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Abstract – The paper describes technology aspects of proposed 
solution for resolving of state explosion problem. The main point is 
in usage of guides which can be created both manually and 
automatically and allow to reduce state space during trace 
generation process. The following techniques is described: 
traceability tracking of requirements, guides generation based on 
selected criterion, guides analysis in case of problems with traces 
generation.  

Usage of described techniques in verification and testing 
phases of software development allow to resolve problem of state 
exposure for industrial projects. 
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I. INTRODUCTION 

One of the main problems in development and testing 
automation of industrial applications’ software is handling of 
complicated and large scale requirements specifications. 
Documents specifying requirements specifications are 
generally written in natural language and may contain hundreds 
and thousands of requirements. Thereby the task of 
requirements formalization to describe behavioral scenarios 
used for development of automatic tests or manual test 
procedures is characterized as a task of large complexity and 
laboriousness. 

Applicability of formal methods in the industry is 
determined to a great extent by how adequate is the 
formalization language to accepted engineering practice which 
involves not only code developers and testers but also 
customers, project managers, marketing and other specialists. It 
is clear that no logic language is suitable for adequate 
formalization of requirements which would keep the semantics 
of the application under development and at the same time 
would satisfy all concerned people [1]. 

In modern project documentation the formulation of initial 
requirements is either constructive, when checking procedure 
or scenario of requirement coverage checking can be 
constructed from the text of this requirement in natural 
language, or unconstructive, when functionality described in 
the requirement does not contain any explanation of its 
checking method. 

For example, behavioral requirements of 
telecommunication applications in case of described scenario 
of coverage are constructively specified and assume allow 
using of verification and testing for realization checking. Non-
behavioral requirements are usually unconstructively specified 
and require additional information during formalization which 
allows reconstructing the checking scenario, i.e. converting of 
non-constructive format of requirements specification into 
constructive one. 

II. REQUIREMENT COVERAGE CHECKING 

The procedure of requirement checking is exact sequence 
of causes and results of some activities (coded with actions, 

signals, states), the analysis of which can prove that current 
requirement is either covered or not. Such checking procedure 
can be used as a criterion of coverage of specific requirement, i.e. 
it can become a so-called criteria procedure. In the text below a 
sequence or “chain” of events will be used for criteria procedure. 

Tracking the facts of criteria procedure coverage in system’s 
behavioral scenario (hypothetical, implemented in the model or 
real system), it can be asserted that the corresponding 
requirement is satisfied in the system being analyzed. 

Procedure of requirement checking (chain) is formulated by 
providing the following information for all chain elements 
(events): 

• conditions (causes), required for activating of some activity; 

• the activity itself, which shall be executed under current 
conditions; 

• consequences – observable (measurable) results of activity 
execution. 

Causes and results are described with signals, messages or 
transactions, commonly used in reactive system’s instances 
communications [2], as well as with variables states in the form 
of values or limitations on admissible values. Tracking states’ 
changes, produced by chains activities, lets observe the coverage 
of corresponding chains. 

Problems with unconstructive formulations of requirements 
are resolved by development of requirement coverage checking 
procedures on user or intercomponent interfaces. 

Thus, chains containing sequences of activities and events can 
appear as criteria of requirements coverage; in addition, it is 
possible that criteria of some requirement coverage is specified 
not with one, but with several chains.  

III.  INITIAL  DOCUMENTS SPECIFYING APPLICATION 

REQUIREMENTS 

In technical documentation each requirement is usually 
specified in natural language in one of two ways: 

• in form of behavioral requirement, when checking scenario 
(procedure) of requirement coverage checking can be 
constructed from the text of this requirement in natural 
language 

• in form of non-behavioral requirement, specifying the 
contents, structure or some desired feature without 
explanation of how it can be checked. 

Formalization of constructively specified requirements is 
possible together with effective automated analysis of software 
requirements and is implemented in VRS/TAT technology [3]. 

In VRS/TAT technology Use Case Maps (UCM) notation [4] 
(Fig.1) is used for high-level description of the model, while tools 
for automation of checking and generation work with model in 
basic protocols language [5]. 



