
Scheduling signal processing tasks for antenna arrays

with simulated annealing

Daniil A. Zorin

Department of Computational Mathematics and Cybernetics

Lomonosov Moscow State University

Moscow, Russia

juan@lvk.cs.msu.su

Abstract — The problem dealt with in this paper is the design of a

parallel embedded system with the minimal number of

processors. The system is designed to solve signal processing

tasks using data collected from antenna arrays. Simulated

annealing algorithm is used to find the minimal number of

processors and the optimal system configuration.

Keywords — optimization, scheduling, hardware design,

embedded systems, simulated annealing

I. INTRODUCTION

Antenna array is hardware used to collect data from the
environment, it is often employed in areas such as
radiolocation and hydroacoustics [1]. Radiolocation tools have
to process signals with a fixed frequency and have hard
deadlines for the data processing time. At the same time, the
size of the antenna array is limited, therefore, in order to
maintain high accuracy, algorithms with significant
computational cost have to be used to process signals. The co-
design problem of finding the minimal necessary number of
processors and scheduling the signal processing tasks on it
arises in this relation. This paper suggests the application of
simulated annealing algorithm to this problem. The purpose of
this work is to show how the simulated annealing algorithm
(discussed, for instance, in [2] and [3]) can work with real-
world industrial problems.

In Section 2 we define the problem of scheduling for
systems with antenna arrays and show the structure of signal
processing algorithms used in such systems. It is explained
how this problem can be formulated in the way that allows to
use simulated annealing. The simulated annealing algorithm
itself is discussed in Section 3. Experimental results obtained
with the algorithm are given in Section 4.

II. PROBLEM FORMULATION

Systems used in radiolocation and hydroacoustics use a set
of sensors to collect data from the environment. This set is
called antenna array, and it is the most valuable and
complicated part of the system. The size of the antenna array is
fixed, so it is preferable and cheaper to build the system with a
smaller antenna array and effective performance.

The problem solved with the antenna array system is
finding the coordinates of the source of the signal. Traditional
signal processing algorithms are based on fast Fourier

transforms (FFT). However, their potential solution capabilities
are limited by the sizes of the antenna array. With a small array,
the FFT will be performed on a small set of points, which can
lead to low accuracy. Alternative methods based on automatic
interference filtration [4] and on correlation matrix expansion
(also shortened to CME) [5] can give accurate results even with
smaller antenna arrays. They use several samples collected
with the small array over a period of time to get very precise
solutions. However, their computational complexity is
significantly higher.

Assume that the antenna array has K elements (sensors) and
works in frequency interval (-B, B). The interval is split into L
parts, and each of them is processed separately until the final
result is computed on the last stage of the algorithm. We also
need the number of support vectors used in CME method, Mθ.

The sampling frequency is 1/=aB, where a≥2.5 is the
coefficient in the Kotelnikov-Nyquist theorem. The system
waits until a sample of n points is collected from the sensors,
and then starts the processing algorithm. Therefore, the

execution deadline is n/, the time until the new sample is
collected. If the deadline is broken, the sensors’ buffer will
overflow.

Stage Name Complexity
Input
size

Output
size

1 Normalization O(aL) - aL

2 FFT O(aLlog2aL) aL 1

3
Vector

multiplication
O(K

2
) 1 K

2

4
Computing

eigenvalues, matrix
reversal

O(K
3
) K

2
 K

2

5
Computing signal
source coordinates

O(K) K
2
 K

6
Vector

multiplication
O(K) K 1

7 Vector comparison O(K) 1 K

8 Vector comparison O(LK) K -

Table 1. Steps of the CME method

The steps of the algorithm, their respective computational
complexities and the size of the data processed on each step are
shown in Table 1. For simplicity, all figures are given only for
the CME method. However, the general scheme of the
automatic filtration method is the same, the difference lies on
step 5, where the complexity becomes O(K

2
).

The signal processing runs on a multiprocessor system. It is
assumed that processors are identical. Processors have fixed
clock rate and reliability. The processors are interconnected,
data transfer rate is fixed.

