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Abstract— Linux device drivers can't be analyzed separately 

from the kernel core due to their large interdependency with 

each other. But source code of the whole Linux kernel is rather 

complex and huge to be analyzed by existing model checking 

tools. So a driver should be analyzed with environment model 

instead of the real kernel core. In the given paper requirements 

for driver environment model are discussed. The paper describes 

advantages and drawbacks of existing model generating 

approaches used in different systems of model checking device 

drivers. Besides, the paper presents a new method for generating 

model for Linux device drivers. Its features and shortcomings are 

demonstrated on the basis of application results. 

Keywords—operating system; Linux; kernel; driver; model 

checking; environment model; Pi-processes 

I.  INTRODUCTION 

Linux kernel is one of the most fast-paced software 
projects. Since 2005, over 7800 individual developers from 
almost 800 different companies have contributed to the kernel. 
Each kernel release contains about 10000 patches - work of 
over 1000 developers representing nearly 200 corporations 
[1]. Up to 70% of Linux kernel source code belongs to device 
drivers, and more than 85% errors, which lead to hangs and 
crashes of the whole operating system, are also in the drivers’ 
sources [2] [3]. 

A. Linux device drivers 

The Linux kernel could be divided into two parts - core 
and drivers (look at Fig. 1). Drivers manage devices and the 
kernel core is responsible for a process management, memory 
allocation, networking and et al.  

 

Fig. 1. Device drivers in the Linux kernel. 

Most of drivers can be compiled as modules that can be 
loaded on demand. Drivers differ from common C programs. 
Drivers do not have a main function and a code execution 
order is primarily determined by the kernel core. Let us 
describe driver organization by considering a simplified 
example of a driver in Fig. 2: 

 Driver initialization function (the function init 
below). A module of a driver is loaded on demand by 
the Linux kernel core when the operating system starts 
or when a necessity to interact with a corresponding 
device occurs. A module execution always begins 
with an invocation of a driver initialization function 
by the kernel core. In the Fig. 2 the initialization 
driver function is usbpn_init. 

 



 Driver exit function (the function exit below). An 
interaction with the device is allowed until the module 
is unloaded. This happens after an invocation of a 
driver exit function by the kernel core. The function 
usbpn_exit is such function in Fig. 2. 

 Driver Handlers. Various driver routines are usually 
implemented as callbacks to handle driver-related 
events, e.g. system calls, interrupts, et al. There are 
two handlers in the example in Fig. 2: usbpn_probe 
and usbpn_disconnect. 

 Driver structures (we will call them just “structures” 
from now on). Most of handlers that work with 
common resources consolidated in groups. Each 
handler in such a group implements certain 
functionality defined by its role in this group. Usually 
pointers to handlers from one group stored in fields of 
a special variable with complex structure type. That is 
why we identify such groups as “driver structures”. In 
example in Fig. 2 usbpn_driver is the driver structure 
with usb_driver type. It has two fields “.probe” and 
“.disconnect” initialized with pointers to usbpn_probe 
and usbpn_disconnect handlers. 

 Registration and deregistration of handlers. Before 
the kernel core can invoke handlers from the module, 
they should be registered. The typical way to register 
driver handlers is to call a special function. The 
function registers the driver structure with handlers 
and since the structure is registered, its handlers can 
be called. The driver structure registration takes place 
in the driver initialization (in init function body) or in 
an execution of a handler from another structure. An 
example of registration of usb_driver structure is 
illustrated in Fig. 2: usb_register is called in 
usbpn_init function body and it registers usbpn_driver 
structure variable. Also similar deregistration 
functions are implemented for the handler 
deregistration.  

Even this simplified example illustrates the complexity of 
device drivers. A lot of driver methods are called by the kernel 
core such as handlers, init and exit functions and there are 
routines from the kernel core that are invoked by the driver 
such as register and unregister functions and other library 
functions. Besides, interaction of the kernel core and the driver 
depends on system calls from the user space and interrupts 
from devices. Their large interdependency with each other 
leads to availability of almost arbitrary scenarios of handler 
calling. But in all of such scenarios rules of correctness are 
taken into account such as restrictions on order, parameters 
and context of handler invocations.  

B. Model checking Linux device drivers 

Nowadays it is not easy to maintain the safety of all device 
drivers manually due to complexity of drivers, high pace of 
the Linux kernel development and huge size of source code. 
That is why an automated driver checking is required. There 
are various techniques for achievement this goal and a model 
checking approach is one of them.  

