
Experimental comparison of the quality of TFSM-

based test suites for the UML diagrams

Rustam Galimullin

Department of Radiophysics

Tomsk State University

Tomsk, Russia

nihilkhaos@gmail.com

Abstract— The paper presents the experimental comparison

of the quality of three test suites based on the model of a Finite

State Machine with timeouts, namely, the explicit enumeration of

faulty mutants, transition tour and TFSM-based black-box test.

Test suites are then applied to the program, automatically

generated via the UML tool. The experimental results on the

quality of the above mentioned test suites and the corresponding
analysis are presented.

Keywords—Finite State Machines with timeouts, the UML state

machine diagrams, test suites

I. INTRODUCTION

Nowadays software failures of critical control systems are

very expensive, and, thus, it is essential to provide high-

quality testing at every stage of the system development.

Many of such systems are formally described using the UML

(the Unified Modeling Language) that has become the de facto

standard for modeling software applications. The UML being

a visual modeling language allows obtaining comprehensive

and detailed information about a system under design, as well
as provides a possibility for convenient update of the system.

Correspondingly, the UML is widely used in software

engineering, business project development, hardware design

and in a number of other applications. The UML description

can be automatically translated into a program code using

proper tools and the developed software should be thoroughly

tested. One of the formal models for testing UML-based

software is a trace timed model. In this paper, we derive tests

with the guaranteed fault coverage based on a timed Finite

State Machine (FSM) augmented with timeouts [1], since

FSMs are known to be an efficient model for deriving tests

with the guaranteed fault coverage. The paper presents a case
study for assessing the quality of test suites derived by three

methods [2, 3, 4], which is estimated for the example of a

phone line; the UML description of this project is taken from

[5]. Using the tool Visual Paradigm for UML 8.0 [6] a JAVA

code is generated for this application that serves a sample

when assessing the test suite quality. We first check whether

the initial program passes all the derived test suites. At the

second step, some practical faults are injected into the initial

program. Applying to each mutant tests, which were derived

on the basis of timed FSM, we check whether injected faults

can be detected with the test suites and analyze the reason

when some faults cannot be detected with some/all derived

test suites.

II. PRELIMINARIES

The model we use, TFSM, is an extension of a classical

FSM that is described as a finite set of states and transitions

between them. Every transition is labeled by an input/output

pair, where an input triggers the transition and an output is a

system response to a given input. Formally, a timed Finite

State Machine (TFSM) is a 6-tuple S = (S, I, O, s0, λS, ∆S)
where S is a finite nonempty set of states with the initial state

s0, I and O are finite disjoint input and output alphabets, λS  S

 I  O  S is transition relation and ∆S: S → S × (N  ) is a
delay function defining timeout for each state [1]. If no input

is applied at a current state during the appropriate time period

(timeout), a TFSM can move to another prescribed state. A

TFSM is called deterministic if for each pair (s, i)  S × I

there is at most one pair (o, s′)  O × S such that (s, i, o, s′) 
λS, otherwise it is called nondeterministic. If for each pair (s, i)

 S × I, there is at least one pair (o, s')  O × S such that (s,i,

o, s')  λS then S is said to be complete, otherwise it is partial.

A timed input symbol is a pair i, t  I  Z0
+, where Z0

+ is
a set of nonnegative integers. The timed input symbol shows

that the input symbol i is applied at the moment when the

value of the time variable is equal to t. A sequence of timed

input symbols i1, t1 ... ik, tk is a timed input sequence of
length k.

Let S = (S, I, O, s0, λS, ∆S) and Q = (Q, I, O, q0, λQ, ∆Q) be

complete TFSMs. TFSMs S and Q are said to be non-

separable if the sets of output responses of these TFSMs to

any timed input sequence α intersect; i.e. outS (s0, α) ∩ outQ

(q0, α)  . Otherwise, the TFSMs are separable. A timed

input sequence α, such that outS (s0, α) ∩ outQ (q0, α) =  is
called a separating sequence for TFSMs S and B. TFSM S is a

submachine of TFSM Q if S  Q, s0 = q0 and each timed

transition (s, i, t, o, s) of S is a timed transition of Q.
Intersection S ∩ Q of two FSMs is the largest submachine

of P = (P, I, O, p0, λP, ΔP), where P = S × K × Q × K, K= {0,

…, k}, k = min(max ΔS(s), max ΔQ(q)), the initial state is

quadruple (s0, 0, p0, 0). Transition relation λP and function ΔP

are defined by the following rules:

1. The transition relation λP contains quadruple [(s, k1, q,

k2), i, o, (s', 0, q', 0)] iff (s, i, o, s')  λS and (q, i, o, q')  λQ.
2. Time function is defined as ΔP(s, k1, q, k2) = [(s, k'1, q,

k'2), k], k = min(S(s)N - k1, Q(q)N - k2). State (s,

k1, q, k2) = (S(s)S, 0, Q(q)Q, 0), if S(s)N = ,

Q(q)N =  or (S(s)N - k1) = (Q(q)N - k2). If (S(s)N - k1),

(Q(q)N - k2)  Z+ и (S(s)N - k1) < (Q(q)N - k2), then state

(s, k1, q, k2) = (S(s)S, 0, q, k2 + k). If (S(s)N -

 k1), (Q(q)N - k2)  Z+ and (S(s)N - k1) > (Q(q)N - k2), then

state (s, k1, q, k2) = (s, k1 + k, Q(q)Q, 0).

III. CASE STUDY

As a running example, we consider a simple phone line state

machine diagram, taken from [5].

Fig. 1. Phone line state machine diagram

When the device is at Idle state it is possible to pick up the

phone (offHook), and to get soundDialTone as an output. The

state diagram is at Dialing state when a user enters the number
(digit (n)). If the number cannot be served (invalidNumber),

the corresponding message is played (playMessage).

Otherwise, the device enters the state Connecting. At this

state, four different events are possible. Either the number or a

trunk is busy, and in this case, the user should hang up, or the

phone will connect (routed). After the connection there is the

ring (ringBell) and, finally, the conversation takes place (state

Connected). After the conversation, either the user or her/his

partner hangs up. In both cases, the line will be disconnected.

With a case tool Visual Paradigm for UML 8.0 JAVA

program code of this diagram was automatically generated.

A TFSM that describes such a state machine diagram is in
Figure 2.

Fig. 2. TFSM that describes the phone line, presented in Fig. 1.

The TFSM has four states and one timeout at state Ready.

The initial state is Idle. If the user picks up the phone

(offHook), a dial tone is played (soundDialTone), and the

TFSM changes its state to Ready. If the user does not interact

with the system for a certain period of time, 3 time units for

instance, the state will be spontaneously changed to Warning.

At the Ready state, a user also can hang up the phone

(onHook) and in this case, the line will be disconnected
(disconnectLine). If the user enters a valid number

(validNumber), the TFSM can response in three different

ways. The first option is a busy number (slowBusyTone) and

in this case, the system changes its state to Warning. The

second option is a busy trunk (fastBusyTone). The last option

is that a conversation starts. In other words, the corresponding

TFSM is nondeterministic. In the Warning state none of

entered numbers (validNumber and invalidNumber) affects the

system. Being in this state the user can only hang up (onHook)

and the same situation occurs in the Conversation state.

Here we notice that a TFSM is also partial and cannot be
augmented to a complete TFSM as it is usually done when

deriving tests against a partial specification FSM. The reason

is that after onHook input we cannot apply the same input.

This input can be applied only after the input offHook.

IV. METHODS OF TEST DERIVATION

Three TFSM-based methods for the test suite derivation

are considered in the paper. The first method (Method 1) is
based on the explicit enumeration of faulty mutants. Given the

specification TFSM, some faults are injected in it, i.e. some

mutant TFSMs are constructed, and for each mutant an input

sequence that separates the specification TFSM and this

mutant is derived [2]. A separating sequence is an input

sequence such that the sets of output responses of two TFSMs

to this sequence do not intersect, and since the TFSMs can be

nondeterministic we use a separating sequence instead of

traditional distinguishing sequence [7]. In order to derive a

separating sequence we first construct the intersection of two

given TFSMs and then a truncated successor tree is

constructed for the intersection. In the paper, we consider only

six mutants which describe meaningful faults for our running

example.

1. A fault related to the timeout at state Ready. In

this case, the TFSM has a transition, labelled with

timeout 4, instead of 3. For this pair of FSMs,
specification (Fig. 2.) and mutant TFSMs, a

separating sequence is (offHook, 0,

validNumber, 3).
2. Another wrong timeout. But now it is smaller

(e.g. 1) than that of the specification TFSM. By

direct inspection, one can assure, that for this

mutant a separating sequence is (offHook, 0,

validNumber, 2).
3. The situation when having an invalid number as

an input the connection is still found. For this

particular case, a separating sequence is

(offHook, 0, invalidNumber, 0).
4. The situation when during the conversation a user

accidentally types some digits (a number), and the

slow busy tone is played. In this case, an input

sequence (offHook, 0, validNumber, 0,

validNumber, 0) is a separating sequence.
5. The situation when being at state “Warning” we

can make a call anyway. For this case, a

separating sequence is (offHook, 0,

validNumber, 3).
6. The situation when conversation is impossible

(i.e. there is no transition to state Conversation)

and in this case, a separating sequence is

(offHook, 0, validNumber, 0).
We consider the set of the above mentioned separating

sequences as a test suite for explicit enumeration of mutants.

Thus, TS1 = {(offHook, 0, validNumber, 3), (offHook, 0,

validNumber, 2), (offHook, 0, invalidNumber, 0),

(offHook, 0, validNumber, 0, validNumber, 0)}.
The second method (Method 2) for deriving a test suite

against TFSMs with the guaranteed fault coverage is based on

the correlation between TFSM and FSM (Procedure 1) [4]. To

transform a timed FSM into a classical FSM we add a special

input symbol 1 that corresponds to the notion of waiting one

time unit, and a special output – N that corresponds to the case

when there is no reply from the machine. If at state s a timeout

value T is greater than 1, then we add (T – 1) copies of state s

with corresponding outgoing transitions. If TFSM have n

states and the maximum finite timeout is Tmax, the

corresponding FSM may have up to n Tmax states. In Figure 3,
there is an FSM that corresponds to the specification TFSM in

Figure 2.

Fig. 3. FSM that corresponds to the TFSM, presented in Fig. 2.

Given a classical FSM, a test suite that is complete w.r.t. to
output faults can be derived as a transition tour of the FSM

[3]. A transition tour of an FSM is a finite set of input

sequences which started at the initial state traverse each FSM

transition. A corresponding transition tour can be derived for

an FSM that is derived from corresponding TFSM.

Proposition 1. Given a test suite TS for TFSM based on a

transition tour of an FSM output by Procedure 1, the TS

detects each output fault of the TFSM.

A transition tour for the FSM (Fig. 3) is a test suite TS2 =

{(offHook, 0, validNumber, 1, validNumber, 0, onHook,

0), (offHook, 0, validNumber, 1, validNumber, 0,

onHook, 0), (offHook, 0, validNumber, 0), (offHook, 0,

invalidNumber, 2), (offHook, 0, validNumber, 2),

(offHook, 0, onHook, 1), (offHook, 0, offHook, 2),

(offHook, 0, onHook, 0), (offHook, 0, invalidNumber,

0)}.
Consider now the third test derivation method proposed in

the paper [4]. The method has two testing assumptions: the

upper bound on the number of states of a TFSM under test

(implementation under test, IUT) and the largest finite timeout

at a state of the IUT are known. Authors show that in this case,

a complete test suite obtained directly from a given TFSM is
much shorter than a complete test suite that is derived based

on a corresponding FSM by the use of corresponding FSM

based methods [8]. The procedure for test derivation consists

of three steps. We first identify each state of the specification

TFSM using separating sequences. At the next step, we check

all transitions at each state, i.e. reach a state, execute a

transition and execute corresponding separating sequences. At

the last step, timeouts are tested: for this purpose at each state

we apply inputs (i, 1), …, (i, T + 1) when T is the largest

timeout of the IUT. The method was proposed for reduced

complete deterministic TFSMs; however, we use it also for

nondeterministic partial TFSMs adding separating sequences
after each transition. We also assume that if a timeout at a

state of the specification TFSM is  then the IUT has the
same timeout. Correspondingly, for the specification TFSM

(Fig. 2.) we do not check the initial state Idle; all other states

can be identified by separating sequences listed below. For

state Warning we have a separating sequence (offHook, 0,

invalidNumber, 0, invalidNumber, 0), for state

Conversation - (offHook, 0, validNumber, 0,

invalidNumber, 0) and for state Ready - (offHook, 0,

onHook, 0). At the second step all the transitions are

checked. We use a transition tour {(offHook, 0,

invalidNumber, 0, invalidNumber, 0, onHook, 0),

(offHook, 0, validNumber, 0, invalidNumber, 0, onHook,

0), (offHook, 0, onHook, 0)}, where each sequence is
augmented with a corresponding separating sequence At the

final step timeouts are checked and we derive the following

sequences: {(offHook, 0, invalidNumber, 1), (offHook, 0,

invalidNumber, 2), (offHook, 0, invalidNumber, 3)}.

Thus for given FSM test suite is TS3 = {(offHook, 0,

invalidNumber, 0, invalidNumber, 0), (offHook, 0,

validNumber, 0, invalidNumber, 0), (offHook, 0,

onHook, 0), (offHook, 0, invalidNumber, 0,

invalidNumber, 0, onHook, 0), (offHook, 0,

validNumber, 0, invalidNumber, 0, onHook, 0),

(offHook, 0, invalidNumber, 1), (offHook, 0,

invalidNumber, 2), (offHook, 0, invalidNumber, 3)}.

V. EXPERIMENTAL RESULTS

We now consider the set of possible program faults which

is listed below.

1. The transition from state Ready to state

Conversation is triggered by input validNumber,

but the output is fastBusyTone instead of

findConnection.

2. The timeout at state Ready is greater than that in

the specification TFSM, e.g. timeout equals six
instead of three.

3. There is a new transition from state Ready to state

Warning under input onHook with fastBusyTone

output.

4. A fault is inside the program. While scanning the

valid number set there is a while loop, and if an

input number coincides with one in the list, then

Boolean variable flag is true, otherwise – false.
 while ((strLine = br.readLine()) != null)
 {
 if (s == null ? strLine == null :
 s.equals(strLine))
 {
 flag = true;

 }
 }

The fault is as follows. If an entered number is not

in the list, then flag is still true and in order to get

the mutant we add ! in an if clause.
 while ((strLine = br.readLine()) != null)

 {
 if (s == null ? strLine == null :
 !s.equals(strLine))

 {
 flag = true;
 }
 }

The fault implies that all entered numbers are

valid.

5. A new state is added. From state Ready it is

possible to enter a new Wait state via

validNumber input. This means that having a

valid number as an input a user would listen to a

special message, e.g. “Connection is set up.

Please wait”. This is modeled by an output

findConnection. On input validNimber in state

Wait there is an output convContinues. If an

invalidNumber is entered the implementation
TFSM changes its state to state Warning with

fastBusyTone output. Finally, if onHook input is

applied the machine is at Idle state and

disconnectLine output is produced.

6. There is a new timed transition from state

Conversation to state Ready after 8 time units.

This means, that after 8 time units the

conversation is automatically finished.

We first apply each test case to the initial program to be sure

that the program produces expected output sequences to every

test case. Then all the above faults were injected into the

initial program. For each test suite, each test case was applied
to a mutant program. A fault was detected by a test suite when

there was at least one test case of the test suite such that the

output responses of the initial program and of a mutant

program were different. The results are presented in Table I,

where ‘+’ means that this fault can be detected by a

corresponding test suite.

TABLE I. EXPERIMENTAL RESULTS

 1 2 3 4 5 6

TS1 + + - + - -

TS2 + + + + - -

TS3 + + + + + -

As we can see, Faults 3, 5 and 6 were not found by TS1; the

reason can be that we did not consider corresponding mutants

for the specification TFSM. Despite of the fact, that some of

such mutant program still can be detected in this case, we

were ‘unlucky’. Test suite TS2 did not detect Faults 5 and 6,

since when considering a transition tour, we assume that the

number of states of an IUT is the same as of the specification

TFSM. Finally, Fault 6 was not detected even by TS3 because

we also violated testing hypothesis about an implementation

TFSM. Nevertheless, we could conclude that a transition tour

where each sequence is appended with corresponding
separating sequence can detect more faults and thus, such

augmentation is worth for improving the quality of a generated

test suite.

V. CONCLUSIONS

In this paper, we considered three methods for the deriving

tests based on the model of an FSM augmented with input and
output timeouts for automatically generated program code of

an UML project. Using a simple running example we illustrate

that a transition tour of the specification TFSM augmented

with corresponding separating sequences is a test suite of a

good quality and this test suite detects not only faults it is

derived for, but also other faults, including those which

increase the number of states of an implementation TFSM.

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my

scientific supervisor professor Nina Yevtushenko for her

invaluable support during the work on paper.

REFERENCES

[1] M. Gromov, D. Popov and N. Yevtushenko, “Deriving test suites for
timed Finite State Machines,” Proc. of IEEE East-West Design & Test

Symposium, pp. 339-343, 2008.

[2] N. Shabaldina and R. Galimullin, “On deriving test suites for

nondeterministic Finite State Machines with time-outs,” Programming
and computer science, vol. 38, pp. 127-133, 2012.

[3] M. Zhigulin “TFSM-based methods of fault detection tests synthesis

with guaranteed fault coverage for discrete controlling systems”, PhD
thesis, TSU, Tomsk, 2012. (in Russian)

[4] M. Zhigulin, S. Maag, A. Cavalli and N. Yevtushenko, “FSM-based test

derivation strategies for systems with time-outs,” Proc. of the 11
th

conference on quality software (QSIC), pp. 141-149, 2011.

[5] J. E. Rumbaugh and M.R. Blaha “Object-oriented modeling and design

with UML (2 ed.),” Pearson Education, 2005.

[6] Visual Paradigm [Electronic resource] - http://www.visual-

paradigm.com/

[7] A. Gill, “Introduction to theory of Finite State Machines,” McGraw-Hill,
1962.

[8] R. Dorofeeva, K. El-Fakih, S. Maag, A. Cavalli, N. Yevtushenko (2010)

“FSM-based Conformance Testing Methods: A Survey Annotated with
Experimental Evaluation,” Information and Software Technology,

Elsevier, 52, pp. 1286-1297, 2010.

http://www.visual-paradigm.com/
http://www.visual-paradigm.com/