 

 
Fig.1 UCM model of two instances: Receiver and UserPC 

 
UCM model (Fig.1) contains two interacting instances 

model description. Each path on the graph from the event 
“start” to the event “end” represents one behavioral scenario. 
Each path contains specified number of events 
(Responsibilities). Events on the diagram are marked with × 
symbol, while Stub elements which encode inserted diagram – 

with ♦ symbol. As a result, each scenario contains specified 
sequence of events. Variety of possible scenarios are specified 
with variety of such sequences. 

In these terms a chain is defined as subsequence of events 
which are enough to make a conclusion that the requirement is 
satisfied. A path on the UCM diagram, containing the sequence 
of events of some chain, is called trace, covering the 
corresponding requirement. Based on a trace tests can be 
generated which are needed for experimental evidence of 
requirement coverage. 

IV.  TRACEABILITY  MATRIX 

Verification project requirements formalization starts with 
Traceability matrix (TRM) [1] creation (TRM for specific project 
is presented in table format in Fig.2). “Identifier” and 
“Requirements” columns contain requirement’s identifier, used in 
the initial document with requirements, and text of the 
requirement, which shall be formalized. “Traceability” column 
contains chains of events sufficient for checking of corresponding 
requirement coverage and “Traces” column – traces or behavioral 
scenarios used for tests code generation. 

 
Fig.2 TRM – Traceability matrix 

 
For example, in the third row of TRM there are 2 chains in 

“Traceability” column for covering FREQ_GWR.3 
requirement. To satisfy the requirement it is enough to trace 
ACM_CAP signal sending in one of two possible scenarios: 

FREQ_GWR.3-1: start, recACMCAP_SL, 
good_new_cap_table, format_mpeg2, no_chanes, end 

FREQ_GWR.3-2:  start, recfwdACM_CAP_IP, 
recACM_CAP_IP, good_new_cap_table, format_multicast, 
end. 

It should be noted, that during formulating of criteria chains 
a model of verified functionality is being created which 
introduces a lot of state variables, types, agents, instances, etc. 

V. DEVELOPING INTEGRAL CRITERIA OF 

REQUIREMENTS COVERAGE 

Mentioned above is disticntive feature of VRS/TAT 
technology – special criteria of each requirement’s coverage 
checking. Below all criteria related to requirements are listed in 
ascending order of their strength: 

1. Events criterion - coverage level in generated 
scenarios of subset of events used in criterial chains.  

2. Chains criterion - coverage level in generated 
scenarios of subset of chains (consisting of events and 
states of variables) with at least one for each 
requirement. 

3. Complex criterion - coverage level in generated 
scenarios of the whole set of chains specifying 

integral criteria (combined from criteria 1 and 2) of 
requirements coverage. 

Criteria development shall be adaptive to specific project. 
Criteria shall be applied flexibly and can be changed according to 
conditions of scenarios generation. 

VI.  GENERATING AND SELECTING SCENARIOS 
WHICH SATISFY TO SPECIFIED INTEGRAL COVERAGE 

CRITERIA 

Trace generation is performed by symbolic and concrete trace 
generators STG (SimbolicTrace Generator) and CTG (Concrete 
Trace Generator), which implements effective algorithms of 
Model Checking. The main problem of trace generation is 
“explosion” of variants combinations while generating traces 
from basic protocols, which formalize scenario events, conditions 
of their implementation and corresponding change of model state 
after their implementation. Solution here is filtration of 
generation variants based on numerous limitations specifically 
defined before trace generation cycle. 

There are general and specific limitations. For example, 
commonly used general limitations are maximum number of 
basic protocols used in a trace and maximum number of traces 
generated in a single cycle of generation. Specific limitations are 
defined by sequences of events in UCM model which guide the 
process of generation in user-preferable model behavior (so-
called Guides). Used are two steps of test scenarios generation by 
Guides. On the first step guides are created which guarantee 
specified criteria of system behavior coverage. On the second 
step guides in UCM notation (Fig.3a) are translated into guides 
on basic protocols language (Fig.3b) and control trace generation 



process. It is important, that only main control points in 
behavior are specified in guides, while the trace generated from 
the guide contains detailed sequence of behavioral elements. 
Such approach to generation significantly reduces the influence 
of combinatorial explosion on the time of generation during 
exploring behavioral tree of developed system.  

