Experience of Building and Deployment Debian on
Elbrus Architecture

Andrey Kuyan, Sergey Gusev, Andrey Kozlov, Zhanibek Kaimuldenov, Evgeny Kravtsunov
Moscow Center of SPARC Technologies (ZAO MCST)
Vavilova street, 24, Moscow, Russia
{kuyan a, gusev_s, kozlov_ a, kajmul a, kravtsunov_ ej}@mcst.ru

Abstract—This article describe experience of porting Debian
Linux distribution on Elbrus architecture. Authors suggested
effective method of building Debian distribution for architecture
which is not supported by community.

1. INTRODUCTION

MCST (ZAO MCST”) is a Russian company specializing
in the development of general purpose CPU with Elbrus-
2000 (e2k) ISA [1] and computing platforms based on it
[2].Also in the company are being developed optimizing
and binary compilers, operating systems. General purpose of
microprocessors and platforms assume that users have the
ability to solve any problems of system integration with its
help. At the user level universality is provided by distribution
of operating system. Distribution uses architecture-dependent
capabilities of software components, such as the kernel, arch-
dependent system libraries and utilities, compilers. Nowadays
there are several large and widely used distributions supported
by community: Gentoo, Slackware, Debian. We chose Debian
guided by wishes of our customers and because Debian is
one of the most stable and well supported Linux distributions.
Debian has system of package management, installer and all
this components are supported by a large community of devel-
opers. 99% of Debian packages are architecture independent
applications and libraries, which is written in C/C++ or Perl,
Python, etc. There is a popular way to building distribution for
unsupported by community architecture: download a limited
number of software sources with different versions and add
a popular package manager, for example dpkg with limited
functionality. This approach allows to provide for user a
distribution with basic functionality and even call it a Debian-
like. A significant drawback of this way is the complexity
or even impossibility of extending the package set. Due to
software dependencies, even if they are, do not match with
dependencies of pure Debian and nothing additional can be
built with using dpkg-buildpackage. This drawback is not
so significant for specialized systems that solve the limited
range of tasks, but a problem for the platform, which is
claimed as universal. This problem is solved by porting Debian
on new architecture in its purest form with preserving all
dependencies. The resulting distribution will allow to solve all
kind of the current problems, even more a system integrator
will be able to build new packages using the package manager.

II. DEBIAN PACKAGE MANAGMENT SYSTEM

Debian is built from a large number of open-source projects
which maintained by different groups of developers around
the world. Debian uses the package term. There are 2 types
of packages: source and binary. Common source package
consists of *.orig.tar.gz file, *.diff.gz file and *.dsc
file. *.orig.tar.gz file contains upstream code of a project,
maintained by original developers. *.diff.gz file contains
a Debian patch with some information about project, such
as build-dependencies, build rules, etc. *.dsc file holds an
information about *.orig.tar.gz and *.diff.gz. Some
source packages, maintained by Debian developers (for ex-
ample dpkg) may not comprise *.diff.gz file because they
already have a Debian information inside. Binary packages
can contain binary and configuration files, scripts, man pages,
documentation and another files to install on the system. In ad-
dition, each package holds metadata about itself. Binary pack-
ages represented as *.deb files. Source and binary packages
contains information about build and runtime dependencies
respectively. Build dependencies are binary packages that has
to be installed on the system for building source package.
Runtime dependencies are binary packages that has to be
installed on the system for correct work of package.

In fact, Debian solves two main problems:

1) supporting appropriate versions of packages

2) managing packages with dpkg and support tools
For building any source package, some utilities have to be
installed on the system. For example, every source code
required make utility. Set of packages that have to be installed
on the system for building called build-essentials. Some of
them are Debian-specific. This because Debian has it’s own
tools and features for building source code directly into
packages. Debian patch for source package holds, as men-
tioned, build rules. Rules is the makefile with set of standard
targets, such as “clean” and “build”. Build process starts with
run dpkg-buildpackage script which is part of dpkg-dev
package. This script checks build dependencies, gets some
information about environment and runs the desired targets
from rules.

III. ARCHITECTURE-DEPENDENT SOFTWARE AND DEBIAN RELEASE
SELECTION

Architecture-dependent part of software stack (see Fig.1)
comprises the following components: Linux kernel, glibc

library, toolchain (compiler lcc and binutils), strace and de-
buger gdb. Development of this components for new CPU
architecture is long and laborious process. Versions of this
components are crucial for Debian release number selection.

iceweasel abiword

l
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
l
§ [dpkg perl :
o | \
o 1
. 1
[} 1 \
g 1 T T T 1
1 , 1
1 \ 1
1 , 1
| \ / \ o 1
1 . © 1
toolchain ! g ,
1 / \ | g
1 \ 5 :
1 — o
1 [binutits Lo
l g l
1 lib | c !
1 glibc \ 2
= = — — - I I [7] I
oo ! o2
<
1 s ! [-
1 a ! 1 © !
[linux kernel I !
1 ! | 1
c
1 T ! | 1
9]
1 < ! | 1

Fig. 1. Software stack

In the table 1 represented comparison of MCST and Debian
architecture-dependent components, according to this table
Debian Lenny is appropriate one for porting.