 

 

Fig. 2. A simplified example of a driver drivers/net/usb/cdc-phonet.c1 

(compiled as cdc-phonet.ko module). 

As illustrated before, a driver execution depends on the 
kernel core. But analysis of a driver together with the kernel 
core is rather difficult nowadays for tools due to complexity of 
kernel core source code and its huge size. That is why a driver 
environment model is required for analyzing device drivers. 
The model can be implemented as C program that emulates 
interaction of the driver with the kernel core. In general the 
model should emulate the interaction with hardware too, but 
this aspect is not considered in this paper. The driver 
environment model should provide: 

 Invocation of the driver initialization and exit 
functions. 

 All available in the real interaction of the kernel core 
and the driver scenarios of invocations of handlers  
taking into account: 

o Limitations on parameters of handler calls. 

o A context of handler invocation such are 
interrupts allowed or not. 

o Limitations on order and number of 
invocations of handlers  for: 

 Handlers from a driver structure. 

 Handlers from different driver 
structures. 

 Models for kernel core library functions. 

An incorrect model often causes a false positive verdict 
from a verification tool (verifier below) or a real bug skipping 

                                                           
1
 http://lxr.free-electrons.com/source/drivers/net/usb/cdc-

phonet.c?v=3.0 

static int usbpn_probe(struct usb_interface *intf, const 

struct usb_device_id *id){ 

… 

} 

static void usbpn_disconnect(struct usb_interface *intf){ 

… 

}  

static struct usb_driver usbpn_driver = { 

 .name =  “cdc_phonet”, 

 .probe =  usbpn_probe, 

 .disconnect = usbpn_disconnect, 

}; 

static int __init usbpn_init(void){ 

 return usb_register(&usbpn_driver); 

} 

static void __exit usbpn_exit(void){ 

 usb_deregister(&usbpn_driver); 

} 
 



[4]. An example of environment model for the driver 
considered above is shown in Fig. 3: 

 

Fig. 3. Environment model for the driver from Fig. 2. 

A verifier starts the driver analysis from the function 
entry_point. First the driver should be initialized by the 
function ubpn_init. If it returns success result “0”, then 
usbpn_probe and usbpn_disconnect are invoked. The variable 
busy is needed for calling handlers in the proper order. The 
handler usbpn_probe  should be called the first and if it returns 
success result, then usbpn_disconnect should be called. 
Operator while is needed for call sequences of handlers of 
variable length. Operator switch with the function nondet_int 
returning random int provides non-deterministic handler 

calling for various scenarios of handler invocations covering 
in the. At the end of a driver work usbpn_exit should be 
called, but it can take place only if the device wasn’t probed, 
either when usbpn_probe wasn’t called or when usbpn_probe 
returned an error value or when usbpn_probe and 
usbpn_disconnect were already called one or more times. 
After the exit invocation a verifier finishes analysis. 

II. RELATED WORK 

There are several verification systems for device drivers, 
but only Microsoft SDV [5] is in industrial use. For modeling 
driver environment various approaches are used. 

 Microsoft SDV. SDV provides a comprehensive 
toolset for analysis of source code of device drivers of 
Microsoft Windows operating system. These tools are 
used in the process of device driver certification, and 
have been included in Microsoft Windows Driver 
Developer Kit since 2006. SDV’s driver environment 
model is based on manually written annotations of 
handlers. SDV provides a kernel core model that 
contains simplified stubs of some kernel core routines. 
Microsoft SDV is specifically tailored for analysis of 
device drivers of Microsoft Windows. Unfortunately, 
it is proprietary software, which prohibits its 
application to other domains outside Microsoft. 

 Avinux [6]. This project was developed in University 
of Tubingen, Germany. Its environment model is 
based on handwritten annotations of each handler. 
Authors paid attention to the problem of proper 
initialization of various resources and uninitialized 
pointers in the environment model [7]. 

 DDVerify [8]. The project was developed in Oxford 
and Carnegie Mellon universities. Authors 
implemented a partial kernel core model for a special 
kernel version for verifying drivers of several types. 
But the model is handwritten and maintaining it 
manually is complicated while the kernel is under 
continuous development.  