 
(а)    (b) 

Fig.3. Guides: (а) in UCM notation, 
(b) in basic protocols language (VRS Guide Language) 

VII.  AUTOMATIC  AND MANUAL  PROCESSES OF 

GUIDES CREATION 

There are two possible approaches to guides creation from 
high-level system description in UCM language: manual and 
automatic. 

Automatic approach allows to generate numerous guides 
covering system behavior on branches criteria [6]. Each guide 
contains information about key points of behavioral scenario, 
starting from initial model state modeled by StartPoint element 
and ending in final state modeled by EndPoint element. Process 
of guides generation is performed by UCM to MSC generator 
[7]. 

Automatic approach to guides creation can be considered as 
fast way to obtain test set which satisfies branches criteria, but 
such approach is not always suficient. Customer and test 
engineer may want to check specific scenarios of system 
behavior for checking some specific requirements. Such 
scenarios are specified manually by engineer and they are 
created using UCM Events Analyzer (UCM EVA) tool [8]. 

In both cases, automatic or manual, problems may occur 
with guides’ coverage by test scenarios. 

In automatic mode this is due to the fact that VRS tool not 
always can successfully generate test scenario form guides 
because guides are created based on model’s control flow and 
do not consider values of corresponding data flow. At the same 
time, traces generated based on control flow consider changes 
in variables values and accordingly model states. 

Therefore the actual task is automated analysis of why 
some guides are not covered by traces and accordingly 
automation of guides adjusting solved by guides or UCM 
model modification.  

VIII.  METHOD OF GUIDES ADJUSTMENT 

AUTOMATION 

Most often reasons of discrepancies are insufficient (not 
enough detailed) guides specification and mistakes in the 
sequence of UCM elements in the guide due to incorrect usage of 
variables, identified as a deadlock on the branch or ramification. 

Consider the method of searching of places and reasons of 
discrepancies between a guide and a trace. Fig.4 shows iterative 
algorithm of errors searching and fixing automation. 

 
Fig.4. Algorithm of searching and fixing errors in guides 

(1) Guides and traces generated in VRS are presented as MSC 
diagrams containing sequences of basic protocols application, 
thus the first step of the algorithm is mapping basic protocols 
names on UCM elements. 

(2) Comparing the guide and the trace in terms of UCM 
elements it is possible to define the last trace element which 
satisfies the sequence of UCM elements specified in the guide. 
The next uncovered element of the guide will be referred to as the 
element of discrepancy. 

(3) For the element of discrepancy uncovered in the symbolic 
trace it is possible to explore corresponding data and 
precondition. 

(4) Then variables of precondition shall be singled out into 
separate list and those places on the UCM diagram where 
variables of this list are changed shall be analyzed. The analysis 
shall be performed from the bottom up, starting with the events 
closest to the element of discrepancy. 

(5) After revealing the reason of discrepancy, the guide shall 
be corrected or the UCM model shall be changed. 

The steps above shall be repeated until all guides will be 
covered by traces. 

Consider the process of searching for discrepancy on the 
example of telecommunication project (Fig. 5). 



 
Fig.5. Revealing the reason of discrepancy between the guide and the trace due to variables values 

 
While searching for the reason of guide’s non-coverage it is 

firstly required to find the last element of coincidence between 
the guide and the trace (1) – set_timer in this example. Then 
the guide element which can not be achieved in the trace (the 
discrepancy element) shall be found – WaitConfig in this 
example. Analyzing its metadata (2), detect the variable which 
affects the trace generation (3) and can be the reason of 
discrepancy - config_loadable in this example. After analysis 
of this variable’s values in the UCM model (4) draw a 
conclusion that in order to apply this element the variable’s 
value shall be 5. The analysis is held only for those points in 
the trace where config_loadable is used. In current case such 
point is load_config element (5), where 0 is assigned to 
config_loadable variable. Thus the conclusion can be made 
that in order to create a guide which will be successfully 
covered by a trace it is required to assign value 5 on 
load_config element or change the guide. 

Achieved is the reduction of laboriousness in searching for 
the reasons of errors due to decreasing of the number of points 
being analyzed which is actual for large industrial projects 
created in accordance with considered technology. 