The workflow of the program is shown in Figure 6. The
nodes represent subprograms and the edges represent
dependencies between them. First, preprocessing, including
FFT, is applied to the collected data, and the corresponding
nodes are in the topmost row. They implement steps 1-3 from
Table 3. The number of nodes is the same as K, the size of the
antenna array. Then all data is sent to each of the L
subprocesses and CME is performed. The CME can be divided
into steps; each step implies some operations on the matrix
(nodes CME_i_stage_j, where i runs from 1 to L, and j
enumerates the stages). In Figure 6, there are three stages that
correspond to steps 4 and 5 in Table 1. In the latter half the
CME is broken into Mθ parallel threads for step 6 and joined
into one thread on step 7 (nodes CME_i_pstage_j_k, where i
runs from 1 to L, j runs from 1 to Mθ, and k enumerates the
stages). Then all data is collected for final processing on step 8
(CME_final).

All nodes perform simple computations with matrices and
vectors, such as FFT or matrix multiplications, so the
complexity of each subprogram (also called ‘task’ hereafter) is
known. Since processor performance is known, it is possible to
calculate the execution time of each node, as well as the
amount of data sent between the nodes. So, we reach the
following mathematical problem statement [2].

The signal processing program can be represented with its
data flow graph G = {V, E}, where V is the set of vertices
(corresponding to the tasks) and E is the set of edges
(corresponding to the dependencies of the tasks). Each vertex is
marked by the time of execution of the corresponding task and
each edge is marked by the time of data transfer. The set of
processors denoted by M is given.

Processor redundancy implies adding a new processor to
the system and using it to run the same tasks as on some
existing processor. In this case the system fails if both
processors fail. The additional processor is used as hot spare,
i.e. it receives the same data and performs the same operations
as the primary processor, but sends data only if the primary one
fails. With switch architecture used, this does not cause any
delays in the work of the system.

A schedule for the program is defined by task allocation,
the correspondence of each task with one of the processors, and
task order, the order of execution of the task on the processor.
Formally, a schedule is defined as a pair (S, D) where S is a set
of triplets (v, m, n) where v ∈V, m ∈M, n ∈ℕ, so that ∀v ∈V :
∃!s=(vi, mi, ni) ∈S:vi=v; and ∀si=(vi, mi, ni) ∈S, ∀sj=(vj, mj, nj)
∈S: (si≠sj ∧ mi=mj) ⇒ ni≠nj.

D is a multiset of elements of the set of processors.
Substantially m and n denote the placement of the task on a
processor and the order of execution for each version of each
task. The multiset D denotes the spare processors: if processor
m has k spares, it appears in D k times.

A schedule can be represented with a graph. The vertices of
the graph are the elements of S. If the corresponding tasks are
connected with an edge in the graph G, the same edge is added
to the schedule graph. Additional edges are inserted for all
pairs of tasks placed on the same processor right next to each
other.

According to the definition, there can be only one instance
of each task in the schedule, and all tasks on any processor
have different numbers. Besides these, one more limitation
must be introduced to guarantee that the program can be
executed completely. A schedule S is correct by definition if its
graph has no cycles. Otherwise the system would reach a
deadlock where two processors are waiting for data from each
other forever.

For every correct schedule the following functions are
defined: t(S) – time of execution of the whole program, R(S) –
reliability of the system, M(S) – the number of processors used.

Given the program G, tdir, the hard deadline of the program,
and Rdir, the required reliability of the system, the schedule S
that satisfies both constraints (t(S) < tdir and R(S) > Rdir) and
requires the minimal number of processors is to be found.

Theorem 1. The optimization problem formulated above is
NP-hard.

III. SIMULATED ANNEALING ALGORITHM

The proposed algorithm of solution is based on simulated

annealing [6]. For simplicity, the model used in this study does
not consider software reliability, so operations and structures
related to that are omitted here. This does not affect the
algorithm’s performance because it simply works as if the
software reliability is always maximal.

The following three operations on schedules are used.

Add spare processor and Delete spare processor. Adds or
removes a hot spare to the selected processor.

Move vertex. This operation changes the order of tasks on a
processor or moves a task on another processor. It is obligatory
to make sure that no cycles appear after this operation. The
analytic form of the necessary and sufficient condition of the
correctness of this operation is given in [4].

Theorem 2. If A and B are correct schedules, there exists a
sequence of operations that transforms A to B such that all
interim schedules are correct.

Each iteration of the algorithm consists of the following
steps:

Step 1. Current approximation is evaluated and the
operation to be performed is selected.

Step 2. Parameters for the operation are selected and the
operation is applied.