TABLE I
ARCHITECTURE-DEPENDENT COMPONENTS COMPARISON

[version [kernel | glibc | binutils [gec |

MCST | 2.6.33
Lenny 2.6.26
Squeeze | 2.6.32

MCST compiler team has developed two kinds of toolchain:
cross and native. Cross-toolchain, which is running x86-
machine, allow to generate code for e2k ISA. MCST
architecture-dependent components consist of binutils-2.18,
glibc-2.7, gdb-7.2, gcov, dprof, libstlport, libffi and lcc (com-
piler compatible with gcc 3.4.6). Compiler lcc is original
development of MCST [3] and uses frontend which is licensed
from Edison Design Group (EDG)[4]. Remaining components
are the result of porting the GNU utilities on e2k-architecture
and contain a large number of changes arising from architec-
tures peculiarities.

IV. TECHNICAL ISSUES FOR CHALLENGING

Define main technical problems in porting Debian on a new
CPU architecture:

1) The chicken and egg problem: for build any package
we need build-essentials set. But we haven’t this one
because we haven’t build and runtime dependencies for
build-essentials packages.

2) Some packages may cyclically dependent on each other.
Example of cyclic dependencies shown in figure 2.

3) While building build-essentials there isn’t simple way
to pass arch identifier to configure script. This because
we built build-essentials without dpkg, which provides
features for auto-detecting cpu type. The problem is
compounded by the fact that some packages strictly
depends on the architecture type.

4) Compilation speed problem. For running iceweasel, gnu-
meric and so on we need to have almost 2500 binary
packages in our repository. Some of them are very large
and build takes more than a day.

5) Difference between gcc and elbrus toolchains: gcc
toolchain packages set and elbrus toolchain packages set
vary greatly, elbrus compiler don’t support some new
language extensions or compiler flags.

| libdpkg — perl| | cpio |

Fig. 2. Example of cyclic dependencies.

Fig.2 illustrates a part of runtime and build dependencies
graph for dpkg package. This graph represents existence of
cyclic dependencies, blue arrows depict runtime dependencies
and green arrows depict build dependencies. Package dpkg-
dev is build dependence of perl and it is used only in
process of building perl package, but dpkg-dev required for
working pakage libdpkg-perl, which depend on perl. Thus perl
interpreter should run on machine for building perl package.
Solutions of these problems are presented below.

V. SOLUTION FOR PACKAGE MANAGER: BUILDING ESSENTIALS,
BREAKING CYCLIC DEPENDENCIES

Packages from build-essentials set have been built in the
following algorithm:

1) Using debtree utility we built dependency graph of
required packages for build-essentials set.

2) Every package from graph has been built with native
toolchain and configure-make mechanism, without dpkg.

3) In build process, we broke some cyclic dependencies.
Break dependencies algorithm shown in figure 2. It

is seen that if package A depends on package B and
package B depends on package A, we should build
package B 2 times: first time with broken A dependence,
which mean we don’t pass corresponding option to
configure second time after building A package in due
form.

4) Result of building has been installed on the machine and
at the same time wrapped in the package manually.

5) After building all graph elements we built dpkg with
configure-make mechanism.

6) Then we verifyed package manager efficiency by install
on the machine all deb packages that we got manually.

7) All build-essential set have been rebuild with dpkg-
buildpackage.

compilation

compilation

compilation

Fig. 3. Algorithm of resolving circular dependencies

After sequential implementation all 7 points of algorithm
we’ve got small system which can be used for building all
other neccesary packages with dpkg. So, manual building
with configure-make used only in initial phase. After dpkg
all packages have been building with standard debian rules.

VI. SOLUTION FOR COMPILER PROBLEMS

As was mentioned above, Debian for e2k ISA is based
on using lcc compiler, which was developed by MCST
compiler team. Lcc compiler is using edg frontend, which
is compatible with gcc 3.4.6. Lcc dosen’t support some
extensions of C language, for example nested functions.
Programs written with using of nested functions, should be
patched to unwrap this functions. Fortunately as the experience
of porting Debian distribution nested functions are seldom
used, so patches require only for several packages. One of
those packages is bogl-bterm, which is used by Debian
Installeras a graphical frontend. Many of software developed
by GNU project are using gcc directives __ attribute
((attribute-1list)), and some of this directives are not
supported by lcc, so for succesful compilation of such code
corresponding patches should be applied to source package.
MCST toolchain contain library for STL support - libstlport,
which is different from standard STL library libstdc++, also
libstlport is not supported some STL features. Due to this
distinctions such packages as mysql and exim require patches
or special tuning in makefiles to be successfully compiled.

VII. HYBRID COMPILE FARM

Due to the existence of two toolchains (cross and native)
feasibility to decrease compilation time appeared. This tech-
nique is based on using hybrid scheme of source-code com-

pilation via distcc. Distcc (distributed C/C++/ObjC compiler)

TABLE I
COMPILE FARM CONFIGURATION

[parametr [e2k [x86]
CPU name Elbrus-2C+ | Core2 Duo E8400
CPU frequency 500 MHz 3.00GHz
Number of cores 2 + 4(dsp) 2

[5] is a software for speeding up compilation process by using
distributed computing over network. Compilation of source
package is starting on e2k host with native toolchain and distcc
client, this client is sending preprocessed files to servers with
x86-architecture for code compilation using cross-toolchain.
After compilation server return object files to clients which
perform operations of linking and *.deb packages forming.
Hybrid compile farm, which configuration is described in Tab.
2, was used for building linux distribution of 350 source
packages. This method allow to decrease up to 5 times average
time of package building as compared with native compilation.
Fig. 2 shows a generalized scheme of compile farm, which is
described above.

e2k host

deb build
system
i
Vo
|
native .
toolchain a
i i x86 host
I i
preprocessed) -
. preprocessed, ! ! distcc i cross
distcc code :'g: object file server {—{toolchain
client | o objectfile 15} *————
1Z1
P
i ' x86 host
: : reprocesse S—
H :% distcc i< cross
1ol objectfile server {—itoolchain
: || acente .
- : 1
- I
I
- 1 1
- 1 1 -
[.
- 1 1
1 1 -
[-
1 1
1 1 -
1 1 -
1 : -
1
e2k host [
(\ N x86 host
i preprocesset 1 1
e |t]
< Sbiectfile | PrepOCESSCl,. | gistec | cross
|| g objectfile server \—>itoolchain
i A —
Vo
|
native [
toolchain ==
deb build
system

Fig. 4. Hybrid compile farm

VIII. SOLUTION FOR ARCH TYPE

When any package is builded with configure-make, there
are two main ways to pass arch identifier to the config-
ure script: pass --build=arch option to the configure fix

config.guess script which contains all known by community
arch identifiers For correct building we used both. Typical
config.guess patch is as follows:

--- config.guess-orig
+++ config.guess-fix
@@ -854,6 +854,9 @@
crisv32:Linux:*:%)
echo crisv32-axis-linux-gnu

exit ;;
+ e2k:Linux:*:%)
+ echo e2k-unknown-linux-gnu
+ exit ;;

frv:Linux:*:%)
echo frv-unknown-linux-gnu
exit ;;
Typical configure script run as follows:
./configure --build=e2k-unknown-1linux-gnu
Dpkg has feature for auto-detect arch type of the host and
target machine which is called dpkg-architecture. It uses dpkg
internal config files, such as cputable. This one contains all
Debian known CPU and consists of three columns: Debian
name for the CPU, GNU name for the CPU and regular
expression for matching CPU part of config.guess output. So
we have to patch cputable too:

--- cputable-orig
+++ cputable-fix
@@ -34,3 +34,4 @@

sh4 sh4 sh4

shd4eb shdeb shdeb

sparc sparc sparc(64)?
+e2k e2k -unknown e2k

Almost all packages use dpkg-architecture and get
correct architecture identifier. If they don’t, we fix it.

IX. ConcLusION

This article is attempt to share experience in porting Debian
on the architecture which is not supported by the community.
General and specific for e2k architecture problems were de-
scribed, as well as methods for their solutions. Authors hope
that the article will be useful and interesting for developers,
who support Debian on different architectures.

REFERENCES

[1] Babayan B., “E2K Technology and Implementation”, Proceedings of
the Euro-Par 2000 - Parallel Processing: 6th International, Volume
190072000, pp. 18-21, January 2000.

[2] Dieffendorf. K., “The Russians Are Coming. Supercomputer Maker
Elbrus Seeks to Join x86/IA-64 Melee” Microprocessor Report, Vol. 13,
Ne2, pp. 1-7, February 15, 1999.

[3] Volkonskiy V., “Optimizing compilers for Elbrus-2000 (E2k) architec-
ture”, 4-th Workshop on EPIC Architectures and Compiler Technology,
2005.

[4] http://www.edg.com/

[5] Hall J., “Distributed Compiling with distcc”, Linux Journal, Issue 163,
November 2007.