 LDV [9]. LDV framework for driver verification is 
developed in Institute of System Programming of 
Russian Academy of Sciences. This project took a 
high pace of the Linux kernel development. An 
environment model generation process is fully 
automated and does not need manual annotations in 
code. It is based on an analysis of the driver source 
code and on a configuration. The configuration 
consists of handwritten specifications for several 
driver structures and a heuristic template for other 
cases. Generated model provides nondeterministic 
handler call sequences, interrupt handlers invoking. A 
model can be generated for a driver module from any 
subsystem and in most cases it correctly describes 
interaction of a driver with the kernel core. 

The lack of such sufficient handicaps as a demand for 
handwritten annotations or the difficulty of model maintaining 
allows to efficiently using LDV for verifying all kernel drivers 

void entry_point(void){ 

 // Try to initialize the driver. 

 if(usbpn_init()) 

  goto final; 

 // The variable shows usb_driver device is probed  

// or not. 

 int busy = 0; 

 // For call sequence of handlers of any length. 

 while(1){ 

  // Nondeterministic choosing 

  switch(nondet_int()){ 

   case 1: 

        // The device wasn’t probed. 

        if(busy == 0){ 

            res = usbpn_probe(..); 

            if(res == 0){ 

                 busy = 1; 

            } 

     } 
   break; 

   case 2: 

        // The device was already 

     // probed. 

        if(busy == 1){ 

            usbpn_disconnect(..); 

            busy = 0; 

     } 
   break; 

   case 3: 

        // Try to unload the module  

    // if the device wasn’t probed. 

        if(busy == 0){ 

            goto exit; 

     } 
   break; 

   default: break; 

  } 

} 

// Unload driver. 

exit: usbpn_exit(); 

 final: 

} 



from a lot of kernel releases. However, a driver environment 
generator has considerable limitations: 

 Only linear handler call sequences are available, 
where each handler can be called only once. 

 Driver structures registration and deregistration are 
not taken into account in model generation process. 

 Source code analysis is based on regular expressions. 
This approach leads to syntactic mistakes in a model 
due to changes in the kernel and complexity of the 
kernel source code. 

 Not all needed restrictions on handler calls can be 
described in the configuration. 

 For a driver module that consists of several files the 
tool generates separate models for each “.c” file but 
not the one for the whole module. 

Such shortcomings lead to incorrect verdict from a verifier 
or real bugs missing. And in most cases the tool doesn’t 
provide any capabilities for overcoming model imperfectness. 
This paper suggested a new approach for generating driver 
environment model. 

III. SUGGESTED APPROACH 

The main goal of this research was to develop a new tool 
for automatically generating environment model for kernel 
driver modules which contain one or several files. An 
approach suggests environment model that should take into 
account: 

 All available in real driver handler call scenarios from 
a one driver structure. 

 Limitations on order of calling handlers from several 
driver structures. 

 Association of handlers invocation with registrations 
and deregistration of driver structures. 

 Restrictions on handler call parameters. 

A new generator should provide full automated generating 
of environment model for a kernel driver module and facilities 
for describing restrictions on handler calls in the model. 

Moreover the tool should provide additional capabilities 
for driver environment model debugging, altering generated 
code and understanding scenarios available in generated C 
code. 

IV. ARCHITECTURE OF THE NEW DRIVER ENVIRONMENT 

MODEL GENERATOR 

The design of the new driver environment model generator 
(DEG) is illustrated in Fig. 4. An input file for DEG is a LDV 
command stream. This file contains information on build 
options for compiler, paths to driver and kernel source code, et 
al. LDV components connects with each other through this file 
and DEG transforms it during its work. The environment 
model generation process consists of 3 steps: driver source 
code analysis, generating of the model in the intermediate 

representation and printing of corresponding C code. We shall 
consider these steps below in details. 

 

Fig. 4. Design of the driver environment generator. 

A. Driver source code analysis 

Linux kernel source code is sophisticated and often 
changing. That is why using analysis based on regular 
expressions leads to various bugs in generated code of the 
model or lack of information on source code for model 
generation. For solving this problem DEG uses C 
instrumentation framework (CIF below) for source code 
querying [10]. DEG requests information from this tool about 
driver source code like initialization and exit procedures, 
driver structures, library function invocations, et al. Querying 
process can be divided into two steps: 

1) Querying for handlers and driver structures used in the 

driver. 

2) Querying for functions used for registration of these 

driver structures and other queries based on information 

extracted at a first step. 
After source code analysis it is needed to get additional 

information on handler call order, handler return values and 
handler arguments before environment model can be 
generated. Such the information is stored in a configuration. 

B. Internal driver environment model representation 

construction 

 
Paper [11] designed a formal driver environment model 

based on Robin Milner’s Pi-processes [12]. The model is 
considered as a parallel composition of Pi-processes. A group 
of handlers from one driver structure corresponds to a Pi-
process. Interactions between such processes are implemented 
by signals exchanging. Driver structure registration and 
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deregistration are modeled via these signals too. Also this 
work proposed a method of translating such driver 
environment model into a multi-threaded C program. And it 
showed that the translated sequential program reproduces the 
same traces as available in the initial model via Pi-processes. 
This result is important because nowadays model checking 
verifiers don’t support multi-threaded C programs analysis but 
drivers can be executed in several threads. 

A DEG configuration is developed for specifying Pi-
processes of environment model. The configuration consists of 
two parts: manually written specifications for several driver 
structures and patterns for automatically generating such 
specifications for other driver structures. This design of 
configuration allows generating Pi-process description for 
difficult cases using manually written specifications and for 
other cases using patterns.  

New DEG constructs a model representation on the basis 
of the configuration and data extracted from the source code. 
The following algorithm for constructing the representation is 
used: 

1) First of all presence of manually written descriptions in 

configuration is checked for each driver structure that was 

found in the driver. 

2) If such specification for a driver structure is found, it 

will be adopted for this driver structure taking into account its 

handlers and registration methods that were founded in the 

driver source code. This adopted specification is used for 

modeling the driver structure in the model representation. 

3) If a description is not  found, then a suitable pattern 

will be chosen from the second part of the configuration. This 

pattern will be adopted using heuristics and taking into 

account the driver structure. 
As a result of this stage DEG provides a driver 

environment model representation with Pi-processes 
descriptions for each driver structure found in the driver 
source code and signals that are used for interaction between 
processes. Representation format almost coincides with the 
format of the configuration. 

For debugging purposes DEG can generate statecharts with 
available handler invocation scenarios in the generated code. 
Each statechart illustrates the call handler order for the 
corresponding Pi-process. Simplified examples of such charts 
showed in Fig. 5 and Fig. 6. These figures illustrate two 
graphs for order of calling init and exit functions and for order 
of calling handlers from the driver structure with the 
usb_driver type. In the Fig. 5 there are 3 states: “state 0” in 
which driver wasn’t been initialized yet, “state 1” in which 
driver normally operates and “state 2” in which it is already 
unloaded. In “state 1” other handlers can be called like it is 
illustrated in the charts in the Fig. 6: after init execution, 
usb_driver structure is become registered, after this event 
handler probe can be called. If the device was probed 
successfully handler disconnect can be called. After 
disconnect invocation exit can be called that unregisters 
usb_driver structure. 

C. Printing C code of driver environment model 

On the last stage DEG translates the driver environment 
model representation based on Pi-processes into a C code.  

 

Fig. 5. Simplified example of the statechart for init and exit functions. 

 

Fig. 6. Simplified example of the statechart for handlers from usb_driver 

driver structure. 

Then DEG represents this C code in form of aspect files, 
which are used by another LDV component Rule 
Instrumentor. After applying these aspect files by that 
component, code of the generated model is added to the driver 
source code and some driver routines are also changed. Added 
code includes various auxiliary routines, variables and 
entry_point function in which handlers are invoked and from 
which a verifier starts its analysis. 

 

 



V. RESULTS 

New DEG is still under development, but some results 
have been obtained already. For a comparison of the new tool 
with the old one 2672 drivers from the Linux kernel 3.8-rc1 
were analyzed. As a model checking verifier BLAST tool was 
used [13]. 

