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Abstract—An  important  class  of  problems  in  software  are 
race conditions. Errors of this class are becoming more common 
and  more  dangerous  with  the  development  of  multi-processor 
and  multi-core  systems,  especially  in  such  a  fundamentally 
parallel environment as an operating system kernel. The paper 
overviews some of existing approaches to detect race conditions 
including  DataCollider  system  based  on  concurrent  memory 
access  tracking.  RaceHound,  a race condition detection system 
for Linux drivers based on similar principles as DataCollider is 
presented. 
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I. INTRODUCTION

The  Linux  Kernel  is  one  of  the  most  popular  and 
fast-developed  projects  in  the  world.  Linux  Kernel 
development  started  in  1991  by  Linus  Torvalds.  The 
development  process  of  Linux  kernel  is  distributed,  about 
1,000 people worldwide are involved in the preparation of each 
new  kernel  release.  The  new  release  comes  out  every  2-3 
months. Changes are submitted by the developers in the form 
of  little  pieces  of  code  called  patches.  Each  kernel  release 
consists of about 9-13 thousands of patches, which corresponds 
to an average of about 7.3 patches per hour. The total source 
code size of one of the latest versions of the Linux kernel - 
version 3.2 – is about 15 million lines. These data are given in 
the  latest  Linux  Foundation  report  on  Linux  Kernel 
development [6].

Linux  Kernel  development  process  is  described  in  [7]. 
There are some other branches of kernel development based on 
the  original  Linux  Kernel.  Some of  the  Linux  distributions 
developers  support  their  own  versions  of  the  kernel  -  for 
example,  Red  Hat  [11],  openSUSE  [12]  and  Debian  [13]. 
These  kernels  are  different  from the original  version in that 
they support some additional functionality and/or contain bug 
fixes.  There  are  some  kernel  versions  with  the  significant 
changes  to  the  basic  systems  of  the  kernel,  for  example,  a 
real-time Linux Kernel [14] or the Android kernel [15]. Over 
time some changes  from different  branches  of  development 
needed  by  a  broad  range  of  people  can  get  to  the  original 
kernel.

As with any programs,  there are various errors  in Linux 
Kernel that lead to the incorrect functioning of the OS, freezing 
etc.  The greatest  part  of  the kernel  (about 70%) are  various 
device drivers. The results of studies that have been carried out 
in [16] and [17] in the early 2000s for kernels  1.0 to 2.4.1, 
showed that drivers contain up to 85% of all errors in the Linux 
Kernel. A similar study for the Microsoft Windows XP kernel 
in 2006 also showed that the highest number of errors in the 
operating  system  kernel  belongs  to  the  device  drivers  [18]. 
More recent studies done in 2011 for the Linux Kernel versions 
from 2.6.0 to 2.6.33 showed that although the number of errors 
in  the  drivers  became  less  than  in  the  kernel  components 
responsible for the support of the various architectures and file 
systems, their share is still high [19].

The task of ensuring the reliability of drivers is important as 
drivers in Linux work with the same privileges level as the rest 
of the kernel. Because of this a vulnerability in the drivers can 
lead to the possibility of execution of arbitrary code with kernel 
privileges and access to the kernel structures.

II. RACE CONDITIONS

One of the important types of errors in the software is race 
conditions [20].  A race  condition occurs  when a program is 
working wrong due to an unexpected sequence of events that 
leads  to  the  simultaneous  access  to  the  same  resource  by 
multiple processes.

As  an  example  of  a  race  condition,  consider  a  simple 
expression in some programming language: b = b + 1. Imagine 
that  this  expression  is  executed  simultaneously  by  two 
processes,  the variable  b is  common to them, and its  initial 
value is 5. Here is a possible example of the order of execution 
of the program:

• Process 1 loads b value in a register.

• Process 2 loads b value in a register.

• Process 1 increases its register value by 1 with a result 
of 6.

• Process 2 increases its register value by 1 with a result 
of 6.

• Process 1 stores its register value (6) in the variable b.



• Process 2 stores its register value (6) in the variable b.

The initial value of b was 5, each of the processes added 1, 
but the final result was 6 instead of the expected 7. Processes 
are not executed atomically, another process may intervene and 
perform operations on some shared resource between almost 
any  two  instructions.  Similarly,  the  classic  example  is  the 
simultaneous withdrawal of money from a bank account from 
two different places: if the check for the required amount in the 
account  by the second process  would occur between similar 
check  and amount decrease  of the first  process,  the account 
balance  may  become  wrong  that  will  cause  a  loss  and 
significant reputation damage.

With  the  development  of  multicore  and  multiprocessor 
systems  race  condition  related  errors  including  the  Linux 
Kernel,  becomes  even  more  important  than  before.  For 
example  in  the  study  [1]  it  was  concluded  that  the  race 
conditions  are  the  most  frequent  type  of  error  in  the  Linux 
Kernel and make up about 17% of typical errors in the Linux 
Kernel (on the second and third place are specific objects leaks 
and  null  pointer  dereference  –  9%  both).  The  study  was 
conducted by analyzing the comments to the changes in the 
Linux Kernel. From the above it can be concluded that race 
conditions  are  an  important  and  common  class  of  errors, 
including those in the Linux Kernel, and the task to find them 
is relevant.

III. EXISTING METHODS FOR DETECTING RACE CONDITIONS

There  are  various  ways  to  detect  race  conditions  in 
programs.  Most  of  the  dynamic  methods  are  based  on  two 
principles: Lockset and Happens-before [4] [5]. Lockset based 
tools check if there is synchronization between threads when 
accessing  shared  variables.  This  makes it  possible  to  find a 
large  number  of  potential  errors,  but  the  number  of  false 
positives is high too.

Happens-before  based  instruments  find  accesses  from 
different threads to a specified area of memory that have no 
specified order, meaning they can be in a different order. These 
instruments depend on how the access is done in a real system 
operation, so they identify a smaller subset of errors but have 
greater  accuracy than the Lockset  method. An alternative to 
this method is a direct test for simultaneous memory access by 
placing  breakpoints  -  this  method  is  implemented  in  the 
DataCollider system (see sect. II.C).  In  most real systems, a 
combination  of  two  methods  is  used.  Let's  consider  some 
examples of such systems.

A. Helgrind

Helgrind is a tool  for analyzing user mode programs for 
race conditions, based on the Valgrind framework [10]. This 
system can detect three types of errors:

• Improper pthreads API use;
• Possible deadlocks that occur due to incorrect order of 

synchronization mechanisms;
• Race conditions.

Helgrind detects race conditions by monitoring all accesses 
to the memory of the process and all use of synchronization 
primitives. Then the system builds a graph, based on which it 
makes  a  conclusion  that  there  is  a  «happens-before» 

relationship between accesses. If the access to a certain area of 
memory happens in two different threads,  the system checks 
whether there can be found the «happens-before» relationship 
between them, that is, whether one of accesses happen before 
the other.  The system makes conclusions of the presence  or 
absence of such a connection based on the presence or absence 
of  various synchronization  primitives.  If  the  memory access 
occurs in at least two different threads and the system cannot 
find  a  relationship  «happens-before»  between  them,  it 
concludes that there is a data race between them.

B. ThreadSanitizer 

ThreadSanitizer is another engine that finds race conditions 
in user space programs. The algorithm of this system is similar 
to the Helgrind algorithm and is described in [23]. The system 
instruments  the  program  code  adding  calls  to  its  functions 
before each memory access and every time the program uses 
some synchronization tools. The system then tries to figure out 
which  of  the  memory  accesses  occur  with  inadequate 
synchronization and may conflict with other memory accesses. 
ThreadSanitizer also has an offline mode in which it  can be 
used  to  analyze  traces  created  by some other  tools  such  as 
Kernel Strider for Linux Kernel [24].

