
On the Implementation of Data-Breakpoints Based
Race Detection for Linux Kernel Modules

Nikita Komarov
ISPRAS

Moscow, Russia
nkomarov@ispras.ru

Abstract—An important class of problems in software are
race conditions. Errors of this class are becoming more common
and more dangerous with the development of multi-processor
and multi-core systems, especially in such a fundamentally
parallel environment as an operating system kernel. The paper
overviews some of existing approaches to detect race conditions
including DataCollider system based on concurrent memory
access tracking. RaceHound, a race condition detection system
for Linux drivers based on similar principles as DataCollider is
presented.

Keywords—driver verification; race condition; linux kernel;
dynamic verification; operating system

I. INTRODUCTION

The Linux Kernel is one of the most popular and
fast-developed projects in the world. Linux Kernel
development started in 1991 by Linus Torvalds. The
development process of Linux kernel is distributed, about
1,000 people worldwide are involved in the preparation of each
new kernel release. The new release comes out every 2-3
months. Changes are submitted by the developers in the form
of little pieces of code called patches. Each kernel release
consists of about 9-13 thousands of patches, which corresponds
to an average of about 7.3 patches per hour. The total source
code size of one of the latest versions of the Linux kernel -
version 3.2 – is about 15 million lines. These data are given in
the latest Linux Foundation report on Linux Kernel
development [6].

Linux Kernel development process is described in [7].
There are some other branches of kernel development based on
the original Linux Kernel. Some of the Linux distributions
developers support their own versions of the kernel - for
example, Red Hat [11], openSUSE [12] and Debian [13].
These kernels are different from the original version in that
they support some additional functionality and/or contain bug
fixes. There are some kernel versions with the significant
changes to the basic systems of the kernel, for example, a
real-time Linux Kernel [14] or the Android kernel [15]. Over
time some changes from different branches of development
needed by a broad range of people can get to the original
kernel.

As with any programs, there are various errors in Linux
Kernel that lead to the incorrect functioning of the OS, freezing
etc. The greatest part of the kernel (about 70%) are various
device drivers. The results of studies that have been carried out
in [16] and [17] in the early 2000s for kernels 1.0 to 2.4.1,
showed that drivers contain up to 85% of all errors in the Linux
Kernel. A similar study for the Microsoft Windows XP kernel
in 2006 also showed that the highest number of errors in the
operating system kernel belongs to the device drivers [18].
More recent studies done in 2011 for the Linux Kernel versions
from 2.6.0 to 2.6.33 showed that although the number of errors
in the drivers became less than in the kernel components
responsible for the support of the various architectures and file
systems, their share is still high [19].

The task of ensuring the reliability of drivers is important as
drivers in Linux work with the same privileges level as the rest
of the kernel. Because of this a vulnerability in the drivers can
lead to the possibility of execution of arbitrary code with kernel
privileges and access to the kernel structures.

II. RACE CONDITIONS

One of the important types of errors in the software is race
conditions [20]. A race condition occurs when a program is
working wrong due to an unexpected sequence of events that
leads to the simultaneous access to the same resource by
multiple processes.

As an example of a race condition, consider a simple
expression in some programming language: b = b + 1. Imagine
that this expression is executed simultaneously by two
processes, the variable b is common to them, and its initial
value is 5. Here is a possible example of the order of execution
of the program:

• Process 1 loads b value in a register.

• Process 2 loads b value in a register.

• Process 1 increases its register value by 1 with a result
of 6.

• Process 2 increases its register value by 1 with a result
of 6.

• Process 1 stores its register value (6) in the variable b.

• Process 2 stores its register value (6) in the variable b.

The initial value of b was 5, each of the processes added 1,
but the final result was 6 instead of the expected 7. Processes
are not executed atomically, another process may intervene and
perform operations on some shared resource between almost
any two instructions. Similarly, the classic example is the
simultaneous withdrawal of money from a bank account from
two different places: if the check for the required amount in the
account by the second process would occur between similar
check and amount decrease of the first process, the account
balance may become wrong that will cause a loss and
significant reputation damage.

With the development of multicore and multiprocessor
systems race condition related errors including the Linux
Kernel, becomes even more important than before. For
example in the study [1] it was concluded that the race
conditions are the most frequent type of error in the Linux
Kernel and make up about 17% of typical errors in the Linux
Kernel (on the second and third place are specific objects leaks
and null pointer dereference – 9% both). The study was
conducted by analyzing the comments to the changes in the
Linux Kernel. From the above it can be concluded that race
conditions are an important and common class of errors,
including those in the Linux Kernel, and the task to find them
is relevant.

