. 
If n=1 then its idle time is the time between the beginning of 
the work and the start of the execution of the task in the 
position (m, 1). If the position (m, n) denotes the place after the 
end of the last task on the processor m, then its idle time is the 
time between the end of the execution of the last task on m and 
the end of the whole program. Otherwise, the idle time of the 
position (m, n)  is the interval between the end of the task in (m, 
n-1)  and the beginning of the task in (m, n). 



The task to move is selected randomly with higher 
probability assigned to the tasks executed later. Among all 
positions where it is possible to move the selected task, the 
position with the highest idle time is selected. If the operation 
is not accepted, the position with the second highest idle time is 
selected, and so on. 

The idle time reduction strategy is illustrated in Figure 2. 
The idle time between tasks 1 and 4 is large and thus moving 
task 3 allows reducing the total execution time.  

 

Figure 2.  Idle time reduction strategy 

Mixed strategy. As the name suggests, the mixed strategy is 
a combination of the two previous strategies. One of the two 
strategies is selected randomly on each iteration. The aim of 
this strategy is to find parts of the schedule where some 
processor is idle for a long period and to try moving a task with 
a big delay there, prioritizing earlier positions to reduce the 
delay as much as possible. This strategy has the benefits of 
both idle time reduction and delay reduction, however, more 
iterations may be required to reach the solution. 

After performing the operation a new schedule is created 
and time, reliability and number of processors are calculated 
for it. Depending on the values of these three functions the new 
schedule can be accepted as the new approximation for the next 
iteration of the algorithm. Similar to the standard simulated 
annealing algorithm, parameter d modeling the temperature is 
introduced. Its initial value is big and it decreases after each 
iteration.  

The probability to accept a worse schedule on step 3 
depends on the parameter called temperature. This probability 
decreases along with the temperature over time. Temperature 
functions such as Boltzmann and Cauchy laws [7] can be used 
as in most simulated annealing algorithms 

Theorem 3. If the temperature decreases at logarithmic rate 
or slower, the simulated annealing algorithm converges in 
probability to the stationary distribution where the combined 
probability of all optimal results is 1.  

IV. EXPERIMENTS 

Figure 7 shows the solution found by the algorithm for the 
problem shown on Figure 6. The system has been successfully 
reduced to 4 processors. 

In real systems the size of the array is a power of 2, usually 
between 256 and 1024 (radiolocation systems use smaller 

arrays), and the number of frequency intervals (L) is a power of 
2, usually 32 or 64. For evaluation purposes, other values of L 
were tested as well. The value of Mθ is normally between 1 and 
4. 

In general, the majority of computations are performed 
after the initial processing on the K antennas and constitute the 
L*Mθ parallel sequences of nodes in the program graph, 
Therefore, the quality of the algorithm can be estimated by 
comparing the number of processors in the result with the 
default system configuration where L*Mθ processors are used. 
The following graphs (Figures 3-5) show the quotient of these 
two numbers, depending on L, for radiolocation problem. 
Lower quotient means better result of the algorithm. 

 

 

 

Figure 3.  Optimization rate, Mθ=2 

 

 

Figure 4.  Optimization rate, Mθ=3 

 



 

Figure 5.  Optimization rate, Mθ=4 

As we can see, the algorithm optimizes the multiprocessor 
system by at least 25% in harder examples with many parallel 
tasks, and by more than a half in simpler cases. 

CONCLUSIONS 

Experiments with our tool testify that scheduling for 
antenna arrays can be done effectively with simulated 
annealing. The experimental data shows that the size of the 

system can be optimized by 25-30% without breaking 
deadlines and limits of reliability. 
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Figure 6.  Signal processing workflow 

 
Figure 7.  Schedule for the program from Figure 6 