Step 3. If the resulting schedule is better than the current
one, it is accepted as the new approximation. If the resulting
schedule is worse, it is accepted with a certain probability.

Step 4. Repeat from step 1.

The number of iterations of the algorithm is pre-determined.

If the reliability of the system is lower than required, spare
processors and versions should be added, otherwise they can be
deleted. If the time of execution exceeds the deadline the
possible solutions are deleting versions or moving vertices. The
selection of the operation is not deterministic so that the
algorithm can avoid endless loops.

When the operation is selected, its parameters have to be
chosen. For each operation the selection of its parameters is
nondeterministic, however, heuristics are employed to help the
algorithm move in the direction where the new schedule is
more likely to be better.

The selection of the operation is not deterministic so that
the algorithm can avoid endless loops. The reliability limit and
the deadline can either be satisfied or not. Probability of
selecting each operation, possibly zero, is defined for each of
the four possible situations depending on the time and
reliability constraints (tdir and Rdir): both constraints satisfied,
both constraints not satisfied, reliability constraint is satisfied
while the time constraint is not, and vice versa. These
probabilities are given before the start of the algorithm as its
settings.

Some operations cannot be applied in some cases. For
example, if none of the processors have spare copies it is
impossible to delete processors and if all versions are already
used it is impossible to add more versions. Such cases can be
detected before selecting the operation, so impossible
operations are not considered.

When the operation is selected, its parameters have to be
chosen.

Add spare processor. Processors with fewer spares have
higher probability of being selected for this operation.

Delete spare processor. A spare of a random processor is
deleted. The probability is proportional to the number of spare
processors.

The probabilities for these operations are set with the
intention to keep balance between the reliability of all
components of the system.

Move vertex. If t(S) < tdir, the main objective is to reduce
the number of processors. With a probability of pcut the
following operation is performed: the processor with the least
tasks is selected and all tasks assigned to it are moved to other
processors. With a probability of 1-pcut the movement of a
task is decided by one of the three strategies described below.

If t(S) > tdir, it is necessary to reduce the time of execution
of the schedule. It can be achieved either by moving several
tasks to a new processor or reallocating some tasks. The

parameters for the operation are chosen according to one of the
three strategies: delay reduction, idle time reduction or mixed.

Delay reduction strategy. The idea of this strategy emerges
from the assumption that if the time of the start of each task is
equal to the length of the critical path to this task in graph G,
the schedule is optimal. The length of the critical path is the
sum of the lengths of all the tasks forming the path and it
represents the earliest time when the execution of the task can
begin.

For each element s it is possible to calculate the earliest
time when s can start, i.e. when all the tasks preceding the
current one are completed. The difference between this time
and the moment when the execution of s actually starts
according to the current schedule is called the delay of task s. If
some task has a high delay, it means that some task preceding
it is blocking its work, so the task before the one with a high
delay has to be moved to another processor.

The task before the task with the highest delay is selected
for Move Vertex operation. If the operation is not accepted, on
the next iteration the task before the task with the second
highest delay is selected, and so on. The position (pair (m, n)
from the triplet) is selected randomly among the positions
where the task can be moved without breaking the correctness
condition.

Figure 1 gives an example of delay reduction. Task 3 does
not depend on task 4, so moving task 4 to the first processor
reduces the delay of task 3, and the total time decreases
accordingly.

Figure 1. Delay reduction strategy

Idle time reduction strategy. This strategy is based on the
assumption that in the best schedule the total time when the
processors are idle and no tasks are executed due to waiting for
data transfer to end is minimal.

For each position (m, n) the idle time is defined as follows.
If n=1 then its idle time is the time between the beginning of
the work and the start of the execution of the task in the
position (m, 1). If the position (m, n) denotes the place after the
end of the last task on the processor m, then its idle time is the
time between the end of the execution of the last task on m and
the end of the whole program. Otherwise, the idle time of the
position (m, n) is the interval between the end of the task in (m,
n-1) and the beginning of the task in (m, n).

The task to move is selected randomly with higher
probability assigned to the tasks executed later. Among all
positions where it is possible to move the selected task, the
position with the highest idle time is selected. If the operation
is not accepted, the position with the second highest idle time is
selected, and so on.

The idle time reduction strategy is illustrated in Figure 2.
The idle time between tasks 1 and 4 is large and thus moving
task 3 allows reducing the total execution time.

