
Technology Aspects of State Explosion Problem
Resolving for Industrial Software Design

P.Drobintsev,V.Kotlyarov, I.Nikiforov
Saint-Petersburg State Polytechnic University

e-mail: vpk@spbstu.ru

Abstract – The paper describes technology aspects of proposed
solution for resolving of state explosion problem. The main point is
in usage of guides which can be created both manually and
automatically and allow to reduce state space during trace
generation process. The following techniques is described:
traceability tracking of requirements, guides generation based on
selected criterion, guides analysis in case of problems with traces
generation.

Usage of described techniques in verification and testing
phases of software development allow to resolve problem of state
exposure for industrial projects.

Key words — design specification, state explosion problem,
requirements, behavioral tree, guides, guide formalization.

I. INTRODUCTION

One of the main problems in development and testing
automation of industrial applications’ software is handling of
complicated and large scale requirements specifications.
Documents specifying requirements specifications are
generally written in natural language and may contain hundreds
and thousands of requirements. Thereby the task of
requirements formalization to describe behavioral scenarios
used for development of automatic tests or manual test
procedures is characterized as a task of large complexity and
laboriousness.

Applicability of formal methods in the industry is
determined to a great extent by how adequate is the
formalization language to accepted engineering practice which
involves not only code developers and testers but also
customers, project managers, marketing and other specialists. It
is clear that no logic language is suitable for adequate
formalization of requirements which would keep the semantics
of the application under development and at the same time
would satisfy all concerned people [1].

In modern project documentation the formulation of initial
requirements is either constructive, when checking procedure
or scenario of requirement coverage checking can be
constructed from the text of this requirement in natural
language, or unconstructive, when functionality described in
the requirement does not contain any explanation of its
checking method.

For example, behavioral requirements of
telecommunication applications in case of described scenario
of coverage are constructively specified and assume allow
using of verification and testing for realization checking. Non-
behavioral requirements are usually unconstructively specified
and require additional information during formalization which
allows reconstructing the checking scenario, i.e. converting of
non-constructive format of requirements specification into
constructive one.

II. REQUIREMENT COVERAGE CHECKING

The procedure of requirement checking is exact sequence
of causes and results of some activities (coded with actions,

signals, states), the analysis of which can prove that current
requirement is either covered or not. Such checking procedure
can be used as a criterion of coverage of specific requirement, i.e.
it can become a so-called criteria procedure. In the text below a
sequence or “chain” of events will be used for criteria procedure.

Tracking the facts of criteria procedure coverage in system’s
behavioral scenario (hypothetical, implemented in the model or
real system), it can be asserted that the corresponding
requirement is satisfied in the system being analyzed.

Procedure of requirement checking (chain) is formulated by
providing the following information for all chain elements
(events):

• conditions (causes), required for activating of some activity;

• the activity itself, which shall be executed under current
conditions;

• consequences – observable (measurable) results of activity
execution.

Causes and results are described with signals, messages or
transactions, commonly used in reactive system’s instances
communications [2], as well as with variables states in the form
of values or limitations on admissible values. Tracking states’
changes, produced by chains activities, lets observe the coverage
of corresponding chains.

Problems with unconstructive formulations of requirements
are resolved by development of requirement coverage checking
procedures on user or intercomponent interfaces.

Thus, chains containing sequences of activities and events can
appear as criteria of requirements coverage; in addition, it is
possible that criteria of some requirement coverage is specified
not with one, but with several chains.

III. INITIAL DOCUMENTS SPECIFYING APPLICATION

REQUIREMENTS

In technical documentation each requirement is usually
specified in natural language in one of two ways:

• in form of behavioral requirement, when checking scenario
(procedure) of requirement coverage checking can be
constructed from the text of this requirement in natural
language

• in form of non-behavioral requirement, specifying the
contents, structure or some desired feature without
explanation of how it can be checked.

Formalization of constructively specified requirements is
possible together with effective automated analysis of software
requirements and is implemented in VRS/TAT technology [3].

