
Generating environment model for Linux device

drivers

Ilja Zakharov

ISPRAS

Moscow, Russian Federation

Email:

ilja.zakharov@ispras.ru

Vadim Mutilin

ISPRAS

Moscow, Russian Federation

Email: mutilin@ispras.ru

Eugene Novikov

ISPRAS

Moscow, Russian Federation

Email: novikov@ispras.ru

Alexey Khoroshilov

ISPRAS

Moscow, Russian Federation

Email:

khoroshilov@ispras.ru

Abstract— Linux device drivers can't be analyzed separately

from the kernel core due to their large interdependency with

each other. But source code of the whole Linux kernel is rather

complex and huge to be analyzed by existing model checking

tools. So a driver should be analyzed with environment model

instead of the real kernel core. In the given paper requirements

for driver environment model are discussed. The paper describes

advantages and drawbacks of existing model generating

approaches used in different systems of model checking device

drivers. Besides, the paper presents a new method for generating

model for Linux device drivers. Its features and shortcomings are

demonstrated on the basis of application results.

Keywords—operating system; Linux; kernel; driver; model

checking; environment model; Pi-processes

I. INTRODUCTION

Linux kernel is one of the most fast-paced software
projects. Since 2005, over 7800 individual developers from
almost 800 different companies have contributed to the kernel.
Each kernel release contains about 10000 patches - work of
over 1000 developers representing nearly 200 corporations
[1]. Up to 70% of Linux kernel source code belongs to device
drivers, and more than 85% errors, which lead to hangs and
crashes of the whole operating system, are also in the drivers’
sources [2] [3].

A. Linux device drivers

The Linux kernel could be divided into two parts - core
and drivers (look at Fig. 1). Drivers manage devices and the
kernel core is responsible for a process management, memory
allocation, networking and et al.

Fig. 1. Device drivers in the Linux kernel.

Most of drivers can be compiled as modules that can be
loaded on demand. Drivers differ from common C programs.
Drivers do not have a main function and a code execution
order is primarily determined by the kernel core. Let us
describe driver organization by considering a simplified
example of a driver in Fig. 2:

 Driver initialization function (the function init
below). A module of a driver is loaded on demand by
the Linux kernel core when the operating system starts
or when a necessity to interact with a corresponding
device occurs. A module execution always begins
with an invocation of a driver initialization function
by the kernel core. In the Fig. 2 the initialization
driver function is usbpn_init.

 Driver exit function (the function exit below). An
interaction with the device is allowed until the module
is unloaded. This happens after an invocation of a
driver exit function by the kernel core. The function
usbpn_exit is such function in Fig. 2.

 Driver Handlers. Various driver routines are usually
implemented as callbacks to handle driver-related
events, e.g. system calls, interrupts, et al. There are
two handlers in the example in Fig. 2: usbpn_probe
and usbpn_disconnect.

 Driver structures (we will call them just “structures”
from now on). Most of handlers that work with
common resources consolidated in groups. Each
handler in such a group implements certain
functionality defined by its role in this group. Usually
pointers to handlers from one group stored in fields of
a special variable with complex structure type. That is
why we identify such groups as “driver structures”. In
example in Fig. 2 usbpn_driver is the driver structure
with usb_driver type. It has two fields “.probe” and
“.disconnect” initialized with pointers to usbpn_probe
and usbpn_disconnect handlers.

 Registration and deregistration of handlers. Before
the kernel core can invoke handlers from the module,
they should be registered. The typical way to register
driver handlers is to call a special function. The
function registers the driver structure with handlers
and since the structure is registered, its handlers can
be called. The driver structure registration takes place
in the driver initialization (in init function body) or in
an execution of a handler from another structure. An
example of registration of usb_driver structure is
illustrated in Fig. 2: usb_register is called in
usbpn_init function body and it registers usbpn_driver
structure variable. Also similar deregistration
functions are implemented for the handler
deregistration.