Figure 2. Idle time reduction strategy

Mixed strategy. As the name suggests, the mixed strategy is
a combination of the two previous strategies. One of the two
strategies is selected randomly on each iteration. The aim of
this strategy is to find parts of the schedule where some
processor is idle for a long period and to try moving a task with
a big delay there, prioritizing earlier positions to reduce the
delay as much as possible. This strategy has the benefits of
both idle time reduction and delay reduction, however, more
iterations may be required to reach the solution.

After performing the operation a new schedule is created
and time, reliability and number of processors are calculated
for it. Depending on the values of these three functions the new
schedule can be accepted as the new approximation for the next
iteration of the algorithm. Similar to the standard simulated
annealing algorithm, parameter d modeling the temperature is
introduced. Its initial value is big and it decreases after each
iteration.

The probability to accept a worse schedule on step 3
depends on the parameter called temperature. This probability
decreases along with the temperature over time. Temperature
functions such as Boltzmann and Cauchy laws [7] can be used
as in most simulated annealing algorithms

Theorem 3. If the temperature decreases at logarithmic rate
or slower, the simulated annealing algorithm converges in
probability to the stationary distribution where the combined
probability of all optimal results is 1.

IV. EXPERIMENTS

Figure 7 shows the solution found by the algorithm for the
problem shown on Figure 6. The system has been successfully
reduced to 4 processors.

In real systems the size of the array is a power of 2, usually
between 256 and 1024 (radiolocation systems use smaller

arrays), and the number of frequency intervals (L) is a power of
2, usually 32 or 64. For evaluation purposes, other values of L
were tested as well. The value of Mθ is normally between 1 and
4.

In general, the majority of computations are performed
after the initial processing on the K antennas and constitute the
L*Mθ parallel sequences of nodes in the program graph,
Therefore, the quality of the algorithm can be estimated by
comparing the number of processors in the result with the
default system configuration where L*Mθ processors are used.
The following graphs (Figures 3-5) show the quotient of these
two numbers, depending on L, for radiolocation problem.
Lower quotient means better result of the algorithm.

Figure 3. Optimization rate, Mθ=2

Figure 4. Optimization rate, Mθ=3

Figure 5. Optimization rate, Mθ=4

As we can see, the algorithm optimizes the multiprocessor
system by at least 25% in harder examples with many parallel
tasks, and by more than a half in simpler cases.

CONCLUSIONS

Experiments with our tool testify that scheduling for
antenna arrays can be done effectively with simulated
annealing. The experimental data shows that the size of the

system can be optimized by 25-30% without breaking
deadlines and limits of reliability.

REFERENCES

[1] Kostenko V.A. Design of computer systems for digital signal processing
based on the concept of ``open'' architecture.//Automation and Remote
Control. – 1994. – V. 55. – №. 12. – P. 1830-1838.

[2] D. A. Zorin and V. A. Kostenko Algorithm for Synthesis of Real-Time
Systems under Reliability Constraints // Journal of Computer and
Systems Sciences International. 2012. Vol. 51. No. 3. P. 410–417.

[3] Daniil A. Zorin, Valery A. Kostenko. Co-design of Real-time Embedded
Systems under Reliability Constraints // Proceedings of 11th IFAC/IEEE
International Conference on Programmable Devices and Embedded
Systems (PDeS). Brno, Czech Republic: Brno University of
Technology, 2012. P. 392-396

[4] Monzingo R. A., Miller T. W. Introduction to adaptive arrays, 1980
//Wiley New York. – P. 56-63.

[5] Widrow B., Stearns S. D. Adaptive signal processing //Englewood
Cliffs, NJ, Prentice-Hall, Inc., 1985, 491 p. – 1985. – V. 1.

[6] Kalashnikov, A.V. and Kostenko, V.A. (2008). A Parallel Algorithm of
Simulated Annealing for Multiprocessor Scheduling. Journal of
Computer and Systems Sciences International, 47, No. 3, pp. 455-463.

[7] Wasserman F. Neurocomputer Techniques: Theory and Practice
[Russian translation] //Mir, Moscow. – 1992. – 240 p.

http://www.zentralblatt-math.org/zmath/en/search/?q=ai:kostenko.v-a

Figure 6. Signal processing workflow

Figure 7. Schedule for the program from Figure 6