IX.  FORMAL DEFINITIONS OF THE MODEL AND 

GUIDES LANGUAGE 

In [9] the guided search method is described which is used 
for generation of test scenarios satisfying to specified coverage 
criteria. Used coverage criteria (Guides) are specified in the 
form of special regular expressions over the model’s transition 
names alphabet. Guides in abstract way specify the sought-for 
behaviors in terms of model and simultaneously restrict the 
number of analyzed states by cutting off the behavioral 
branches which do not satisfy to specified criteria.  

Definition 1. Transitive system M is the tuple 

<Q, q0, T, P, f>, where Q – the set of states, 
Qq ∈0  – the 

initial state, T – the set of names of parameterized transitions, P 
– the set of agents, f:Q→P – the map, specifying the actual set 
of agents in Q state. 

To keep connection with initial UCM model of the system 
being analyzed associate the model’s events with the names of 
its transitions. Parameterization is especially actual for 
distributed systems composed of parallel asynchronous 
processes which can be generated and eliminated dynamically. 
The agent can be presented by one or a set of processes [10]. 

Definition 2. A path in M from qi state to qj state is such 
sequence of states and transitions 
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Definition 3. A trace in M is the sequence 
t0(a0), t1(a1), … tn(an)… such that the path 
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Definition 4. The language associated with M is denoted as 

L
*)( LM ⊂ – this is the set of all traces coming from initial state 

q0. 

Definition 5. Guide a.n is the transition a on maximal 
distance n, which allows the set of traces {a, X1a, …, X1…Xn 
a}, where X1,…,Xn – any non-empty symbols from {L\a}, 

~ a – restriction of a transition, allows any symbol from 
{L\a}, 

a; b – (where a, b – guides) guides concatenation, allows 
the set of traces {ab}, 

a \/ b – (where a, b – guides) nondeterministic selection of 
guides, allows the set of traces {a, b}, 

a || b – parallel composition of the guide a, which represents 
Za language over the X set alphabet, and the guide b, which 
represents Zb language over the Y set alphabet, herewith 

X ∩ Y = ∅ , because the sets of agents do not intersect in X 
and Y. Then the parallel composition of guides is the set 

represented by
b

X
a
Y

ba ZZZ
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join(a1,…,an) – the set {Sn} of all combinations of guides 
a1,…,an, 

loop(a) – iteration of the guide a, i.e. { *aa }. 

The features of the operations listed above are described in 
details in [11]. 

Semantically guides specify the “control points” in model’s 
behavior and also specify the criteria (a chain of events in 
model’s behavior) of selection of generated traces for their 
further usage as test scenarios [12, 13]. Supposed scenarios of 
modeled system’s behavior are checked for admissibility, 
simultaneously restricting their search.  

X. RESULTS OF DEPLOYMENT IN PILOT PROJECTS 

Table 1 contains the results of deployment of design and 
testing integrated technology in the area of wireless 
telecommunication applications development. As a result, a 



significant reduction of laboriousness and increase of software 
quality were obtained.  

 

Table 1. RESULTS OF TECHNOLOGY DEPLOYMENT IN PILOT PROJECTS. 

Project Number of 
requirements 

Number of 
basic protocols 

Requirements 
coverage level 

 

Number of found 
and fixed errors 
(overall/critical) 

Efforts 
(human-
weeks) 

Module 1 of wireless network 
(WN) 

400 127 75% 142/11 5.6 

Module 2 of WN 730 192 80% 106/18 12 
High-level module of WN 148 205 100% 68/23 11 
Clients and administrator 
connection module of WN 

106 163 100% 42/8 6 

Mobile phone software module 200 170 100% 96/10 7 

 

XI.  CONCLUSION 

The result of the work is improved integrated technology of 
verification and testing of software projects which provides:  

1. Full automation of industrial software product development 
process with requirements semantics implementation control. 

2. Generation of application’s model and symbolic behavioral 
scenarios, which cover 100% of application’s behavioral 
features.  

3. Automated concretization of symbolic traces in accordance 
with test plan. 

4. High level of software development and quality management 
process automation. 
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