Even this simplified example illustrates the complexity of
device drivers. A lot of driver methods are called by the kernel
core such as handlers, init and exit functions and there are
routines from the kernel core that are invoked by the driver
such as register and unregister functions and other library
functions. Besides, interaction of the kernel core and the driver
depends on system calls from the user space and interrupts
from devices. Their large interdependency with each other
leads to availability of almost arbitrary scenarios of handler
calling. But in all of such scenarios rules of correctness are
taken into account such as restrictions on order, parameters
and context of handler invocations.

B. Model checking Linux device drivers

Nowadays it is not easy to maintain the safety of all device
drivers manually due to complexity of drivers, high pace of
the Linux kernel development and huge size of source code.
That is why an automated driver checking is required. There
are various techniques for achievement this goal and a model
checking approach is one of them.

Fig. 2. A simplified example of a driver drivers/net/usb/cdc-phonet.c1

(compiled as cdc-phonet.ko module).

As illustrated before, a driver execution depends on the
kernel core. But analysis of a driver together with the kernel
core is rather difficult nowadays for tools due to complexity of
kernel core source code and its huge size. That is why a driver
environment model is required for analyzing device drivers.
The model can be implemented as C program that emulates
interaction of the driver with the kernel core. In general the
model should emulate the interaction with hardware too, but
this aspect is not considered in this paper. The driver
environment model should provide:

 Invocation of the driver initialization and exit
functions.

 All available in the real interaction of the kernel core
and the driver scenarios of invocations of handlers
taking into account:

o Limitations on parameters of handler calls.

o A context of handler invocation such are
interrupts allowed or not.

o Limitations on order and number of
invocations of handlers for:

 Handlers from a driver structure.

 Handlers from different driver
structures.

 Models for kernel core library functions.

An incorrect model often causes a false positive verdict
from a verification tool (verifier below) or a real bug skipping

1
 http://lxr.free-electrons.com/source/drivers/net/usb/cdc-

phonet.c?v=3.0

static int usbpn_probe(struct usb_interface *intf, const

struct usb_device_id *id){

…

}

static void usbpn_disconnect(struct usb_interface *intf){

…

}

static struct usb_driver usbpn_driver = {

 .name = “cdc_phonet”,

 .probe = usbpn_probe,

 .disconnect = usbpn_disconnect,

};

static int __init usbpn_init(void){

 return usb_register(&usbpn_driver);

}

static void __exit usbpn_exit(void){

 usb_deregister(&usbpn_driver);

}

[4]. An example of environment model for the driver
considered above is shown in Fig. 3:

Fig. 3. Environment model for the driver from Fig. 2.

A verifier starts the driver analysis from the function
entry_point. First the driver should be initialized by the
function ubpn_init. If it returns success result “0”, then
usbpn_probe and usbpn_disconnect are invoked. The variable
busy is needed for calling handlers in the proper order. The
handler usbpn_probe should be called the first and if it returns
success result, then usbpn_disconnect should be called.
Operator while is needed for call sequences of handlers of
variable length. Operator switch with the function nondet_int
returning random int provides non-deterministic handler

calling for various scenarios of handler invocations covering
in the. At the end of a driver work usbpn_exit should be
called, but it can take place only if the device wasn’t probed,
either when usbpn_probe wasn’t called or when usbpn_probe
returned an error value or when usbpn_probe and
usbpn_disconnect were already called one or more times.
After the exit invocation a verifier finishes analysis.

II. RELATED WORK

There are several verification systems for device drivers,
but only Microsoft SDV [5] is in industrial use. For modeling
driver environment various approaches are used.

 Microsoft SDV. SDV provides a comprehensive
toolset for analysis of source code of device drivers of
Microsoft Windows operating system. These tools are
used in the process of device driver certification, and
have been included in Microsoft Windows Driver
Developer Kit since 2006. SDV’s driver environment
model is based on manually written annotations of
handlers. SDV provides a kernel core model that
contains simplified stubs of some kernel core routines.
Microsoft SDV is specifically tailored for analysis of
device drivers of Microsoft Windows. Unfortunately,
it is proprietary software, which prohibits its
application to other domains outside Microsoft.

