
Probabilistic Networks as a Means of Testing Web-
Based Applications

Anton Bykau
Department of Informatics

Belarusian State University of Informatics and Radiotechnics
Minsk, Republic of Belarus
anton.bukov@gmail.com

Abstract— The article describes the mechanism used to
control GUI tests coverage and the technique of GUI application
under test model building using probabilistic networks. The
technology of combining GUI tests into the common network has
been developed. The mechanism to report defects is proposed.

Keywords— probabilistic network testing; web interfaces;
automation

I. INTRODUCTION

Testing is a process of execution of the program to detect
defects [1]. The generally accepted methodology for the
iterative software development Rational Unified Process
presupposes the performance of a complete test on each
iteration of development. The testing process of not only new
but also earlier code written during the previous iterations of
development, is called regression testing. It’s advisable to use
the automated tools when performing this type of testing to
simplify the tester work. "Automation is a set of measures
aimed at increasing the productivity of human labor by
replacing part of this work, the work of machines". [2] The
process of automation of software testing becomes part of the
testing process.

The requirements formulation process is the most important
process for software developed. The V-Model is a convenient
model for information systems developing. It’s become
government and defense projects standard in Germany. [3] The
basic principle of V-model is that the task of testing the
application that is being developed should be in
correspondence with each stage of application development
and refinement of the requirements. One of the development
model challenges is the system and acceptance testing.
Typically, this type of testing is performed according to the
black box strategy and is difficult for automation because
automated tests have to use the application interface rather than
API.

"Capture and replay" is the one of the most widely used
technologies for web application test automation according to
the black box strategies today [4]. In accordance with this
technology the testing tool records the user's actions in the
internal language and generates automated tests.

Practice shows that the development of automated tests is
most effective if it is carried out using modern methods of

software development: it is necessary to analyze the quality of
the code, merge into the library the duplicate code of tests,
which must be documented and tested. All this requires a
significant investment of time and the tester should have the
skills of the developer.

Thus, the question arises of how to combine the user
actions recording technology and the manually automated tests
development, how to organize the automated tests verification,
and whether it is possible to develop an application and
automated tests in parallel according to the methodology of the
test-driven development (TDD).

There are systems capable of determining the set of tests
that must be performed first. Such systems offer manually
associate automated tests with the changes in the source files of
application under test. However, the connection between the
source and the tests can be expressed in terms of conditional
probabilities. The probabilistic networks used in the artificial
intelligence, could also be useful when defining the relations
automatically based on the statistics of tests results. By using
probabilistic networks we can link interface operations and test
data and this will allow reducing the complexity of automation.

II. KEY ELEMENTS OF PROPOSED TESTING

TECHNOLOGY

For tests automation we could use a probabilistic network
that has the following structure:

The first level network shown in Fig. 1, consists of two
layers, which determine the location of graphical controls on
the web page. Top-level nodes Fig. 1.1 are either pages or the
condition of the tested application page such as a page of the
user authentication. Lower-level units are templates used to
identify GUI elements Fig. 1.3. Some nodes are GUI container
templates Fig. 1.3. Fig. 1.4 shows the properties of the selected
node, like the template for the password field. Graphic
elements that occur more than on one page can be transferred
to a general unit for multiple pages, such as Fig. 1.5 that shows
the menu items. Fig. 1 shows only the network connection
between the unit and the common elements of the page to
simplify the visualization of the network for testers.

The availability of GUI templates and states of the web
interface allows monitoring the test coverage for interface of

application with tests; it also allows to effectively adapt
automated tests to new versions of the tested application.

Fig. 1 GUI elements composition

The main goal of the second level network is to describe
the workflow of the program in the form of interconnected
rules, describing the program states and GUI interface actions
(see Fig. 2). The network consists of two layers and two types
of nodes that include the nodes of all possible states of the
program (see Fig. 2.1) and the nodes of all possible program
actions (see Fig. 2.2). The communication network describes
the state transitions as a result of GUI activities. The page can
be linked to the data (see Fig. 2.3) to describe the state of the
page containing dynamic elements, for example, a table with a
date. The data layer consists of nodes storing the state of the
tested application and the operations that modify the data. Fig.
2.3 describes the results table which is used in Fig. 2.4. Each
table row should include a reference to additional information;
the lower part of the table should contain additional 3
references (see Fig. 2.4) while the search box should include
the search phrase (see Fig. 2.5). The state of some graphical
elements is not preserved in the data layer (Fig. 2.6) to simplify
the automation process.

