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Abstract — The paper describes technology aspectsrofosed
solution for resolving of state explosion problefihe main point is
in usage of guides which can be created both manuaidnd
automatically and allow to reduce state space duririgace
generation process. The following techniques is désed:
traceability tracking of requirements, guides gemion based on
selected criterion, guides analysis in case of gdesbs with traces
generation.

Usage of described techniques in verification andsting
phases of software development allow to resolve mabbf state
exposure for industrial projects.
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. INTRODUCTION

One of the main problems in development and testing

automation of industrial applications’ softwarehiandling of
complicated and large scale requirements spedditat
Documents specifying requirements specificationse ar
generally written in natural language and may darttandreds
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signals, states), the analysis of which can prdwa turrent
requirement is either covered or not. Such checkiragedure
can be used as a criterion of coverage of speeifjairement, i.e.
it can become a so-called criteria procedure. éntéxt below a
sequence or “chain” of events will be used foreci@ procedure.

Tracking the facts of criteria procedure coveragsyistem’s
behavioral scenario (hypothetical, implementedhia todel or
real system), it can be asserted that the correlsppn
requirement is satisfied in the system being aralyz

Procedure of requirement checking (chain) is foatad by
providing the following information for all chainleaments
(events):

conditions (causes), required for activatingarhe activity;

the activity itself, which shall be executed unasirrent
conditions;

consequences — observable (measurable) resulistiofty
execution.

and thousands of requirements. Thereby the task of Causes and results are described with signals,agessor

requirements formalization to describe behavio@@narios
used for development of automatic tests or maneal t
procedures is characterized as a task of large lesihpand
laboriousness.

Applicability of formal methods in the industry is

transactions, commonly used in reactive system'stances
communications [2], as well as with variables statethe form
of values or limitations on admissible values. kiag states’
changes, produced by chains activities, lets olstiwe coverage
of corresponding chains.

determined to a great extent by how adequate is the Problems with unconstructive formulations of regments

formalization language to accepted engineeringtig@evhich
involves not only code developers and testers Hsb a
customers, project managers, marketing and otlemiasts. It
is clear that no logic language is suitable for cadee
formalization of requirements which would keep #esnantics
of the application under development and at theessime
would satisfy all concerned people [1].

In modern project documentation the formulatiorinitial
requirements is either constructive, when checkirecedure
or
constructed from the text of this requirement intura
language, or unconstructive, when functionality cdiégd in
the requirement does not contain any explanationit®f
checking method.

For example, behavioral requirements of
telecommunication applications in case of describeghario
of coverage are constructively specified and assaftav
using of verification and testing for realizatiomecking. Non-
behavioral requirements are usually unconstrugtigpkcified
and require additional information during formatina which
allows reconstructing the checking scenario, ioaverting of
non-constructive format of requirements specifaratiinto
constructive one.

. REQUIREMENTCOVERAGECHECKING

The procedure of requirement checking is exact exscpl
of causes and results of some activities (codedl waitions,

are resolved by development of requirement covechgeking
procedures on user or intercomponent interfaces.

Thus, chains containing sequences of activitiesesmedts can
appear as criteria of requirements coverage; intiadd it is
possible that criteria of some requirement coveiiagepecified
not with one, but with several chains.

lll. INITIAL DOCUMENTSSPECIFYINGAPPLICATION

REQUIREMENTS

scenario of requirement coverage checking can be In technical documentation each requirement is Iysua

specified in natural language in one of two ways:

in form of behavioral requirement, when checkingrerio

(procedure) of requirement coverage checking can be

constructed from the text of this requirement irtura
language

in form of non-behavioral requirement, specifyinget
contents, structure or
explanation of how it can be checked.

Formalization of constructively specified requiran is
possible together with effective automated analg$isoftware
requirements and is implemented in VRS/TAT techgpli3].

In VRS/TAT technology Use Case Maps (UCM) notafiéh
(Fig.1) is used for high-level description of thedhel, while tools
for automation of checking and generation work witbdel in
basic protocols language [5].

some desired feature without



with ¢ symbol. As a result, each scenario contains spdcif
e userpci sequence of events. Variety of possible scenarniesspecified
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with variety of such sequences.