 Avinux [6]. This project was developed in University
of Tubingen, Germany. Its environment model is
based on handwritten annotations of each handler.
Authors paid attention to the problem of proper
initialization of various resources and uninitialized
pointers in the environment model [7].

 DDVerify [8]. The project was developed in Oxford
and Carnegie Mellon universities. Authors
implemented a partial kernel core model for a special
kernel version for verifying drivers of several types.
But the model is handwritten and maintaining it
manually is complicated while the kernel is under
continuous development.

 LDV [9]. LDV framework for driver verification is
developed in Institute of System Programming of
Russian Academy of Sciences. This project took a
high pace of the Linux kernel development. An
environment model generation process is fully
automated and does not need manual annotations in
code. It is based on an analysis of the driver source
code and on a configuration. The configuration
consists of handwritten specifications for several
driver structures and a heuristic template for other
cases. Generated model provides nondeterministic
handler call sequences, interrupt handlers invoking. A
model can be generated for a driver module from any
subsystem and in most cases it correctly describes
interaction of a driver with the kernel core.

The lack of such sufficient handicaps as a demand for
handwritten annotations or the difficulty of model maintaining
allows to efficiently using LDV for verifying all kernel drivers

void entry_point(void){

 // Try to initialize the driver.

 if(usbpn_init())

 goto final;

 // The variable shows usb_driver device is probed

// or not.

 int busy = 0;

 // For call sequence of handlers of any length.

 while(1){

 // Nondeterministic choosing

 switch(nondet_int()){

 case 1:

 // The device wasn’t probed.

 if(busy == 0){

 res = usbpn_probe(..);

 if(res == 0){

 busy = 1;

 }

 }
 break;

 case 2:

 // The device was already

 // probed.

 if(busy == 1){

 usbpn_disconnect(..);

 busy = 0;

 }
 break;

 case 3:

 // Try to unload the module

 // if the device wasn’t probed.

 if(busy == 0){

 goto exit;

 }
 break;

 default: break;

 }

}

// Unload driver.

exit: usbpn_exit();

 final:

}

from a lot of kernel releases. However, a driver environment
generator has considerable limitations:

 Only linear handler call sequences are available,
where each handler can be called only once.

 Driver structures registration and deregistration are
not taken into account in model generation process.

 Source code analysis is based on regular expressions.
This approach leads to syntactic mistakes in a model
due to changes in the kernel and complexity of the
kernel source code.

 Not all needed restrictions on handler calls can be
described in the configuration.

 For a driver module that consists of several files the
tool generates separate models for each “.c” file but
not the one for the whole module.

Such shortcomings lead to incorrect verdict from a verifier
or real bugs missing. And in most cases the tool doesn’t
provide any capabilities for overcoming model imperfectness.
This paper suggested a new approach for generating driver
environment model.

III. SUGGESTED APPROACH

The main goal of this research was to develop a new tool
for automatically generating environment model for kernel
driver modules which contain one or several files. An
approach suggests environment model that should take into
account:

 All available in real driver handler call scenarios from
a one driver structure.

 Limitations on order of calling handlers from several
driver structures.

 Association of handlers invocation with registrations
and deregistration of driver structures.

 Restrictions on handler call parameters.

A new generator should provide full automated generating
of environment model for a kernel driver module and facilities
for describing restrictions on handler calls in the model.

Moreover the tool should provide additional capabilities
for driver environment model debugging, altering generated
code and understanding scenarios available in generated C
code.

IV. ARCHITECTURE OF THE NEW DRIVER ENVIRONMENT

MODEL GENERATOR

The design of the new driver environment model generator
(DEG) is illustrated in Fig. 4. An input file for DEG is a LDV
command stream. This file contains information on build
options for compiler, paths to driver and kernel source code, et
al. LDV components connects with each other through this file
and DEG transforms it during its work. The environment
model generation process consists of 3 steps: driver source
code analysis, generating of the model in the intermediate

representation and printing of corresponding C code. We shall
consider these steps below in details.