In VRS/TAT technology Use Case Maps (UCM) notation [4]
(Fig.1) is used for high-level description of the model, while tools
for automation of checking and generation work with model in
basic protocols language [5].

Fig.1 UCM model of two instances: Receiver and UserPC

UCM model (Fig.1) contains two interacting instances

model description. Each path on the graph from the event
“start” to the event “end” represents one behavioral scenario.
Each path contains specified number of events
(Responsibilities). Events on the diagram are marked with ×
symbol, while Stub elements which encode inserted diagram –

with ♦ symbol. As a result, each scenario contains specified
sequence of events. Variety of possible scenarios are specified
with variety of such sequences.

In these terms a chain is defined as subsequence of events
which are enough to make a conclusion that the requirement is
satisfied. A path on the UCM diagram, containing the sequence
of events of some chain, is called trace, covering the
corresponding requirement. Based on a trace tests can be
generated which are needed for experimental evidence of
requirement coverage.

IV. TRACEABILITY MATRIX

Verification project requirements formalization starts with
Traceability matrix (TRM) [1] creation (TRM for specific project
is presented in table format in Fig.2). “Identifier” and
“Requirements” columns contain requirement’s identifier, used in
the initial document with requirements, and text of the
requirement, which shall be formalized. “Traceability” column
contains chains of events sufficient for checking of corresponding
requirement coverage and “Traces” column – traces or behavioral
scenarios used for tests code generation.

Fig.2 TRM – Traceability matrix

For example, in the third row of TRM there are 2 chains in

“Traceability” column for covering FREQ_GWR.3
requirement. To satisfy the requirement it is enough to trace
ACM_CAP signal sending in one of two possible scenarios:

FREQ_GWR.3-1: start, recACMCAP_SL,
good_new_cap_table, format_mpeg2, no_chanes, end

FREQ_GWR.3-2: start, recfwdACM_CAP_IP,
recACM_CAP_IP, good_new_cap_table, format_multicast,
end.

It should be noted, that during formulating of criteria chains
a model of verified functionality is being created which
introduces a lot of state variables, types, agents, instances, etc.

V. DEVELOPING INTEGRAL CRITERIA OF

REQUIREMENTS COVERAGE

Mentioned above is disticntive feature of VRS/TAT
technology – special criteria of each requirement’s coverage
checking. Below all criteria related to requirements are listed in
ascending order of their strength:

1. Events criterion - coverage level in generated
scenarios of subset of events used in criterial chains.

2. Chains criterion - coverage level in generated
scenarios of subset of chains (consisting of events and
states of variables) with at least one for each
requirement.

3. Complex criterion - coverage level in generated
scenarios of the whole set of chains specifying

integral criteria (combined from criteria 1 and 2) of
requirements coverage.

Criteria development shall be adaptive to specific project.
Criteria shall be applied flexibly and can be changed according to
conditions of scenarios generation.

VI. GENERATING AND SELECTING SCENARIOS
WHICH SATISFY TO SPECIFIED INTEGRAL COVERAGE

CRITERIA

Trace generation is performed by symbolic and concrete trace
generators STG (SimbolicTrace Generator) and CTG (Concrete
Trace Generator), which implements effective algorithms of
Model Checking. The main problem of trace generation is
“explosion” of variants combinations while generating traces
from basic protocols, which formalize scenario events, conditions
of their implementation and corresponding change of model state
after their implementation. Solution here is filtration of
generation variants based on numerous limitations specifically
defined before trace generation cycle.