III. EXISTING METHODS FOR DETECTING RACE CONDITIONS

There are various ways to detect race conditions in
programs. Most of the dynamic methods are based on two
principles: Lockset and Happens-before [4] [5]. Lockset based
tools check if there is synchronization between threads when
accessing shared variables. This makes it possible to find a
large number of potential errors, but the number of false
positives is high too.

Happens-before based instruments find accesses from
different threads to a specified area of memory that have no
specified order, meaning they can be in a different order. These
instruments depend on how the access is done in a real system
operation, so they identify a smaller subset of errors but have
greater accuracy than the Lockset method. An alternative to
this method is a direct test for simultaneous memory access by
placing breakpoints - this method is implemented in the
DataCollider system (see sect. II.C). In most real systems, a
combination of two methods is used. Let's consider some
examples of such systems.

A. Helgrind

Helgrind is a tool for analyzing user mode programs for
race conditions, based on the Valgrind framework [10]. This
system can detect three types of errors:

• Improper pthreads API use;
• Possible deadlocks that occur due to incorrect order of

synchronization mechanisms;
• Race conditions.

Helgrind detects race conditions by monitoring all accesses
to the memory of the process and all use of synchronization
primitives. Then the system builds a graph, based on which it
makes a conclusion that there is a «happens-before»

relationship between accesses. If the access to a certain area of
memory happens in two different threads, the system checks
whether there can be found the «happens-before» relationship
between them, that is, whether one of accesses happen before
the other. The system makes conclusions of the presence or
absence of such a connection based on the presence or absence
of various synchronization primitives. If the memory access
occurs in at least two different threads and the system cannot
find a relationship «happens-before» between them, it
concludes that there is a data race between them.

B. ThreadSanitizer

ThreadSanitizer is another engine that finds race conditions
in user space programs. The algorithm of this system is similar
to the Helgrind algorithm and is described in [23]. The system
instruments the program code adding calls to its functions
before each memory access and every time the program uses
some synchronization tools. The system then tries to figure out
which of the memory accesses occur with inadequate
synchronization and may conflict with other memory accesses.
ThreadSanitizer also has an offline mode in which it can be
used to analyze traces created by some other tools such as
Kernel Strider for Linux Kernel [24].

C. DataCollider

The system is designed for dynamic race conditions
detection in Microsoft Windows kernel. It was developed in
Microsoft Research and is described in [3]. The system uses
the principle which is slightly different from other described
systems and is as follows:

• The system periodically sets up software breakpoints
in random places of studied code.

• When the software breakpoint is triggered, the system
decodes the triggered instruction getting the memory
address and sets a hardware breakpoint on access to
this address. Then it stops the process execution for a
short time to increase the chance of another access to
this address.

• After the delay the system removes the hardware
breakpoint.

• If the hardware breakpoint is triggered, data race is
reported. Also data race is reported if the value at the
address has changed – to take the possible use of
direct memory access (DMA) into account.

DataCollider system is used in Microsoft, it helped to find
about 25 errors in the Windows 7 kernel. In [3] low overhead
advantage of the system is noted: it can find some errors in the
kernel even with the settings causing overhead of less than 5%.

IV. LINUX DRIVER VERIFICATION

The main features of driver design and verification are the
direct work with the hardware, a common address space,
limited set of user space interfaces and multithreading. This
makes it difficult to debug the drivers and to determine the
causes of errors. Let's consider some software products that are
used to verify the Linux drivers.

A. Kmemleak, kmemcheck

These systems are the most known and widely used. They
are included in Linux Kernel. Kmemleak [8] is a system for
finding memory leaks. Its principle of operation is similar to
those in some of the garbage collectors in high level languages.
For every memory allocation, the information about the
selected memory area (address, size etc.) is stored, and when
this area is deallocated the corresponding entry is removed.
The system can be interacted with via a character device in
debugfs. With every access to this device the following steps
are conducted:

• The "white" list of the allocated and not freed memory
areas is created.

• Certain areas of memory are scanned for pointers to
the memory of the "white" list. If the system finds
such a pointer, the memory is transferred from the
"white" list to the "gray" list. The memory in the
"gray" list is considered accessible and not leaked.