Fig. 4. Design of the driver environment generator.

A. Driver source code analysis

Linux kernel source code is sophisticated and often
changing. That is why using analysis based on regular
expressions leads to various bugs in generated code of the
model or lack of information on source code for model
generation. For solving this problem DEG uses C
instrumentation framework (CIF below) for source code
querying [10]. DEG requests information from this tool about
driver source code like initialization and exit procedures,
driver structures, library function invocations, et al. Querying
process can be divided into two steps:

1) Querying for handlers and driver structures used in the

driver.

2) Querying for functions used for registration of these

driver structures and other queries based on information

extracted at a first step.
After source code analysis it is needed to get additional

information on handler call order, handler return values and
handler arguments before environment model can be
generated. Such the information is stored in a configuration.

B. Internal driver environment model representation

construction

Paper [11] designed a formal driver environment model

based on Robin Milner’s Pi-processes [12]. The model is
considered as a parallel composition of Pi-processes. A group
of handlers from one driver structure corresponds to a Pi-
process. Interactions between such processes are implemented
by signals exchanging. Driver structure registration and

Linux kernel

source code

Command

stream

Driver source

code Command

stream

C

Instrument-

ation

Framework

Environment

model

Model

representation

Statecharts

Source code

analysis

Model

preparation

Printing

deregistration are modeled via these signals too. Also this
work proposed a method of translating such driver
environment model into a multi-threaded C program. And it
showed that the translated sequential program reproduces the
same traces as available in the initial model via Pi-processes.
This result is important because nowadays model checking
verifiers don’t support multi-threaded C programs analysis but
drivers can be executed in several threads.

A DEG configuration is developed for specifying Pi-
processes of environment model. The configuration consists of
two parts: manually written specifications for several driver
structures and patterns for automatically generating such
specifications for other driver structures. This design of
configuration allows generating Pi-process description for
difficult cases using manually written specifications and for
other cases using patterns.

New DEG constructs a model representation on the basis
of the configuration and data extracted from the source code.
The following algorithm for constructing the representation is
used:

1) First of all presence of manually written descriptions in

configuration is checked for each driver structure that was

found in the driver.

2) If such specification for a driver structure is found, it

will be adopted for this driver structure taking into account its

handlers and registration methods that were founded in the

driver source code. This adopted specification is used for

modeling the driver structure in the model representation.

3) If a description is not found, then a suitable pattern

will be chosen from the second part of the configuration. This

pattern will be adopted using heuristics and taking into

account the driver structure.
As a result of this stage DEG provides a driver

environment model representation with Pi-processes
descriptions for each driver structure found in the driver
source code and signals that are used for interaction between
processes. Representation format almost coincides with the
format of the configuration.

For debugging purposes DEG can generate statecharts with
available handler invocation scenarios in the generated code.
Each statechart illustrates the call handler order for the
corresponding Pi-process. Simplified examples of such charts
showed in Fig. 5 and Fig. 6. These figures illustrate two
graphs for order of calling init and exit functions and for order
of calling handlers from the driver structure with the
usb_driver type. In the Fig. 5 there are 3 states: “state 0” in
which driver wasn’t been initialized yet, “state 1” in which
driver normally operates and “state 2” in which it is already
unloaded. In “state 1” other handlers can be called like it is
illustrated in the charts in the Fig. 6: after init execution,
usb_driver structure is become registered, after this event
handler probe can be called. If the device was probed
successfully handler disconnect can be called. After
disconnect invocation exit can be called that unregisters
usb_driver structure.

C. Printing C code of driver environment model

On the last stage DEG translates the driver environment
model representation based on Pi-processes into a C code.

Fig. 5. Simplified example of the statechart for init and exit functions.

Fig. 6. Simplified example of the statechart for handlers from usb_driver

driver structure.