— In these terms a chain is defined as subsequene&ewits
which are enough to make a conclusion that theirement is
satisfied. A path on the UCM diagram, containing gequence
of events of some chain, is called trace, coveritg

corresponding requirement. Based on a trace tesits be

senprare generated which are needed for experimental evaeot
requirement coverage.
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IV. TRACEABILITY MATRIX

Verification project requirements formalization résawith

. i - Traceability matrix (TRM) [1] creation (TRM for spéic project
Fig.1 UCM model of two instances: Receiver and B&er js presented in table format in Fig.2). “Identifieand

“Requirements” columns contain requirement’s idétiused in

UCM model (Fig.1) contains two interacting instasmice the initial document with requirements, and text thfe
model description. Each path on the graph from g¢hent requirement, which shall be formalized. “Tracedyilicolumn

“start” to the event “end” represents one behaviscenario. contains chains of events sufficient for checkihgarresponding
Each path contains specified number of eventgequirement coverage and “Traces” column — tracéebavioral
(Responsibilities). Events on the diagram are ndhankith x  scenarios used for tests code generation.
symbol, while Stub elements which encode insertagrdm —
ldentifier Requirements Traceability Traces
FREQ_GWR.  Gateway shall transmit ACM_CAP FREQ_GWR.2

messages repeatedly at an interval of T1

(TBD). This message will carry the ACH

Capabilties table.
FREQ_GWR.2 Upon a change in the ACM Capabilities FREQ_GWR.2

table, the Gateway shall send a new

version of ACM_CAP message

to the Satellite Terminal.

FREQ_GWR.3 Depending on configuration, ACM_CAP recACM_CAP_SL FRED_GWR_3-1
message shall be transmitted either in the FRED_GWR_3-2
MPEGZ private section or in a Multicast recfwdACH_CAP P
message sent across the satelite link. recACM_CAP_IP

Fig.2 TRM — Traceability matrix

For example, in the third row of TRM there are 2iol in integral criteria (combined from criteria 1 and @)
“Traceability” column for covering FREQ_GWR.3 requirements coverage.

requirement. To satisfy the requirement it is efotg trace Lo . L
; o : . Criteria development shall be adaptive to spegiiioject.
ACM_CAP signal sending in one of two possible s Criteria shall be applied flexibly and can be chathgccording to

FREQ GWR.3-1: start, recACMCAP_SL, conditions of scenarios generation.

good_new_cap_table, format_mpeg2, no_chanes, end
VI. GENERATINGAND SELECTINGSCENARIOS

FREQ_GWR.3-2: start, recfwdACM_CAP_IP,  \wH|CH SATISFYTO SPECIFIEDINTEGRAL COVERAGE
recACM_CAP_IP, good new_cap_table, format _multicast, CRITERIA
end.

Trace generation is performed by symbolic and cetedrace

It should be noted, that during formulating oferia chains  generators STG (SimbolicTrace Generator) and CT@nh¢@te

a model of verified functionality is being createvhich  Trace Generator), which implements effective atbams of

introduces a lot of state variables, types, agémgances, etc.  Model Checking. The main problem of trace genematis

“explosion” of variants combinations while genemgtitraces

V. DEVELOPINGINTEGRAL CRITERIAOF from basic protocols, which formalize scenario ésgoonditions

REQUIREMENTSCOVERAGE of their implementation and corresponding changmaodlel state

Mentioned above is disticntive feature of VRS/TAT after their implementation. Solution here is filtoa of

technology — special criteria of each requirementiserage generation variants based on numerous limitatigreifically
checking. Below all criteria related to requirenseate listed in  defined before trace generation cycle.

ascending order of their strength: There are general and specific limitations. For nepie,

1. Events criterion - coverage level in generatedcommonly used general limitations are maximum numbfe
scenarios of subset of events used in criteriahsha basic protocols used in a trace and maximum nurobéraces

5 Chai iteri level i t dgenerated in a single cycle of generation. Speliffitations are
- “hains crierion - coverageé level In  generalelyafinaq py sequences of events in UCM model whigideythe
scenarios of subset of chains (consisting of evamts

tat ; bl ith at least ¢ 'ﬁrocess of generation in user-preferable model \hehgso-
fe?qt?i?en?en;/ana es) with at least one for eaclpy e Guides). Used are two steps of test scengsgneration by

Guides. On the first step guides are created wiichrantee
3. Complex criterion - coverage level in generatedspecified criteria of system behavior coverage. ta second

scenarios of the whole set of chains specifyingstep guides in UCM notation (Fig.3a) are translated guides
on basic protocols language (Fig.3b) and contealergeneration



process. It is important, that only main controlint® in

behavior are specified in guides, while the trageegated from
the guide contains detailed sequence of behavalesthents.
Such approach to generation significantly redubesrifluence
of combinatorial explosion on the time of genenatauring

exploring behavioral tree of developed system.

v @ Guide patterns: obj(

p_Guide:(
X initialize ats_O(initialize#1);
= ats_0(timer_exp_1#1});
¥ © config ats_0(load_config 1#1);
: ats_O(set_timer_1#1);
x timer_exp ats_1(lowcount#1);
X load_config ats_1(dummy#1);
= ats_1(report_req_SADM#1);
x set_tlmer ats_2(generate_output_2#1)
X lowcount . )
x dummy guides: obj(
Number_Of_Traces:1;
» & check_mt 4 Guide:(
X generate_output pattern:(p_Guide)
4 end )
(a) (b)
Fig.3. Guides: 4) in UCM notation,

(b) in basic protocols language (VRS Guide Langyage

VIl. AUTOMATIC AND MANUAL PROCESSE®F

GUIDESCREATION

There are two possible approaches to guides crefrition
high-level system description in UCM language: nsdrand
automatic.

Automatic approach allows to generate numerouseguid

covering system behavior on branches criteriafalch guide
contains information about key points of behaviaegnario,
starting from initial model state modeled by Stait®® element
and ending in final state modeled by EndPoint elgmrocess
of guides generation is performed by UCM to MSCegator

[71.

Automatic approach to guides creation can be censitlas
fast way to obtain test set which satisfies braadréeria, but
such approach is not always suficient. Customer tasd
engineer may want to check specific scenarios ctesy
behavior for checking some specific requirementsichS
scenarios are specified manually by engineer aey tre
created using UCM Events Analyzer (UCM EVA) tod].[8

In both cases, automatic or manual, problems mayroc
with guides’ coverage by test scenarios.

In automatic mode this is due to the fact that B8 not
always can successfully generate test scenario fyuides
because guides are created based on model's cfintvoand
do not consider values of corresponding data filstnthe same
time, traces generated based on control flow censilanges
in variables values and accordingly model states.

Therefore the actual task is automated analysisviof

VIIl. METHOD OFGUIDESADJUSTMENT

AUTOMATION

Most often reasons of discrepancies are insufficigmot
enough detailed) guides specification and mistakesthe
sequence of UCM elements in the guide due to ircousage of
variables, identified as a deadlock on the bramalamification.

Consider the method of searching of places andonsasf
discrepancies between a guide and a trace. Figwsshtierative
algorithm of errors searching and fixing automation

Generation of guides
-
and test scenarios

Are there any
uncovered
guides?

Data analysis

Detecting points of
variables values
changing

Correction of guides
andfor UCK project

Fig.4. Algorithm of searching and fixing errorsgaides
(1) Guides and traces generated in VRS are prabast®MSC
diagrams containing sequences of basic protocgidication,
thus the first step of the algorithm is mappingidgmotocols
names on UCM elements.

®

(2) Comparing the guide and the trace in terms a@U
elements it is possible to define the last tracsmeht which
satisfies the sequence of UCM elements specifietthénguide.
The next uncovered element of the guide will berrefd to as the
element of discrepancy.

(3) For the element of discrepancy uncovered irsgmebolic
trace it is possible to explore corresponding datad
precondition.

(4) Then variables of precondition shall be singted into
separate list and those places on the UCM diagrdmarev
variables of this list are changed shall be analyZéne analysis
shall be performed from the bottom up, startinghvtfte events
closest to the element of discrepancy.

(5) After revealing the reason of discrepancy, dba&le shall
be corrected or the UCM model shall be changed.

some guides are not covered by traces and acctyding The steps above shall be repeated until all guidiéisbe

automation of guides adjusting solved by guidesU@M
model modification.

covered by traces.

Consider the process of searching for discrepanctythe
example of telecommunication project (Fig. 5).



User Guides: | top_initialize_generate_output_2_1 = Traces: q_lnp_irﬁ!ialile_qemale_umputj
ATSHE,

T
» X initialize > X initialize i config
¥ < config v < config o
+ X timer_exp » X timer_exp “\‘M“;“T‘ i
cantig loadablesss);
* X load_config * X load_config H{canfig )
* X loadable ¥ i Post initiadize gconfig
X read_config @ mnrig_lnadamu-____E] o x@
* X readable @ config_readable I
X set_tmer # load_config retry | gy cac: g_top_initialize generate output 2 1 tra c::;%edlz‘;;:;?_sé
* @ waitConfig % read_config_retry gl 2
*+ X initialize config readable: 3
¥ & Pred @ retry_allowed E 3 load Jonfig_retry_allowed: 4,
F}-——n config_loadable » X loadable < config 5 read_config_retry_allowed : "ALLOWED";
* & config ¥ & Pred * X timer_exp
X generate_output * X load_config

% config_loadable
X read_config
el # config_loadable
v o pred # config_readable

@ config_readable @ load_config_retry_allowed
3 set timer @ read_config_retry_sllowed

@ retry_allowed

* X loadable

Fig.5. Revealing the reason of discrepancy betileguide and the trace due to variables values

¥ & Post

While searching for the reason of guide’s non-cageritis ¢ O _ q.,, 0B - q....q,
firstly required to find the last element of couence between ', that
the guide and the trace (1)set_timer in this example. Then ¢, 0QCt, OT Ca, Of(q,) for eactk Oi..j
the guide element which can not be achieved irtrdee (the '
discrepancy element) shall be foundWaitConfig in this Definition 3. A trace in M is the sequence
example. Analyzing its metadata (2), detect théabde which  t0(a0), tl(al), ... tn(an)... such that the path
affects the trace generation (3) and can be theoreaf ) e mie) i
discrepancy <onfig_loadable in this example. After analysis g 0B - q.0 - DB~ q,...exists
of this variable’'s values in the UCM model (4) dreav
conclusion that in order to apply this element Hagiable’s (M)OL o ) o
value shall bés. The analysis is held only for those points inL —this is the set of all traces coming from iniséate
the trace whereonfig_loadable is used. In current case such 90.

Definition 4. The language associated with M is denoted as

Definition 5. Guide a.n is the transition a on maximal

- . , a}, where X1,...,Xn — any non-empty symbols from \a
covered by a trace it is required to assign valueorb ) 4 Pty sy &

load_config element or change the guide. ~ a — restriction of a transition, allows any syinfrom

L\a},
Achieved is the reduction of laboriousness in ddagcfor {ay _ _ _
the reasons of errors due to decreasing of the eunflpoints a; b — (where a, b — guides) guides concatenadlmys
being analyzed which is actual for large industpabjects the set of traces {ab},

created in accordance with considered technology. aVl b — (where a, b — guides) nondeterministiectin of

IX. FORMAL DEFINITIONS OF THE MODEL AND guides, allows the set of traces {a, b},

GUIDESLANGUAGE a || b — parallel composition of the guide a, whighresents
In [9] the guided search method is described wisaised ~ Za language over the X set alphabet, and the duidehich
for generation of test scenarios satisfying to Hjgeccoverage represents Zb language over the Y set alphabegwiter

criteria. Used coverage criteria (Guides) are $jgecin the x n vy =0 , because the sets of agents do not intersect in X

form of special regular ex_pressions over the msd:eﬂnsition and Y. Then the parallel composition of guides tis set
names alphabet. Guides in abstract way specifypdight-for ab — za o 7b

behaviors in terms of model and simultaneouslyrictssthe  represented by ~ — v X language
number of analyzed states by cutting off the bedrabi

branches which do not satisfy to specified criteria join(al,...,an) — the set {Sn} of all combinationsgfides

al,...,an,
Definition 1. Transitive system M is the tuple *
0Q loop(a) — iteration of the guide a, |ea-f{i }-
<Q, q0, T, P, f>, where Q — the set of statg%, — the . . I
initial state, T — the set of names of parametdrteansitions, P The features of the operations listed above arerities! in
— the set of agents, f:Q P — the map, specifying the actual setdetaIIS in [11].
of agents in Q state. Semantically guides specify the “control points’nmodel’s
behavior and also specify the criteria (a chaineeénts in
model’'s behavior) of selection of generated traftgstheir
further usage as test scenarios [12, 13]. Suppssethrios of
modeled system’s behavior are checked for admiisgibi
simultaneously restricting their search.

To keep connection with initial UCM model of thestym
being analyzed associate the model’s events witm#tmes of
its transitions. Parameterization is especially ualct for
distributed systems composed of parallel asynchusno
processes which can be generated and eliminatezhdgyally.

The agent can be presented by one or a set ofys@e¢10]. X. RESULTSOFDEPLOYMENTIN PILOT PROJECTS
Definition 2. A path in M from g state to gj state is such Table 1 contains the results of deployment of desigd
sequence of states and transitions testing integrated technology in the area of wsegle

telecommunication applications development. As sulie a



significant reduction of laboriousness and increafsgoftware
quality were obtained.

Table 1. RESULTS OF TECHNOLOGY DEPLOYMENT IN PILOT PROJECTS
Project Number of Number of Requirements Number of found Efforts
requirements basic protocols cover age level and fixed errors (human-
(overall/critical) weeks)
Module 1 of wireless network 400 127 75% 142/11 5.6
(WN)
Module 2 of WN 730 192 80% 106/18 12
High-level module of WN 148 205 100% 68/23 11
Clients and  administrator 106 163 100% 42/8 6
connection module of WN
Mobile phone software modulg 200 170 100% 96/10 7

Xl.  CONCLUSION
The result of the work is improved integrated testbhgy of

verification and testing of software projects whimvides:

(1

(2
(3]

(4]
(5]

1. Full automation of industrial software product depenent
process with requirements semantics implementatoitrol.

2. Generation of application’s model and symbolic lvédral
scenarios, which cover 100% of application’s bebiali
features.

3. Automated concretization of symbolic traces in adaace
with test plan.

4. High level of software development and quality ngeraent

process automation.
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