• Each block of the "gray" list is also scanned for
pointers to the memory of the "white" list.

• After this scanning all memory left in the "white list"
is considered to memory leaks.

Kmemcheck [9] is a simple system that keeps track of
uninitialized memory areas. Its principle of operation is as
follows:

• The system intercepts all the memory allocation.
Instead of each area an area 2 times as big is
allocated, these additional ("shadow") pages are
initialized with zeroes and are hidden.

• The allocated memory area is returned to the caller
with cleaned “present” flag. As a result, any reference
to this memory will result in page fault.

• When such a memory access happens, kmemcheck
determines the address and size of the corresponding
memory access. If the access is for writing, the system
populates the corresponding bytes of "shadow" page
with 0xFF, then successfully completes the operation.

• If the access is for reading, the system checks the
appropriate bytes of "shadow" pages. If at least one of
them is 0, uninitialized memory access is reported.

B. KEDR

KEDR (short for KErnel-mode Drivers in Runtime) is a
system for the dynamic analysis of Linux Kernel modules [21].
This system can replace some kernel function calls with its
wrappers which can produce some additional actions such as
saving the information of function calls or just returning errors.
Users can create their own systems based on this system, and
solutions for some specialized tasks are included, such as:

• Memory leaks detection. To solve this problem, the
system keeps track of calls to different functions that
allocate and free the memory. After unloading the
tested module the system creates a report containing
all memory locations that have been allocated, but
have not been freed, along with the call stack for each

of the memory allocation functions calls. The report
also includes any attempts to free the memory that has
not been allocated. The scenario is different from the
Kmemleak system in that the memory leak detection
happens after the unloading of the target module,
which simplifies the algorithm.

• Fault simulation. To solve this problem given
functions are replaced by a wrapper which returns
errors on defined scenario.

• Call tracking. Information about calls to given
functions (including arguments, return values etc.) is
stored in a file for later analysis.

This system has been used successfully and helped to find
about 12 errors in various Linux drivers [22].

C. Static methods

Static program verification is the analysis of program code
without actually executing it, as opposed to dynamic analysis.
It does not require setting up the test environment, and
provides the ability to analyze all the possible execution paths
of the program, even those which need the coincidence of
several rare conditions. When applied to the OS Kernel, static
verification is particularly useful because in many cases
creating a test environment and analyzing some of the
execution paths can be a non-trivial task. However, static
analysis has many limitations. The main part of the paper is
devoted to the dynamic verification system, so we will not
examine the static verification methods in detail. A more
detailed review of these methods is given in [2].

V. RACEHOUND

As part of the Google Summer of Code 2012 [25], the
author developed a lightweight race detection system for Linux
Kernel. The algorithm used by this system is similar to the
algorithm used by the DataCollider system (see sect. II.C). The
system is designed not only to find race conditions, but also to
confirm the data obtained with other systems that can produce
false alarms, for example, ThreadSanitizer (see section II.B).
At present the system supports the x86 and x86-64.

The originally planned principle is as follows:

• The system randomly plants software breakpoints
(there is a Linux Kernel API called Kprobes [26] for
that) in various places of the investigated kernel
module, periodically changing them.

• When the software breakpoint is triggered, the system
decodes the instruction on which the breakpoint was
planted, using the decoder of the Linux Kernel
modified in KEDR project. Then it determines the
memory address which the instruction tries to access
and sets the hardware breakpoint on this address
(there is also an API in Linux Kernel for this [27]),
and then stops the process for a short time to increase
the chance of access from another process to this
address.

• After the delay the system removes the hardware
breakpoint.

• If the hardware breakpoint was triggered in the
elapsed time, the race condition is reported. The race
condition is also reported if the value at the address
has changed – to cover the case of direct memory
access.

Software breakpoints in x86 architecture work as follows.
The first byte of instruction at the specified address is replaced
by the 0xCC byte – interrupt INT3 – preserving the original
byte in some place. When the CPU executes the instruction, an
interrupt is triggered and control is passed to the interrupt
handler in Linux Kernel, which searches the list of software
breakpoints for the appropriate address. When the address is
found, it transfers control to the appropriate handler. After the
handler finishes the original instruction is executed.

Hardware breakpoints are implemented as four debug
registers on Intel x86 processors. This system is described in
the Intel Developer Manuals [28]. An addresses can be written
in these registers, and there will be an interrupt on an access to
these addresses. The interrupt is then processed by the Linux
Kernel which transfers control to the appropriate hardware
breakpoint handler.