The system of tests automation constantly analyzes the state
of the application interface during the tests recording time. If
the same sequence of actions is repeated many times, the
system offers to merge this sequence for multiple pages into a
common block (see Fig. 1.5). The recorded actions and states
will not be duplicated. When writing the second and
subsequent tests, the system adds only unknown conditions and
operations. Although the model interface can be split into
separate files, it will not prevent the system from linking blocks
common for several pages. Often, automated tests complicate
the process of automation as a result of an unsuccessful
candidate decomposition code. A single model of the whole
test interface can help to avoid duplication and to refactor the
source of recorded tests.

The system determines an appropriate relationship between
the states if a previously unknown combination of actions was
done between the known conditions in the process of test
recording.

Fig. 2 Program Algorithm

The third level network describes the tests and defects of
the tested program. The top layer describes a set of written tests
(see Fig. 3.1) and is connected to the nodes pages (see Fig.
3.2). Each test case describes what action and what graphics
should be checked (Fig. 3.3). Subsequently, the system will
find preliminary steps for testing, using an algorithm to find a
way to graph states proposed by S. Russell [5] to perform one
or more tests.

The relationship between the test and page nodes can be
divided by a bug note to describe the defect (see Fig. 3.4). The
defect can be in one of the following states turning a positive
test into a negative one (see Fig. 3.5):

• presence of an undocumented and uncorrected defect
(the node is absent)

• expectance of an uncorrected and described defect (the
defect node created and verify defect reproduce)

• absence of the expected defect (the defect node can’t
reproduce the defect)

• confirmed lack of the described defect (the defect note
verifies the defect absence)

The test system displays test results in a different way for
developers and testers. This allows evaluating the correctness
of the automated tests and independently assessing the quality
of the tested application. The presence of the life cycle of a
defect integrates accounting system defects and automated
testing.

The priority value is associated with each test node. This
characteristic is actually the probability that the test result will
be incorrect, for example, the bug will not be reproduced or the
expected page will not load properly. The higher the
probability of the failure, the more important it is to run the test
to fix the problem and increase the stability of testing.

The priority of the test run can be set manually by the
tester, or can be statistically calculated on the basis of the
associated defect status changes, or the associated source code
changes, or on the basis of the results of the same test for the
same controls of other pages. Typically, these tests are
associated with blocks of common elements (see Fig. 3.6).

The most important testing task is to measure the
relatedness of the test results from the internal state to the

application, or previous operation. The main problem of such
measurements is an extremely large number of conditions with
should be measured by the test system. The whole history of
the automated testing system is preserved, and each performed
activity is associated with a corresponding network node .

Fig. 3 Description of Tests and Defects

The fourth level network describes the knowledge about of
testing purposes (see Fig. 4). The network consists of the nodes
which represent the testing goal (see Fig. 4.1) and is associated
with one or more tests (see Fig. 4.2). The example of the target
can either be one or a group of pages and of the tested interface
program (see Fig. 4.3).

Fig. 4 Description of Test Purposes

Two algorithms are used for the network work; they are the
calculation network algorithm and the path finding algorithm.
The calculation algorithm determines the status of the tested
application using patterns of GUI elements, and calculates the
priority of tests running, analyzing what associated source files
have been changed and what defects have been fixed. The path
finding algorithm finds the sequence of preparatory steps to
perform the test in order to select a sequence of tests that will
allow to reduce the total test time.

III. NETWORKS CALCULATION ALHORITHM

The test system uses a modification of the Bayesian
networks calculation algorithm proposed by R. Schechter [6].
The modified algorithm can calculate the network even in the
presence of the following features:

• Probabilistic network links can be directed or
undirected.

• Probabilistic network links can contradict each other.

The first level network must be recalculated, despite the
controversy because the program interface can be wrong: the
graphic elements may not work properly, requirements may be
outdated or the tester can make mistakes. The goal of the test
system is to detect these mistakes.

Probabilistic networks nodes can take multiple values
which are characterized by probabilities. The probability
evaluate whether the node actually takes this particular
probability value. The condition corresponding to the node, its
condition is called a characteristic. The sum of all
characteristics of the multivalue node equals 1.

 P(A1)+P(A2)+…+P(An)=1 (1)

The network connection may be contradictory.
Contradictions arise when there is a problem in the test
program. The algorithm has to consider the mutual influence of
links and to make approximation solutions. On the other hand,
the system can independently adjust its work in case of the loss
of control of the tested application.