Then DEG represents this C code in form of aspect files,
which are used by another LDV component Rule
Instrumentor. After applying these aspect files by that
component, code of the generated model is added to the driver
source code and some driver routines are also changed. Added
code includes various auxiliary routines, variables and
entry_point function in which handlers are invoked and from
which a verifier starts its analysis.

V. RESULTS

New DEG is still under development, but some results
have been obtained already. For a comparison of the new tool
with the old one 2672 drivers from the Linux kernel 3.8-rc1
were analyzed. As a model checking verifier BLAST tool was
used [13].

Table I illustrates transitions of verification verdicts after
switching to the new driver environment model generator.
Columns show results of checking of modules for a
corresponding error type connected with: blk_requests
executing (1); classes, chrdev_regions and usb_gadgets
allocating (2); pairing of module_get and module_put routines
(3); using locks (4). The first table line contains the numbers
of modules without any exposed errors for both old and new
DEG. One of the main goals of development of the new tool
was to decrease the number of false positives from a verifier
due to incorrect environment model. Progress in this direction
is illustrated in the second line. The number of transitions isn’t
as much as expected due to incorrect work of other LDV
components and BLAST tool or time and memory limits
(because more resources are needed for proving safety of a
driver than for finding an error). Next three lines demonstrate
cases with true and false positives from the verifier. The first
of these lines illustrates the number of modules whose
environment model becomes better. In the next line there are
cases with still incorrect environment model. And the last of
these 3 lines stores true positives or false positives with the
incorrect verdict occurred not due to environment model (for
example due to an imperfect pointer analysis by BLAST).
Next 2 lines contain the number of absence of the verdict with
a new model. In 20% of these cases a reason is limit of
memory or time because in some cases new DEG generates a
sophisticated and large model. In other cases reasons are
various bugs in LDV or in the verifier. Next two lines contain
number of cases when an old model had syntax errors in the
contrast to the new one. The last line shows cases with LDV
or verifier fails despite both new and old environment model
because these modules are too huge or just due to bugs in
verification system or in the verifier.

TABLE I. VERIFICATION VERDICTS AFTER SWITCHING TO THE NEW

DRIVER ENVIRONMENT MODEL GENERATOR.

Transitions 1 2 3 4

Safe → Safe 2469 2441 2414 2444

Unsafe → Safe 0 2 5 7

Unsafe → Unsafe

Model becomes

better
6 3 6 4

Model is still

incorrect
0 1 6 5

Unsafe is not due

to model
0 15 18 5

Safe → Unknown 43 44 46 45

Unsafe → Unknown 0 1 16 4

Unknown → Safe 12 13 10 16

Unknown → Unsafe 0 1 4 1

Unknown → Unknown 142 151 149 141

Proper environment model is one of necessary conditions
for obtaining true verdicts. Despite a minor number of
transitions from false positives, an experience of using the
new generator showed that such incorrectness of an
environment model often hides various problems in other
LDV components or in verifier. Switching to the new
generator explored such problems and allowed to increase
quality of driver verification in general.

VI. FURTHER DEVELOPMENT DIRECTIONS

The suggested approach increased quality of generating of
driver environment models, but there are the following
shortcomings in the current tool that should be solved in
future:

 Configuration extension. For several types of drivers
specifications for driver structures should be written
manually in the configuration. The number of driver
structures is estimated as two hundreds in the whole
kernel. There are 15 described already in the
configuration and about 15 are needed to be specified.

 Interrupts, timers, tasklets modeling. New DEG
doesn’t invoke interrupt handlers, timer routines or
tasklet callbacks yet. For increasing coverage of code
analysis they should be invoked in the new model.

 Generating model for several modules. Sometimes
an analysis of only one module leads to sophisticated
or incorrect environment model, because drivers can
contain several modules or common routines from
several drivers are picked out to a library module.
Thus environment model should be generated for
groups of interacting modules rather than for separate
modules of these groups.