C. DataCollider

The  system  is  designed  for  dynamic  race  conditions 
detection in Microsoft  Windows kernel.  It  was developed in 
Microsoft Research and is described in [3]. The system uses 
the principle which is slightly different from other described 
systems and is as follows:

• The system periodically sets up software breakpoints 
in random places of studied code.

• When the software breakpoint is triggered, the system 
decodes the triggered instruction getting the memory 
address and sets a hardware breakpoint on access to 
this address. Then it stops the process execution for a 
short time to increase the chance of another access to 
this address.

• After  the  delay  the  system  removes  the  hardware 
breakpoint.

• If  the hardware breakpoint  is  triggered,  data race is 
reported. Also data race is reported if the value at the 
address  has  changed  –  to  take  the  possible  use  of 
direct memory access (DMA) into account.

DataCollider system is used in Microsoft, it helped to find 
about 25 errors in the Windows 7 kernel. In [3] low overhead 
advantage of the system is noted: it can find some errors in the 
kernel even with the settings causing overhead of less than 5%.

IV. LINUX DRIVER VERIFICATION 

The main features of driver design and verification are the 
direct  work  with  the  hardware,  a  common  address  space, 
limited set  of user  space interfaces  and multithreading.  This 
makes it  difficult  to debug the drivers  and to determine the 
causes of errors. Let's consider some software products that are 
used to verify the Linux drivers.



A. Kmemleak, kmemcheck

These systems are the most known and widely used. They 
are included in Linux Kernel.  Kmemleak [8] is a system for 
finding memory leaks. Its principle of operation is similar to 
those in some of the garbage collectors in high level languages. 
For  every  memory  allocation,  the  information  about  the 
selected memory area (address, size etc.) is stored, and when 
this  area  is  deallocated  the corresponding  entry is  removed. 
The system can be interacted with via a character  device in 
debugfs. With every access to this device the following steps 
are conducted:

• The "white" list of the allocated and not freed memory 
areas is created.

• Certain areas of memory are scanned for pointers to 
the memory of  the "white"  list.  If  the system finds 
such  a  pointer,  the  memory  is  transferred  from the 
"white"  list  to  the  "gray"  list.  The  memory  in  the 
"gray" list is considered accessible and not leaked.

• Each  block  of  the  "gray"  list  is  also  scanned  for 
pointers to the memory of the "white" list.

• After this scanning all memory left in the "white list" 
is considered to memory leaks.

Kmemcheck  [9]  is  a  simple  system  that  keeps  track  of 
uninitialized  memory  areas.  Its  principle  of  operation  is  as 
follows:

• The  system  intercepts  all  the  memory  allocation. 
Instead  of  each  area  an  area  2  times  as  big  is 
allocated,  these  additional  ("shadow")  pages  are 
initialized with zeroes and are hidden.

• The allocated memory area is returned to the caller 
with cleaned “present” flag. As a result, any reference 
to this memory will result in page fault.

• When  such  a  memory  access  happens,  kmemcheck 
determines the address and size of the corresponding 
memory access. If the access is for writing, the system 
populates the corresponding bytes of "shadow" page 
with 0xFF, then successfully completes the operation.

• If  the  access  is  for  reading,  the  system checks  the 
appropriate bytes of "shadow" pages. If at least one of 
them is 0, uninitialized memory access is reported.

B. KEDR

KEDR (short  for  KErnel-mode Drivers  in  Runtime) is  a 
system for the dynamic analysis of Linux Kernel modules [21]. 
This  system can  replace  some kernel  function calls  with its 
wrappers which can produce some additional actions such as 
saving the information of function calls or just returning errors. 
Users can create their own systems based on this system, and 
solutions for some specialized tasks are included, such as:

• Memory leaks detection. To solve this problem, the 
system keeps track of calls to different functions that 
allocate  and  free  the  memory.  After  unloading  the 
tested module the system creates a report containing 
all  memory  locations  that  have  been  allocated,  but 
have not been freed, along with the call stack for each 

of the memory allocation functions calls. The report 
also includes any attempts to free the memory that has 
not been allocated. The scenario is different from the 
Kmemleak system in that the memory leak detection 
happens  after  the  unloading  of  the  target  module, 
which simplifies the algorithm.

• Fault  simulation.  To  solve  this  problem  given 
functions  are  replaced  by  a  wrapper  which  returns 
errors on defined scenario.

• Call  tracking.  Information  about  calls  to  given 
functions (including arguments, return values etc.) is 
stored in a file for later analysis.

This system has been used successfully and helped to find 
about 12 errors in various Linux drivers [22].

C. Static methods

Static program verification is the analysis of program code 
without actually executing it, as opposed to dynamic analysis. 
It  does  not  require  setting  up  the  test  environment,  and 
provides the ability to analyze all the possible execution paths 
of  the  program,  even  those  which  need  the  coincidence  of 
several rare conditions. When applied to the OS Kernel, static 
verification  is  particularly  useful  because  in  many  cases 
creating  a  test  environment  and  analyzing  some  of  the 
execution  paths  can  be  a  non-trivial  task.  However,  static 
analysis has many limitations. The main part of the paper is 
devoted  to  the  dynamic  verification  system,  so  we  will  not 
examine  the  static  verification  methods  in  detail.  A  more 
detailed review of these methods is given in [2].

V. RACEHOUND

As part  of  the  Google  Summer  of  Code  2012 [25],  the 
author developed a lightweight race detection system for Linux 
Kernel.  The algorithm used by this system is  similar  to  the 
algorithm used by the DataCollider system (see sect. II.C). The 
system is designed not only to find race conditions, but also to 
confirm the data obtained with other systems that can produce 
false alarms, for example, ThreadSanitizer (see section II.B). 
At present the system supports the x86 and x86-64.

The originally planned principle is as follows:

• The  system  randomly  plants  software  breakpoints 
(there is a Linux Kernel API called Kprobes [26] for 
that)  in  various  places  of  the  investigated  kernel 
module, periodically changing them.

• When the software breakpoint is triggered, the system 
decodes the instruction on which the breakpoint was 
planted,  using  the  decoder  of  the  Linux  Kernel 
modified  in  KEDR project.  Then  it  determines  the 
memory address which the instruction tries to access 
and  sets  the  hardware  breakpoint  on  this  address 
(there is also an API in Linux Kernel for this [27]), 
and then stops the process for a short time to increase 
the  chance  of  access  from  another  process  to  this 
address.

• After  the  delay  the  system  removes  the  hardware 
breakpoint.



• If  the  hardware  breakpoint  was  triggered  in  the 
elapsed time, the race condition is reported. The race 
condition is also reported if the value at the address 
has  changed  – to  cover  the case  of  direct  memory 
access.

Software breakpoints in x86 architecture work as follows. 
The first byte of instruction at the specified address is replaced 
by the 0xCC byte – interrupt INT3 – preserving the original 
byte in some place. When the CPU executes the instruction, an 
interrupt  is  triggered  and  control  is  passed  to  the  interrupt 
handler in Linux Kernel,  which searches the list of software 
breakpoints for the appropriate address.  When the address is 
found, it transfers control to the appropriate handler. After the 
handler finishes the original instruction is executed.

Hardware  breakpoints  are  implemented  as  four  debug 
registers on Intel x86 processors. This system is described in 
the Intel Developer Manuals [28]. An addresses can be written 
in these registers, and there will be an interrupt on an access to 
these addresses. The interrupt is then processed by the Linux 
Kernel  which  transfers  control  to  the  appropriate  hardware 
breakpoint handler.

A. Implementation features

There  were  some  problems  in  the  implementation  of 
system.  Software  breakpoint  handlers  are  executed  in  an 
atomic context, and therefore it was impossible to properly set 
the hardware breakpoint for all available CPUs. This problem 
was solved by installation and removal of hardware breakpoint 
not from the software breakpoint handler, but from the function 
in the task queue. Unfortunately, this decision led to a time gap 
between  the  beginning  of  the  delay  and  the  hardware 
breakpoint setup, and therefore may reduce the probability of 
concurrent memory access to occur within the delay (for a very 
small time delay - down to 0) and to lower detection accuracy. 
This effect, however, requires a special study.

Another  problem  was  the  execution  of  the  original 
instruction in the software breakpoint handler. This execution 
takes  place  inside  an  interrupt  handler,  but  the  original 
instruction  refers  to  the  address  on  which  the  hardware 
breakpoint  has  just  been  set.  In  some  cases,  removal  of 
hardware  breakpoint  does not yet  happen at  the time of  the 
original instruction execution, and the hardware breakpoint was 
triggered. However, the software breakpoint handler works in 
an atomic context and the interrupt is forbidden. This caused 
some faults and unusual behavior. This problem was solved by 
dropping Kprobes API and implementing similar functionality 
manually. Instead of executing the original instruction separate 
from the  module  code  this  instruction  was  restored  and  the 
control was transferred to the investigated module. To reset the 
breakpoints after that the timer has been set, which reset the 
breakpoints at frequent intervals replacing their first bytes with 
0xCC. This decision, however, also has a drawback: there is a 
period in which a software breakpoint is not set at the needed 
place. This can also reduce the accuracy of error detection.

The  system  consists  of  a  kernel  module  which  has  an 
interface based on the debugfs and some auxiliary scripts. The 
interface is a character device in debugfs which allows a user 
to  set  the  possible  breakpoints  range,  from  which  N  is 
randomly chosen, in the format <function name>+<offset>. If 
the  both  parameters  or  just  the  offset  are  equal  to  *,  the 

complete  module  or  the  complete  function  is  added, 
respectively.

An important  limitation of  the system is  the  inability to 
work on single-core systems. This problem is caused by the 
software breakpoint  handler execution: it  is  performed in an 
atomic context, so putting the process to sleep is impossible. 
Therefore,  instead  of  the  function  msleep()  the  mdelay() 
function  is  used,  which  waits  a  specified  period  of  time, 
leaving the thread in running state. For this time no other tasks 
can run on the same processor.  Therefore the process which 
could cause a race condition should run on another core to be 
able to execute at a delay time.

The system requires  a Linux Kernel  2.6.33 or later  (this 
version introduced the Hardware Breakpoints API). The build 
system is based on CMake. At present the system is in the state 
of working prototype. It requires testing on some real drivers to 
identify potential errors and defects, adjust the parameters of 
the system (number of breakpoints, time intervals, etc.) and to 
evaluate the effectiveness of the system in the real world. For 
testing it is necessary to pay attention to the choice of test cases 
for drivers – they should include some parallel and concurrent 
testing,  because  the  system just  increases  the  probability  of 
errors, being useless if the concurrent access is impossible.

Another direction of the system development may be the 
development  of  interfaces  and  integration  with  other  race 
condition detection systems. For example, the system can be 
useful  when  working  together  with  static  methods  which 
provide a significant number of false positives to confirm these 
data  with  them.  However,  dynamic  methods  which  can 
produce  some  false  positives  can  also  benefit  from  such 
integration.

VI. CONCLUSION

Race  conditions  are  an  important  problem.  This  paper 
reviews some methods for detecting race conditions, including 
those  in  the  operating  system  kernel,  and  some features  of 
Linux drivers verification. The race condition detection system 
created by author is described.

Most of the race condition detection systems are based on 
one of the two methods: LockSet and Happens-before, or some 
kind of their combination. From a theoretical point of view, the 
direction of future work could be some more detailed review of 
existing  methods  for  detecting  race  conditions  in  order  to 
integrate the developed system with some of them.

Directions of further practical  work should be testing the 
developed system on some real drivers and its integration with 
other systems, including those based on static methods. Testing 
on real drivers will help to identify errors or omissions, find 
some  valid  settings  of  various  parameters  of  the  system 
(number of breakpoints, time intervals etc.) and to evaluate the 
effectiveness of the system in real conditions. 
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