A. Implementation features

There were some problems in the implementation of
system. Software breakpoint handlers are executed in an
atomic context, and therefore it was impossible to properly set
the hardware breakpoint for all available CPUs. This problem
was solved by installation and removal of hardware breakpoint
not from the software breakpoint handler, but from the function
in the task queue. Unfortunately, this decision led to a time gap
between the beginning of the delay and the hardware
breakpoint setup, and therefore may reduce the probability of
concurrent memory access to occur within the delay (for a very
small time delay - down to 0) and to lower detection accuracy.
This effect, however, requires a special study.

Another problem was the execution of the original
instruction in the software breakpoint handler. This execution
takes place inside an interrupt handler, but the original
instruction refers to the address on which the hardware
breakpoint has just been set. In some cases, removal of
hardware breakpoint does not yet happen at the time of the
original instruction execution, and the hardware breakpoint was
triggered. However, the software breakpoint handler works in
an atomic context and the interrupt is forbidden. This caused
some faults and unusual behavior. This problem was solved by
dropping Kprobes API and implementing similar functionality
manually. Instead of executing the original instruction separate
from the module code this instruction was restored and the
control was transferred to the investigated module. To reset the
breakpoints after that the timer has been set, which reset the
breakpoints at frequent intervals replacing their first bytes with
0xCC. This decision, however, also has a drawback: there is a
period in which a software breakpoint is not set at the needed
place. This can also reduce the accuracy of error detection.

The system consists of a kernel module which has an
interface based on the debugfs and some auxiliary scripts. The
interface is a character device in debugfs which allows a user
to set the possible breakpoints range, from which N is
randomly chosen, in the format <function name>+<offset>. If
the both parameters or just the offset are equal to *, the

complete module or the complete function is added,
respectively.

An important limitation of the system is the inability to
work on single-core systems. This problem is caused by the
software breakpoint handler execution: it is performed in an
atomic context, so putting the process to sleep is impossible.
Therefore, instead of the function msleep() the mdelay()
function is used, which waits a specified period of time,
leaving the thread in running state. For this time no other tasks
can run on the same processor. Therefore the process which
could cause a race condition should run on another core to be
able to execute at a delay time.

The system requires a Linux Kernel 2.6.33 or later (this
version introduced the Hardware Breakpoints API). The build
system is based on CMake. At present the system is in the state
of working prototype. It requires testing on some real drivers to
identify potential errors and defects, adjust the parameters of
the system (number of breakpoints, time intervals, etc.) and to
evaluate the effectiveness of the system in the real world. For
testing it is necessary to pay attention to the choice of test cases
for drivers – they should include some parallel and concurrent
testing, because the system just increases the probability of
errors, being useless if the concurrent access is impossible.

Another direction of the system development may be the
development of interfaces and integration with other race
condition detection systems. For example, the system can be
useful when working together with static methods which
provide a significant number of false positives to confirm these
data with them. However, dynamic methods which can
produce some false positives can also benefit from such
integration.

VI. CONCLUSION

Race conditions are an important problem. This paper
reviews some methods for detecting race conditions, including
those in the operating system kernel, and some features of
Linux drivers verification. The race condition detection system
created by author is described.

Most of the race condition detection systems are based on
one of the two methods: LockSet and Happens-before, or some
kind of their combination. From a theoretical point of view, the
direction of future work could be some more detailed review of
existing methods for detecting race conditions in order to
integrate the developed system with some of them.

Directions of further practical work should be testing the
developed system on some real drivers and its integration with
other systems, including those based on static methods. Testing
on real drivers will help to identify errors or omissions, find
some valid settings of various parameters of the system
(number of breakpoints, time intervals etc.) and to evaluate the
effectiveness of the system in real conditions.

[1] V. Mutilin, E. Novikov, A. Khoroshilov

Analysis of typical errors in Linux operating system drivers.

Proceedings of Institute for System Programming of RAS, vol.22, 2012

[2] M. U. Mandrykin, V. S. Mutilin, E. M. Novikov, A. V. Khoroshilov, and
P. E. Shved

Using Linux Device Drivers for Static Verification Tools Benchmarking

Programming and Computer Software, 2012, Vol. 38, No. 5

[3] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, Kirk Olynyk

Effective Data-Race Detection for the Kernel

9th USENIX Symposium on Operating Systems Design and
Implementation, 2010

http://static.usenix.org/event/osdi10/tech/full_papers/Erickson.pdf

[4] Cormac Flanagan, Stephen N. Freund

FastTrack: Efficient and Precise Dynamic Race Detection

http://slang.soe.ucsc.edu/cormac/papers/pldi09.pdf

[5] Nels E. Beckman

A Survey of Methods for Preventing Race Conditions

http://www.cs.cmu.edu/ nbeckman/papers/race_detection_survey.pdf

[6] Jonathan Corbet, Greg Kroah-Hartman, Amanda McPherson

Linux Kernel Development. How Fast it is Going, Who is Doing It,
What They are Doing, and Who is Sponsoring It (2012)

http://go.linuxfoundation.org/who-writes-linux-2012

[7] Jonathan Corbet

How to Participate in the Linux Community. A Guide To The Kernel
Development Process (2008)

http://www.linuxfoundation.org/content/how-participate-linux-communi
ty

[8] Jonathan Corbet

Detecting kernel memory leaks

http://lwn.net/Articles/187979/

[9] Jonathan Corbet

kmemcheck

http://lwn.net/Articles/260068/

[10] Valgrind Manual. 7. Helgrind: a thread error detector.

http://valgrind.org/docs/manual/hg-manual.html

[11] S. M. Kerner

The Red Hat Enterprise Linux 6 Kernel: What Is It? (2010)

http://www.serverwatch.com/news/article.php/3880131/The-Red-Hat-E
nterprise-Linux-6-Kernel-What-Is-It.htm

[12] OpenSUSE Kernel

http://en.opensuse.org/Kernel

[13] Debian Kernel

http://wiki.debian.org/DebianKernel

[14] OSADL Project: Realtime Linux

https://www.osadl.org/Realtime-Linux.projects-realtime-linux.0.html

[15] Jonathan Corbet

Bringing Android closer to the mainline

https://lwn.net/Articles/472984/

[16] A. Chou, J. Yang, B. Chelf, S. Hallem, DR Engler

An Empirical Study of Operating System Errors. Proc. 18th ACM
Symp. Operating System Principles, 2001

[17] M. Swift, B. Bershad, H. Levy

Improving the reliability of commodity operating systems. In: SOSP
’03: Proceedings of the nineteenth ACM symposium on Operating
systems principles, 2003

[18] A. Ganapathi, V. Ganapathi, D. Patterson

Windows XP kernel crash analysis. Proceedings of the 2006 Large
Installation System Administration Conference, 2006

[19] N. Palix, G. Thomas, S. Saha, C. Calves, J. Lawall, and Gilles Muller

Faults in linux: ten years later. Proceedings of the sixteenth international
conference on Architectural support for programming languages and
operating systems (ASPLOS ’11), USA, 2011

[20] David Wheeler

Secure programmer: Prevent race conditions (2004)

http://www.ibm.com/developerworks/linux/library/l-sprace/index.html

[21] KEDR Manual

http://code.google.com/p/kedr/wiki/kedr_manual_overview

[22] KEDR wiki: Problems Found

http://code.google.com/p/kedr/wiki/Problems_Found

[23] Thread Sanitizer Manual

http://code.google.com/p/thread-sanitizer/w/list

[24] Kernel Strider Manual

http://code.google.com/p/kernel-strider/wiki/KernelStrider_Tutorial

[25] Project: Implement a Lightweight Data Race Detector for Linux Kernel
Modules on x86

Google Summer of Code 2012

http://www.google-melange.com/gsoc/project/google/gsoc2012/nkomar
ov/7001

[26] Linux Kernel Documentation: Kprobes

http://www.mjmwired.net/kernel/Documentation/kprobes.txt

[27] Prasad Krishnan

Hardware Breakpoint (or watchpoint) usage in Linux Kernel. Ottawa
Linux Symposium, 2009

http://kernel.org/doc/ols/2009/ols2009-pages-149-158.pdf

[28] Intel 64 and IA-32 Architectures Software Developer Manuals

http://www.intel.com/content/www/us/en/processors/architectures-softw
are-developer-manuals.html

	I. Introduction
	II. Race Conditions
	III. Existing methods for detecting race conditions
	A. Helgrind
	B. ThreadSanitizer
	C. DataCollider

	IV. Linux driver verification
	A. Kmemleak, kmemcheck
	B. KEDR
	C. Static methods

	V. RaceHound
	A. Implementation features

	VI. Conclusion