There are general and specific limitations. For example,
commonly used general limitations are maximum number of
basic protocols used in a trace and maximum number of traces
generated in a single cycle of generation. Specific limitations are
defined by sequences of events in UCM model which guide the
process of generation in user-preferable model behavior (so-
called Guides). Used are two steps of test scenarios generation by
Guides. On the first step guides are created which guarantee
specified criteria of system behavior coverage. On the second
step guides in UCM notation (Fig.3a) are translated into guides
on basic protocols language (Fig.3b) and control trace generation

process. It is important, that only main control points in
behavior are specified in guides, while the trace generated from
the guide contains detailed sequence of behavioral elements.
Such approach to generation significantly reduces the influence
of combinatorial explosion on the time of generation during
exploring behavioral tree of developed system.

(а) (b)

Fig.3. Guides: (а) in UCM notation,
(b) in basic protocols language (VRS Guide Language)

VII. AUTOMATIC AND MANUAL PROCESSES OF

GUIDES CREATION

There are two possible approaches to guides creation from
high-level system description in UCM language: manual and
automatic.

Automatic approach allows to generate numerous guides
covering system behavior on branches criteria [6]. Each guide
contains information about key points of behavioral scenario,
starting from initial model state modeled by StartPoint element
and ending in final state modeled by EndPoint element. Process
of guides generation is performed by UCM to MSC generator
[7].

Automatic approach to guides creation can be considered as
fast way to obtain test set which satisfies branches criteria, but
such approach is not always suficient. Customer and test
engineer may want to check specific scenarios of system
behavior for checking some specific requirements. Such
scenarios are specified manually by engineer and they are
created using UCM Events Analyzer (UCM EVA) tool [8].

In both cases, automatic or manual, problems may occur
with guides’ coverage by test scenarios.

In automatic mode this is due to the fact that VRS tool not
always can successfully generate test scenario form guides
because guides are created based on model’s control flow and
do not consider values of corresponding data flow. At the same
time, traces generated based on control flow consider changes
in variables values and accordingly model states.

Therefore the actual task is automated analysis of why
some guides are not covered by traces and accordingly
automation of guides adjusting solved by guides or UCM
model modification.

VIII. METHOD OF GUIDES ADJUSTMENT

AUTOMATION

Most often reasons of discrepancies are insufficient (not
enough detailed) guides specification and mistakes in the
sequence of UCM elements in the guide due to incorrect usage of
variables, identified as a deadlock on the branch or ramification.

Consider the method of searching of places and reasons of
discrepancies between a guide and a trace. Fig.4 shows iterative
algorithm of errors searching and fixing automation.

Fig.4. Algorithm of searching and fixing errors in guides

(1) Guides and traces generated in VRS are presented as MSC
diagrams containing sequences of basic protocols application,
thus the first step of the algorithm is mapping basic protocols
names on UCM elements.

(2) Comparing the guide and the trace in terms of UCM
elements it is possible to define the last trace element which
satisfies the sequence of UCM elements specified in the guide.
The next uncovered element of the guide will be referred to as the
element of discrepancy.

(3) For the element of discrepancy uncovered in the symbolic
trace it is possible to explore corresponding data and
precondition.

(4) Then variables of precondition shall be singled out into
separate list and those places on the UCM diagram where
variables of this list are changed shall be analyzed. The analysis
shall be performed from the bottom up, starting with the events
closest to the element of discrepancy.

(5) After revealing the reason of discrepancy, the guide shall
be corrected or the UCM model shall be changed.

The steps above shall be repeated until all guides will be
covered by traces.

Consider the process of searching for discrepancy on the
example of telecommunication project (Fig. 5).

Fig.5. Revealing the reason of discrepancy between the guide and the trace due to variables values

While searching for the reason of guide’s non-coverage it is

firstly required to find the last element of coincidence between
the guide and the trace (1) – set_timer in this example. Then
the guide element which can not be achieved in the trace (the
discrepancy element) shall be found – WaitConfig in this
example. Analyzing its metadata (2), detect the variable which
affects the trace generation (3) and can be the reason of
discrepancy - config_loadable in this example. After analysis
of this variable’s values in the UCM model (4) draw a
conclusion that in order to apply this element the variable’s
value shall be 5. The analysis is held only for those points in
the trace where config_loadable is used. In current case such
point is load_config element (5), where 0 is assigned to
config_loadable variable. Thus the conclusion can be made
that in order to create a guide which will be successfully
covered by a trace it is required to assign value 5 on
load_config element or change the guide.

Achieved is the reduction of laboriousness in searching for
the reasons of errors due to decreasing of the number of points
being analyzed which is actual for large industrial projects
created in accordance with considered technology.

IX. FORMAL DEFINITIONS OF THE MODEL AND

GUIDES LANGUAGE

In [9] the guided search method is described which is used
for generation of test scenarios satisfying to specified coverage
criteria. Used coverage criteria (Guides) are specified in the
form of special regular expressions over the model’s transition
names alphabet. Guides in abstract way specify the sought-for
behaviors in terms of model and simultaneously restrict the
number of analyzed states by cutting off the behavioral
branches which do not satisfy to specified criteria.

Definition 1. Transitive system M is the tuple

<Q, q0, T, P, f>, where Q – the set of states,
Qq ∈0 – the

initial state, T – the set of names of parameterized transitions, P
– the set of agents, f:Q→P – the map, specifying the actual set
of agents in Q state.

To keep connection with initial UCM model of the system
being analyzed associate the model’s events with the names of
its transitions. Parameterization is especially actual for
distributed systems composed of parallel asynchronous
processes which can be generated and eliminated dynamically.
The agent can be presented by one or a set of processes [10].

Definition 2. A path in M from qi state to qj state is such
sequence of states and transitions

ji
ii

i
ii

i qqqq atat ...2
11

1

)()(
+

++
+  → →

, that
)(kkk qfaTtQq k ∈∧∈∧∈
 for each jik ..∈ .

Definition 3. A trace in M is the sequence
t0(a0), t1(a1), … tn(an)… such that the path

......)()()(11
1

00
0 n

nn qqq atatat  → → → exists

Definition 4. The language associated with M is denoted as

L
*)(LM ⊂ – this is the set of all traces coming from initial state

q0.

Definition 5. Guide a.n is the transition a on maximal
distance n, which allows the set of traces {a, X1a, …, X1…Xn
a}, where X1,…,Xn – any non-empty symbols from {L\a},

~ a – restriction of a transition, allows any symbol from
{L\a},

a; b – (where a, b – guides) guides concatenation, allows
the set of traces {ab},

a \/ b – (where a, b – guides) nondeterministic selection of
guides, allows the set of traces {a, b},

a || b – parallel composition of the guide a, which represents
Za language over the X set alphabet, and the guide b, which
represents Zb language over the Y set alphabet, herewith

X ∩ Y = ∅ , because the sets of agents do not intersect in X
and Y. Then the parallel composition of guides is the set

represented by
b

X
a
Y

ba ZZZ
⇑⇑

∩=||

 language

join(a1,…,an) – the set {Sn} of all combinations of guides
a1,…,an,

loop(a) – iteration of the guide a, i.e. { *aa }.

The features of the operations listed above are described in
details in [11].

Semantically guides specify the “control points” in model’s
behavior and also specify the criteria (a chain of events in
model’s behavior) of selection of generated traces for their
further usage as test scenarios [12, 13]. Supposed scenarios of
modeled system’s behavior are checked for admissibility,
simultaneously restricting their search.

X. RESULTS OF DEPLOYMENT IN PILOT PROJECTS

Table 1 contains the results of deployment of design and
testing integrated technology in the area of wireless
telecommunication applications development. As a result, a

significant reduction of laboriousness and increase of software
quality were obtained.

Table 1. RESULTS OF TECHNOLOGY DEPLOYMENT IN PILOT PROJECTS.

Project Number of
requirements

Number of
basic protocols

Requirements
coverage level

Number of found
and fixed errors
(overall/critical)

Efforts
(human-
weeks)

Module 1 of wireless network
(WN)

400 127 75% 142/11 5.6

Module 2 of WN 730 192 80% 106/18 12
High-level module of WN 148 205 100% 68/23 11
Clients and administrator
connection module of WN

106 163 100% 42/8 6

Mobile phone software module 200 170 100% 96/10 7

XI. CONCLUSION

The result of the work is improved integrated technology of
verification and testing of software projects which provides:

1. Full automation of industrial software product development
process with requirements semantics implementation control.

2. Generation of application’s model and symbolic behavioral
scenarios, which cover 100% of application’s behavioral
features.

3. Automated concretization of symbolic traces in accordance
with test plan.

4. High level of software development and quality management
process automation.

REFERENCES
[1] S.Baranov, V.Kotlyarov, A.Letichevsky. Industrial technology of mobile devices

testing automation based on verified behavioral models of requirements project
specifications// «Space, astronomy and programming» – SpbSU, Spb. – 2008. –
pp. 134–145. (in Russian)

[2] Z.Manna, A.Pnueli.: The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

[3] S.Baranov, V.Kotlyarov, A.Letichevsky, P.Drobintsev. The technology of
Automation Verification and Testing in Industrial Projects. / Proc. of
St.Petersburg IEEE Chapter, International Conference, May 18-21,
St.Petersburg, Russia, 2005 – pp. 81-86

[4] Recommendation ITU-T Z.151. User requirements notation (URN), 11/2008

[5] A. Letichevsky, J. Kapitonova, A. Letichevsky Jr., V. Volkov, S. Baranov, V.
Kotlyarov, T. Weigert. Basic Protocols, Message Sequence Charts, and the
Verification of Requirements Specifications. Proc of ISSRE04 Workshop on
Integrated-reliability with Telecommunications and UML Languages
(ISSRE04:WITUL), 02 Nov 2004: IRISA Rennes France.

[6] P.Drobintsev, V.Kotlyarov, I.Chernorutsky. Test automation based
on user scenarios coverage. “Scientific and technical sheets”,
SpbSTU, vol.4(152)-2012, pp.123-126 (in Russian)

[7] I.Anureev, S.Baranov, D.Beloglazov, E.Bodin, P. Drobintsev,
A.Kolchin,, V.Kotlyarov, A. Letichevsky, A. Letichevsky Jr.,
V.Nepomniashiy, I.Nikiforov, S.Potienko, L.Priyma, B.Tytin. Tools
for support of integrated technology for analysis and verification of
specifications telecom applications // SPIIRAN proceedings- 2013-
№1-28P.

[8] I.Nikiforov, A.Petrov, V.Kotlyarov. Static method of test scenarios
adjustment generated from guides // “Scientific and technical
sheets”, SpbSTU, vol.4(152)-2012, pp. 114-119 (in Russian)

[9] A.Kolchin, V.Kotlyarov, P. Drobintsev. A method of the test
scenario generation in the insertion modelling environment //
“Сontrol systems and computers”, Kiev: "Akademperiodika", vol.6-
2012, pp.43-48 (in Russian)

[10] A.A. Letichevsky, J.V. Kapitonova , V.P. Kotlyarov, A.A.
Letichevsky Jr., N.S.Nikitchenko, V.A. Volkov, and T.Weigert.
Insertion modeling in distributed system design // Programming
problems. – 2008. – pp. 13–38

[11] A. Letichevsky Jr., A. Kolchin. Test scenarios generation based on
formal model // Programming problems. – 2010. – № 2–3. – pp.
209–215 (in Russian)

[12] V.P. Kotlyarov. Criteria of requirements coverage in test scenarios,
generated from applications behavioral models // “Scientific and
technical sheets”, SpbSTU. – 2011. – vol.6.1(138). – pp.202–207.
(in Russian)

[13] Baranov S., Kotlyarov V., Weigert T. Varifiable Coverage Criteria
For Automated Tesdting. SDL2011: Integrating System and
Software Modeling // LNCS. –2012. –Vol.7083. – P.79–89.