VII. CONCLUSION

The paper describes the new approach for automatically
generating driver environment models for model checking
Linux kernel drivers. Also it demonstrates the new version of
the component of LDV framework called Driver Environment
Generator implementing this approach. The new DEG
provides:

 Fully automated environment model generating for
drivers that can be compiled as Linux kernel modules.
Generating process is based on source code analysis
performed by C Instrumentation Framework [10].

 The new configuration for generating process
management. This configuration consists of
specifications for driver structures and patterns for
invoking handlers from other driver structures having
an unknown type. The configuration is based on Pi-
processes and allows setting various restrictions for
handler invocation including restrictions on order and
parameters of calling handlers from one or several
driver structures.

 Facilities for simplifying work with generated
environment models by its representation in

configuration format or statecharts that illustrate order
of handler calls.

 Driver environment model as a set of aspect files for
applying to the driver source code by LDV component
Rule Instrumentor.

Initial experience of the new tool application demonstrated that

the new approach allows increasing quality of generated

environment models and decreasing the number of false

positives from verifiers. Also usability of DEG tool was

improved.

The new DEG will replace soon the old one and will be

available as component of LDV framework. Information on

LDV framework is available on the site of the project

http://linuxtesting.org/project/ldv.

References
[1] J. Corbet, G. Kroah-Hartman, A. McPherson., “Linux kernel

development. How Fast it is Going, Who is Doing It, What They are
Doing, and Who is Sponsoring It,” http://go.linuxfoundation.org/who-
writes-linux-2012, 2012.

[2] A. Chou, J. Yang, B. Chelf, S. Hallem, and DR Engler, “An Empirical
Study of Operating System Errors,” Proceedings of the 18th ACM
Symp. Operating System Principles, 2001.

[3] M. Swift, B. Bershad, H. Levy, “Improving the reliability of commodity
operating systems,” Proceedings of the nineteenth ACM symposium on
Operating systems principles, 2003.

[4] D. Engler, M. Musuvathi, “Static analysis versus model checking for
bug finding”, Proceedings of the 16th international conference
CONCUR 2005, San Francisco, CA, USA, 2005.

[5] T. Ball, E. Bounimova, V. Levin, R. Kumar, J. Lichtenberg, “The Static
Driver Verifier Research Platform,” Formal Methods in Computer Aided
Design, 2010.

[6] H. Post, W. Kuchlin, “Integrated Static Analysis for Linux Device
Driver Verification,” Proceedings of the 6th international conference on
Integrated formal methods, Germany, 2007.

[7] H. Post, W. Kuchlin, “Automatic data environment construction for
static device drivers analysis,” Proceedings of the conference on
Specification and verification of component-based systems, USA, 2006.

[8] T. Witkowski, N. Blanc, D. Kroening , G. Weissenbacher, “Model
Checking Concurrent Linux Device Drivers,” Proceedings of the twenty-
second IEEE/ACM international conference on Automated software
engineering, ACM, USA, 2007.

[9] M. Mandrykin, V. Mutilin, E. Novikov, A. Khoroshilov, P. Shved,
“Using linux device drivers for static verification tools benchmarking,”
Programming and Computer Software September 2012, Volume 38,
Issue 5, pp 245-256.

[10] A. Khoroshilov, E. Novikov, “Using Aspect-Oriented Programming for
Querying Source Code,” Proceedings of the Institute for System
Programming of RAS, volume 23, 2012.

[11] V. Mutilin, “Verification of Linux Operating System Device Drivers
with Predicate Abstractions,” Phd's Thesis, Institute for System
Programming of RAS, Moscow, Russia, 2012.

[12] R. Milner, “A Calculus of Communicating Systems,” Springer-Verlag
(LNCS 92), ISBN 3-540-10235-3, 1980.

[13] D. Beyer, T. Henzinger, R. Jhala, R. Majumdar, “The Software Model
Checker Blast: Applications to Software Engineering,” International
Journal on Software Tools for Technology Transfer (STTT), vol. 5, pp.
505-525, 2007.

http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv

