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Abstract— The paper presents the experimental comparison 

of the quality of three test suites based on the model of a Finite 

State Machine with timeouts, namely, the explicit enumeration of 

faulty mutants, transition tour and TFSM-based black-box test. 

Test suites are then applied to the program, automatically 

generated via the UML tool. The experimental results on the 

quality of the above mentioned test suites and the corresponding 
analysis are presented. 

Keywords—Finite State Machines with timeouts, the UML state 

machine diagrams, test suites 

I.  INTRODUCTION  

Nowadays software failures of critical control systems are 

very expensive, and, thus, it is essential to provide high-

quality testing at every stage of the system development. 

Many of such systems are formally described using the UML 

(the Unified Modeling Language) that has become the de facto 

standard for modeling software applications. The UML being 

a visual modeling language allows obtaining comprehensive 

and detailed information about a system under design, as well 
as provides a possibility for convenient update of the system. 

Correspondingly, the UML is widely used in software 

engineering, business project development, hardware design 

and in a number of other applications. The UML description 

can be automatically translated into a program code using 

proper tools and the developed software should be thoroughly 

tested. One of the formal models for testing UML-based 

software is a trace timed model. In this paper, we derive tests 

with the guaranteed fault coverage based on a timed Finite 

State Machine (FSM) augmented with timeouts [1], since 

FSMs are known to be an efficient model for deriving tests 

with the guaranteed fault coverage. The paper presents a case 
study for assessing the quality of test suites derived by three 

methods [2, 3, 4], which is estimated for the example of a 

phone line; the UML description of this project is taken from 

[5]. Using the tool Visual Paradigm for UML 8.0 [6] a JAVA 

code is generated for this application that serves a sample 

when assessing the test suite quality. We first check whether 

the initial program passes all the derived test suites. At the 

second step, some practical faults are injected into the initial 

program. Applying to each mutant tests, which were derived 

on the basis of timed FSM, we check whether injected faults 

can be detected with the test suites and analyze the reason 

when some faults cannot be detected with some/all derived 

test suites.   

 

II. PRELIMINARIES 

The model we use, TFSM, is an extension of a classical 

FSM that is described as a finite set of states and transitions 

between them. Every transition is labeled by an input/output 

pair, where an input triggers the transition and an output is a 

system response to a given input. Formally, a timed Finite 

State Machine (TFSM) is a 6-tuple S = (S, I, O, s0, λS, ∆S) 
where S is a finite nonempty set of states with the initial state 

s0, I and O are finite disjoint input and output alphabets, λS  S 

 I  O  S is transition relation and ∆S: S → S × (N  ) is a 
delay function defining timeout for each state [1]. If no input 

is applied at a current state during the appropriate time period 

(timeout), a TFSM can move to another prescribed state. A 

TFSM is called deterministic if for each pair (s, i)  S × I 

there is at most one pair (o, s′)  O × S such that (s, i, o, s′)  
λS, otherwise it is called nondeterministic. If for each pair (s, i) 

 S × I, there is at least one pair (o, s')  O × S such that (s,i, 

o, s')  λS  then S is said to be complete, otherwise it is partial. 

A timed input symbol is a pair i, t  I  Z0
+, where Z0

+ is 
a set of nonnegative integers. The timed input symbol shows 

that the input symbol i is applied at the moment when the 

value of the time variable is equal to t. A sequence of timed 

input symbols i1, t1 ... ik, tk is a timed input sequence of 
length k. 

Let S  = (S, I, O, s0, λS, ∆S) and Q = (Q, I, O, q0, λQ, ∆Q) be 

complete TFSMs. TFSMs S and Q are said to be non-

separable if the sets of output responses of these TFSMs to 

any timed input sequence α intersect; i.e. outS (s0, α) ∩ outQ 

(q0, α)  . Otherwise, the TFSMs are separable. A timed 

input sequence α, such that outS (s0, α) ∩ outQ (q0, α) =  is 
called a separating sequence for TFSMs S and B. TFSM S is a 

submachine of TFSM Q if S  Q, s0 = q0 and each timed 

transition (s, i, t, o, s) of S is a timed transition of Q. 
Intersection S ∩ Q of two FSMs is the largest submachine 

of P = (P, I, O, p0, λP, ΔP), where P = S × K × Q × K, K= {0, 

…, k}, k = min(max ΔS(s), max ΔQ(q)), the initial state is 



quadruple (s0, 0, p0, 0). Transition relation λP and function ΔP 

are defined by the following rules: 

1. The transition relation λP contains quadruple [(s, k1, q, 

k2), i, o, (s', 0, q', 0)] iff (s, i, o, s')  λS and (q, i, o, q')  λQ. 
2. Time function is defined as ΔP(s, k1, q, k2) = [(s, k'1, q, 

k'2), k], k = min(S(s)N - k1, Q(q)N - k2). State (s, 

k1, q, k2) = (S(s)S, 0, Q(q)Q, 0), if S(s)N = , 

Q(q)N =  or (S(s)N - k1) = (Q(q)N - k2). If (S(s)N - k1), 

(Q(q)N - k2)  Z+ и (S(s)N - k1) < (Q(q)N - k2), then state 

(s, k1, q, k2) = (S(s)S, 0, q, k2 + k). If (S(s)N -

 k1), (Q(q)N - k2)  Z+ and (S(s)N - k1) > (Q(q)N - k2), then 

state (s, k1, q, k2) = (s, k1 + k, Q(q)Q, 0). 
 

III. CASE STUDY 

As a running example, we consider a simple phone line state 

machine diagram, taken from [5].  

 
Fig. 1. Phone line state machine diagram 

 

When the device is at Idle state it is possible to pick up the 

phone (offHook), and to get soundDialTone as an output. The 

state diagram is at Dialing state when a user enters the number 
(digit (n)). If the number cannot be served (invalidNumber), 

the corresponding message is played (playMessage). 

Otherwise, the device enters the state Connecting. At this 

state, four different events are possible. Either the number or a 

trunk is busy, and in this case, the user should hang up, or the 

phone will connect (routed). After the connection there is the 

ring (ringBell) and, finally, the conversation takes place (state 

Connected). After the conversation, either the user or her/his 

partner hangs up. In both cases, the line will be disconnected. 

With a case tool Visual Paradigm for UML 8.0 JAVA 

program code of this diagram was automatically generated.  

A TFSM that describes such a state machine diagram is in 
Figure 2. 

 
Fig. 2. TFSM that describes the phone line, presented in Fig. 1. 

 

The TFSM has four states and one timeout at state Ready. 

The initial state is Idle. If the user picks up the phone 

(offHook), a dial tone is played (soundDialTone), and the 

TFSM changes its state to Ready. If the user does not interact 

with the system for a certain period of time, 3 time units for 

instance, the state will be spontaneously changed to Warning. 

At the Ready state, a user also can hang up the phone 

(onHook) and in this case, the line will be disconnected 
(disconnectLine). If the user enters a valid number 

(validNumber), the TFSM can response in three different 

ways. The first option is a busy number (slowBusyTone) and 

in this case, the system changes its state to Warning. The 

second option is a busy trunk (fastBusyTone). The last option 

is that a conversation starts. In other words, the corresponding 

TFSM is nondeterministic. In the Warning state none of 

entered numbers (validNumber and invalidNumber) affects the 

system. Being in this state the user can only hang up (onHook) 

and the same situation occurs in the Conversation state. 

Here we notice that a TFSM is also partial and cannot be 
augmented to a complete TFSM as it is usually done when 

deriving tests against a partial specification FSM. The reason 

is that after onHook input we cannot apply the same input. 

This input can be applied only after the input offHook. 

 

IV. METHODS OF TEST DERIVATION 

Three TFSM-based methods for the test suite derivation 

are considered in the paper. The first method (Method 1) is 
based on the explicit enumeration of faulty mutants. Given the 

specification TFSM, some faults are injected in it, i.e. some 

mutant TFSMs are constructed, and for each mutant an input 

sequence that separates the specification TFSM and this 

mutant is derived [2]. A separating sequence is an input 

sequence such that the sets of output responses of two TFSMs 

to this sequence do not intersect, and since the TFSMs can be 

nondeterministic we use a separating sequence instead of 

traditional distinguishing sequence [7]. In order to derive a 

separating sequence we first construct the intersection of two 

given TFSMs and then a truncated successor tree is 

 



constructed for the intersection. In the paper, we consider only 

six mutants which describe meaningful faults for our running 

example.  

1. A fault related to the timeout at state Ready. In 

this case, the TFSM has a transition, labelled with 

timeout 4, instead of 3. For this pair of FSMs, 
specification (Fig. 2.) and mutant TFSMs, a 

separating sequence is (offHook, 0, 

validNumber, 3).  
2. Another wrong timeout. But now it is smaller 

(e.g. 1) than that of the specification TFSM. By 

direct inspection, one can assure, that for this 

mutant a separating sequence is (offHook, 0, 

validNumber, 2).  
3. The situation when having an invalid number as 

an input the connection is still found. For this 

particular case, a separating sequence is 

(offHook, 0, invalidNumber, 0).  
4. The situation when during the conversation a user 

accidentally types some digits (a number), and the 

slow busy tone is played. In this case, an input 

sequence (offHook, 0, validNumber, 0, 

validNumber, 0) is a separating sequence.  
5. The situation when being at state “Warning” we 

can make a call anyway. For this case, a 

separating sequence is (offHook, 0, 

validNumber, 3). 
6. The situation when conversation is impossible 

(i.e. there is no transition to state Conversation) 

and in this case, a separating sequence is 

(offHook, 0, validNumber, 0). 
We consider the set of the above mentioned separating 

sequences as a test suite for explicit enumeration of mutants. 

Thus, TS1 = {(offHook, 0, validNumber, 3), (offHook, 0, 

validNumber, 2), (offHook, 0, invalidNumber, 0), 

(offHook, 0, validNumber, 0, validNumber, 0)}.  
The second method (Method 2) for deriving a test suite 

against TFSMs with the guaranteed fault coverage is based on 

the correlation between TFSM and FSM (Procedure 1) [4]. To 

transform a timed FSM into a classical FSM we add a special 

input symbol 1 that corresponds to the notion of waiting one 

time unit, and a special output – N that corresponds to the case 

when there is no reply from the machine. If at state s a timeout 

value T is greater than 1, then we add (T – 1) copies of state s 

with corresponding outgoing transitions. If TFSM have n 

states and the maximum finite timeout is Tmax, the 

corresponding FSM may have up to n Tmax states. In Figure 3, 
there is an FSM that corresponds to the specification TFSM in 

Figure 2. 

 
Fig. 3. FSM that corresponds to the TFSM, presented in Fig. 2. 

 

Given a classical FSM, a test suite that is complete w.r.t. to 
output faults can be derived as a transition tour of the FSM 

[3]. A transition tour of an FSM is a finite set of input 

sequences which started at the initial state traverse each FSM 

transition. A corresponding transition tour can be derived for 

an FSM that is derived from corresponding TFSM. 

Proposition 1. Given a test suite TS for TFSM based on a 

transition tour of an FSM output by Procedure 1, the TS 

detects each output fault of the TFSM.  

A transition tour for the FSM (Fig. 3) is a test suite TS2 = 

{(offHook, 0, validNumber, 1, validNumber, 0, onHook, 

0), (offHook, 0, validNumber, 1, validNumber, 0, 

onHook, 0), (offHook, 0, validNumber, 0), (offHook, 0, 

invalidNumber, 2), (offHook, 0, validNumber, 2), 

(offHook, 0, onHook, 1), (offHook, 0, offHook, 2), 

(offHook, 0, onHook, 0), (offHook, 0, invalidNumber, 

0)}. 
Consider now the third test derivation method proposed in 

the paper [4]. The method has two testing assumptions: the 

upper bound on the number of states of a TFSM under test 

(implementation under test, IUT) and the largest finite timeout 

at a state of the IUT are known. Authors show that in this case, 

a complete test suite obtained directly from a given TFSM is 
much shorter than a complete test suite that is derived based 

on a corresponding FSM by the use of corresponding FSM 

based methods [8]. The procedure for test derivation consists 

of three steps. We first identify each state of the specification 

TFSM using separating sequences. At the next step, we check 

all transitions at each state, i.e. reach a state, execute a 

transition and execute corresponding separating sequences. At 

the last step, timeouts are tested: for this purpose at each state 

we apply inputs (i, 1), …, (i, T + 1) when T is the largest 

timeout of the IUT. The method was proposed for reduced 

complete deterministic TFSMs; however, we use it also for 

nondeterministic partial TFSMs adding separating sequences 
after each transition. We also assume that if a timeout at a 

state of the specification TFSM is  then the IUT has the 
same timeout. Correspondingly, for the specification TFSM 

(Fig. 2.) we do not check the initial state Idle; all other states 

can be identified by separating sequences listed below. For 



state Warning we have a separating sequence (offHook, 0, 

invalidNumber, 0, invalidNumber, 0), for state 

Conversation - (offHook, 0, validNumber, 0, 

invalidNumber, 0) and for state Ready - (offHook, 0, 

onHook, 0). At the second step all the transitions are 

checked. We use a transition tour {(offHook, 0, 

invalidNumber, 0, invalidNumber, 0, onHook, 0), 

(offHook, 0, validNumber, 0, invalidNumber, 0, onHook, 

0), (offHook, 0, onHook, 0)}, where each sequence is 
augmented with a corresponding separating sequence At the 

final step timeouts are checked and we derive the  following 

sequences: {(offHook, 0, invalidNumber, 1), (offHook, 0, 

invalidNumber, 2), (offHook, 0, invalidNumber, 3)}.  

Thus for given FSM test suite is TS3 = {(offHook, 0, 

invalidNumber, 0, invalidNumber, 0), (offHook, 0, 

validNumber, 0, invalidNumber, 0), (offHook, 0, 

onHook, 0), (offHook, 0, invalidNumber, 0, 

invalidNumber, 0, onHook, 0), (offHook, 0, 

validNumber, 0, invalidNumber, 0, onHook, 0), 

(offHook, 0, invalidNumber, 1), (offHook, 0, 

invalidNumber, 2), (offHook, 0, invalidNumber, 3)}. 
 

V. EXPERIMENTAL RESULTS 

We now consider the set of possible program faults which 

is listed below. 

1. The transition from state Ready to state 

Conversation is triggered by input validNumber, 

but the output is fastBusyTone instead of 

findConnection. 

2. The timeout at state Ready is greater than that in 

the specification TFSM, e.g. timeout equals six 
instead of three. 

3. There is a new transition from state Ready to state 

Warning under input onHook with fastBusyTone 

output. 

4. A fault is inside the program. While scanning the 

valid number set there is a while loop, and if an 

input number coincides with one in the list, then 

Boolean variable flag is true, otherwise – false.   
          while ((strLine = br.readLine()) != null)          
                { 
             if (s == null ? strLine == null :  
    s.equals(strLine))  
   {     
               flag = true;  

             } 
          }  

The fault is as follows. If an entered number is not 

in the list, then flag is still true and in order to get 

the mutant we add ! in an if clause. 
 while ((strLine = br.readLine()) != null)                 

 {     
   if (s == null ? strLine == null :  
   !s.equals(strLine))                     

  {                     
   flag = true;             
  }        
  } 

The fault implies that all entered numbers are 

valid. 

5. A new state is added. From state Ready it is 

possible to enter a new Wait state via 

validNumber input. This means that having a 

valid number as an input a user would listen to a 

special message, e.g. “Connection is set up. 

Please wait”. This is modeled by an output 

findConnection. On input validNimber in state 

Wait there is an output convContinues. If an 

invalidNumber is entered the implementation 
TFSM changes its state to state Warning with 

fastBusyTone output. Finally, if onHook input is 

applied the machine is at Idle state and 

disconnectLine output is produced. 

6. There is a new timed transition from state 

Conversation to state Ready after 8 time units. 

This means, that after 8 time units the 

conversation is automatically finished.  

We first apply each test case to the initial program to be sure 

that the program produces expected output sequences to every 

test case. Then all the above faults were injected into the 

initial program. For each test suite, each test case was applied 
to a mutant program. A fault was detected by a test suite when 

there was at least one test case of the test suite such that the 

output responses of the initial program and of a mutant 

program were different. The results are presented in Table I, 

where ‘+’ means that this fault can be detected by a 

corresponding test suite. 

TABLE I.   EXPERIMENTAL RESULTS 

 1 2 3 4 5 6 

TS1 + + - + - - 

TS2 + + + + - - 

TS3 + + + + + - 

 

As we can see, Faults 3, 5 and 6 were not found by TS1; the 

reason can be that we did not consider corresponding mutants 

for the specification TFSM. Despite of the fact, that some of 

such mutant program still can be detected in this case, we 

were ‘unlucky’. Test suite TS2 did not detect Faults 5 and 6, 

since when considering a transition tour, we assume that the 

number of states of an IUT is the same as of the specification 

TFSM. Finally, Fault 6 was not detected even by TS3 because 

we also violated testing hypothesis about an implementation 

TFSM. Nevertheless, we could conclude that a transition tour 

where each sequence is appended with corresponding 
separating sequence can detect more faults and thus, such 

augmentation is worth for improving the quality of a generated 

test suite. 

 

V. CONCLUSIONS 

In this paper, we considered three methods for the deriving 

tests based on the model of an FSM augmented with input and 
output timeouts for automatically generated program code of 

an UML project. Using a simple running example we illustrate 

that a transition tour of the specification TFSM augmented 

with corresponding separating sequences is a test suite of a 

good quality and this test suite detects not only faults it is 

derived for, but also other faults, including those which 

increase the number of states of an implementation TFSM. 
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