Table I illustrates transitions of verification verdicts after 
switching to the new driver environment model generator. 
Columns show results of checking of modules for a 
corresponding error type connected with: blk_requests 
executing (1); classes, chrdev_regions and usb_gadgets 
allocating (2); pairing of module_get and module_put routines 
(3); using locks (4). The first table line contains the numbers 
of modules without any exposed errors for both old and new 
DEG. One of the main goals of development of the new tool 
was to decrease the number of false positives from a verifier 
due to incorrect environment model. Progress in this direction 
is illustrated in the second line. The number of transitions isn’t 
as much as expected due to incorrect work of other LDV 
components and BLAST tool or time and memory limits 
(because more resources are needed for proving safety of a 
driver than for finding an error). Next three lines demonstrate 
cases with true and false positives from the verifier. The first 
of these lines illustrates the number of modules whose 
environment model becomes better. In the next line there are 
cases with still incorrect environment model. And the last of 
these 3 lines stores true positives or false positives with the 
incorrect verdict occurred not due to environment model (for 
example due to an imperfect pointer analysis by BLAST). 
Next 2 lines contain the number of absence of the verdict with 
a new model. In 20% of these cases a reason is limit of 
memory or time because in some cases new DEG generates a 
sophisticated and large model. In other cases reasons are 
various bugs in LDV or in the verifier. Next two lines contain 
number of cases when an old model had syntax errors in the 
contrast to the new one. The last line shows cases with LDV 
or verifier fails despite both new and old environment model 
because these modules are too huge or just due to bugs in 
verification system or in the verifier. 

TABLE I.  VERIFICATION VERDICTS AFTER SWITCHING TO THE NEW 

DRIVER ENVIRONMENT MODEL GENERATOR. 

Transitions 1 2 3 4 

Safe → Safe 2469 2441 2414 2444 

Unsafe → Safe 0 2 5 7 

Unsafe → Unsafe 

Model becomes 

better 
6 3 6 4 

Model is still 

incorrect 
0 1 6 5 

Unsafe is not due 

to model 
0 15 18 5 

Safe → Unknown 43 44 46 45 

Unsafe → Unknown 0 1 16 4 

Unknown  → Safe 12 13 10 16 

Unknown → Unsafe 0 1 4 1 

Unknown → Unknown 142 151 149 141 

 

Proper environment model is one of necessary conditions 
for obtaining true verdicts. Despite a minor number of 
transitions from false positives, an experience of using the 
new generator showed that such incorrectness of an 
environment model often hides various problems in other 
LDV components or in verifier. Switching to the new 
generator explored such problems and allowed to increase 
quality of driver verification in general. 

VI. FURTHER DEVELOPMENT DIRECTIONS 

The suggested approach increased quality of generating of 
driver environment models, but there are the following 
shortcomings in the current tool that should be solved in 
future: 

 Configuration extension. For several types of drivers 
specifications for driver structures should be written 
manually in the configuration. The number of driver 
structures is estimated as two hundreds in the whole 
kernel. There are 15 described already in the 
configuration and about 15 are needed to be specified.   

 Interrupts, timers, tasklets modeling. New DEG 
doesn’t invoke interrupt handlers, timer routines or 
tasklet callbacks yet. For increasing coverage of code 
analysis they should be invoked in the new model. 

 Generating model for several modules. Sometimes 
an analysis of only one module leads to sophisticated 
or incorrect environment model, because drivers can 
contain several modules or common routines from 
several drivers are picked out to a library module. 
Thus environment model should be generated for 
groups of interacting modules rather than for separate 
modules of these groups. 

VII. CONCLUSION 

The paper describes the new approach for automatically 
generating driver environment models for model checking 
Linux kernel drivers. Also it demonstrates the new version of 
the component of LDV framework called Driver Environment 
Generator implementing this approach. The new DEG 
provides: 

 Fully automated environment model generating for 
drivers that can be compiled as Linux kernel modules. 
Generating process is based on source code analysis 
performed by C Instrumentation Framework [10].  

 The new configuration for generating process 
management. This configuration consists of 
specifications for driver structures and patterns for 
invoking handlers from other driver structures having 
an unknown type. The configuration is based on Pi-
processes and allows setting various restrictions for 
handler invocation including restrictions on order and 
parameters of calling handlers from one or several 
driver structures.   

 Facilities for simplifying work with generated 
environment models by its representation in 



configuration format or statecharts that illustrate order 
of handler calls. 

 Driver environment model as a set of aspect files for 
applying to the driver source code by LDV component 
Rule Instrumentor. 

Initial experience of the new tool application demonstrated that 

the new approach allows increasing quality of generated 

environment models and decreasing the number of false 

positives from verifiers. Also usability of DEG tool was 

improved. 

The new DEG will replace soon the old one and will be 

available as component of LDV framework. Information on 

LDV framework is available on the site of the project  

http://linuxtesting.org/project/ldv. 
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