To describe the algorithm we shall present an example of
calculating the characteristics of the two states of simple
networks. For simplicity, we use only the connections between
two nodes while the binary characteristics and the conditional
probabilities equal 1 or 0. We shall use Bayes’ formula to
calculate the characteristic of the required node:

 P(A)=P(A|B)*P(B) (2)

Let’s consider an example where the communication is in
conflict. Let’s suppose that we know that:

Figure 5. Contradictory Conditions

When looking at Figure 5 we can consider connections C-A
and B-A independent, and the probability node A is calculated
as the probability of two independent events:

 P(A)=(P(A|B)*P(B)+P(A|С)*P(С))/2 (3)

Another difficulty is the presence of cycles in the network.
Let’s add to the previously described structure of the network
Figure 5 connection C-B, and calculate the values of the
characteristics B and C on the basis of the given vertex A

Figure 6. Contradictory Dependencies

When looking at the network (Figure 6) we can see an
apparent contradiction: the links from node A assign different
states to nodes B and C but the link C - B requires the identity
of node values.

We could solve the contradiction by reducing the trust in
relations of the network but we can’t do that until we know the
correct values. The temporary solution should be the
construction of the set of the skeletons of trees of a network for
any given performance with equal confidence in relations and
the known value of the node A. There are three skeletons for
the network (see Figure 6). It’s easy to calculate the probability
value of the nodes for each such skeleton. Finally we find the
average value for each characteristic for each skeleton tree. The
solution can be presented in the following way:

 P(C=1)=P(B=0)=0,333, P(C=0)=P(B=1)=0,667 (4)

The advantage of the algorithm is that the connection can
combine more than two characteristics and the logic of the
relationships conversions can be defined by the programmer
manually. The link may be represented as a function of several
variables that return the value to the node to which it is directed
and that can be defined in any programming language. The
presence of a double direction link between the two
characteristics can be described by two oppositely oriented
links.

IV. AUTOMATION PROCESS

The probabilistic network for the application testing can be
created on the basis of the “record and play” tool. This method
is useful when the testing system has a poor knowledge of the
tested application. When recording the test system stores the
sequence of the application states and interface actions. After
the recording of the test the test automation system invites the
tester to answer some questions. The recorded net diagram of
transitions between the states should become the result of the
recording.

The tester creates a test node and describes the data need
for the test to define the test case. He can create a set of
tolerance values for each GUI element of the page (see Fig.
2.3). In this case, it will reach the coverage criterion according
of the black box strategy “covering the tolerance range”, based
on the testing criteria of the class of input and output data.

The network for the application testing can be created using
the answers to the questions about the interface. This interface
is effective when the model contains enough knowledge about
the tested program. The system will be testing the application

in the background, and if there is a problem, it will ask the
tester without stopping the execution of other tests.

The system operation and the work of the tester start with
some initial page and state of the tested application. This
condition is evaluated and if the condition does not correspond
to GUI templates, the system will suggest that we add a new
state to the model. To facilitate the dialogue with the user all
the questions are simply reduced to the confirmation of the
changes, or, in case of an error, the choice of the right solution.
For example, if the test system reliably determines all the basic
controls, it prompts you just to confirm a page layout. Next, the
system selects the highest priority operation for testing, then
performs it, and analyzes the next state. In case of conflict such
as some unexpected behavior or the appearance of the tested
application the system will propose to create a characteristic
describing the defect.

CONCLUSION

The technology of the test automation using probabilistic
networks uses generic templates of interface graphics to
conduct the analysis of the interface test program which allows
to carry out the testing of the applications based on the “black
box” criterion by covering the tolerance range on the basis of
the testing criteria of the classes of input and output data.

The developed measures allowed to vary the order of the
execution of tests for related modules, analyzing the test results
for the current or previous versions of the application and can
serve as a new measure to evaluate the relation between the test
results and various modules of the program for its overall
functionality.

The mechanism of defects detection, designed and tested by
the author, can be used to evaluate the correctness of the
automated testing work and independently assess the quality of
the tested application.

This technology has been tested in the project WebCP by
automation Ajax interface testing and has shown its
effectiveness and convenience in comparison with the
development of GUI Unit Tests writing.

The author thanks his scientific adviser I. Piletski for his
help in preparing this paper.

REFERENCES
[1] G. J. Myers, The Art of Software Testing, John Wiley & Sons, Inc., New

Jersey, 2004.

[2] I. Vinnichenko Automation of testing processes, Peter Press, C-
Piterburg, 2005.

[3] The V-Model as Software Development Standard; IABG Information
Technology

[4] Martin Steinegger and Hannu-Daniel Goiss Introducting a Model-based
Automated Test Script Generator - Testing Expirience Magazine. pp.70-
75

[5] S. Russell, P. Norvig, Artificial intelligence: a modern approach
(AIMA), Williams, Moscow, 2007.

[6] R. Shachter, Evaluating influence diagrams. Operations Research, 34
(1986), 871–882.

