
An Approach to Graph Matching in the Component

of Model Transformations

Alexander P. Seriy

Department of Software and Computing

Systems Mathematical Support

Perm State University

Perm, Russian Federation

E-mail: SerAlexandr@bk.ru

Scientific Advisor:

Lyudmila N. Lyadova

Department of Business Informatics

National Research University Higher School

of Economics

Perm, Russian Federation

E-mail: LNLyadova@gmail.com

Abstract – Nowadays approaches, based on models, are

used in the development of the information systems. The

models can be changed during the system development process

by developers. They can be transformed automatically: visual

model can be translated into program code; transformation

from one modeling language to other can be done. The most

appropriate way of the formal visual model presentation is

metagraph. The best way to describe changes of visual models

is the approach, based on graph grammars (graph rewriting).

It is the most demonstrative way to present the transformation.

But applying the graph grammar to the graph of model means

to find the subgraph isomorphic to the left part of the

grammar rule. This is an NP-complete task. There are some

algorithms, developed for solving this task. They were designed

for ordinary graphs and hypergraphs. In this article we

consider some of them in case of using with the metagraphs

representing models.

 Keywords – subgraph isomorphism, metagraphs, graph

grammars, model transformations.

I. INTRODUCTION

Nowadays approaches, based on models, are used at
information systems development (Model Driven Design,
Model Driven Engineering, Model Based Development,
etc.). A graph is the most obvious way to represent a visual
model. As shown in [1], using domain-specific models is the
most convenient way of representing information about the
system.

The created models can be changed during the system
development process by developers (data base designers,
system analysts). The developed models can be transformed
automatically: visual model can be translated into program
code; transformation from one modeling language to other
can be done. Therefor, the task of transformation rules
development is important for information system developers.

There are some approaches to create a special language
and automatically generate model transformation rules using
this language. Thus, the Model Driven Architecture (MDA)
[5] involves the construction of two domain models –

platform independent (PIM) and platform-specific models
(PSM). In this case the platform-specific model can be
constructed automatically.

The most appropriate way to describe the changes is an
approach based on graph grammars. Graph grammars
provide a powerful tool of describing transformation of
models. However, in their work, these tools should solve the
problem of finding a subgraph isomorphic to a given graph.
This is a NP-complete problem. There are some efficient
algorithms, developed for solving this problem, and many of
them are applicable for model transformation by graph
grammars. However, all of them were originally designed for
digraphs or hypergraphs. As we are going to use the
metagraphs, we should consider the applicability of the
existing algorithms to metagraphs and evaluate the
effectiveness of these algorithms in this case.

II. GRAPH MATCHING ALGORITHMS

Graph is an ordered pair G = (V, E), where
V = {v1, …, vn} is a non-empty set of vertices of the graph
and E = {e1, …, em} is the set of edges of the graph.

The graph in which we need to find and replace subgraph
usually is called “host graph”, and the graph we need to find
is called “sought-for graph”.

The most of theoretical research in graph theory was
conducted specifically for ordinary graphs; in particular,
there are some algorithms for comparing graphs. We will
consider the following algorithms: the Ulman algorithm; the
Schmidt-Druffel algorithm; the Vento and Foggia algorithm;
Nauty-algorithm; the algorithm for checking the
isomorphism of colored hypergraphs basing on easy-to-
compute parameters of graph; the algorithm of checking the
structure of the neighbors for directed hypergraphs and
checking isomorphism by invariants.

Ullman algorithm. Ullmann algorithm [8] is one of the
first algorithms proposed for solving the problem of graph
isomorphism. It is a backtracking algorithm, but it uses the
refining procedure (Listing 1) to reduce search field.

This paper is supported by Russian Foundation for Basic Research
(Grant 12-07-00763)

Algorithm constructs a subgraph, which is suspected to be
isomorphic to the sought-for graph. At each step the
algorithm tries to add to constructing subgraph a new vertex
(V for the host-graph and v to the sought-for graph). After
that, for each vertex v1 of the sought-for graph adjacent to the
vertex v; function Refine is trying to find a vertex V1 in the
host graph, such as: V1 is connected to V, and

deg(V1) deg(v1). If a match is found, the function Refine
returns “Ok” and constructed subgraph will be extended on
the next step. Otherwise, the function returns failure and
algorithm will fall back on the search tree.

LISTING 1. REFINE PROCEDURE

bool Refine(graph Host, graph Small)
{
Foreach (node n in Host.Nodes)
{ bool Found=false;
 foreach (node n1 in Small.Nodes)
 { If (n.Degree()>n1.Degree())
 {
 Found=true;
 break;
 }
 }
 If (!Found)
 return false;
}
return true;
}

The lower boundary of the time complexity of this
algorithm is O(N

3
), the upper – O(N

3
 × N!).

Schmidt-Druffel algorith. Schmidt-Druffel algorithm
[7] is a backtracking algorithm, which is using a matrix of
distances between vertices of the graph to reduce the space
of search. Using this matrix, the characteristic matrix of size
N × (N˗˗1) is built (Listing 2). The element cij of a
characteristic matrix is the number of vertices in the graph,
which are placed at the distance j from vertex i.

LISTING 2. BUILDING CHARACTERISTIC MATRIX

Matrix BuildCharMatrix(graph g)
{
 Matrix result = ClearCharacteristicMatrix
 (g.NodesCount, g.NodesCount-1);
 For (int n=0;i<NodesCount;i++)
 {
 For (j=0;j<NodesCount;j++)
 {
 int dist=g.GetDist(i, j);
 result [i][dist]++;
 }
 }
 Return result;
}

The vertices of the host-graph are divided into classes
after constructing such a matrix (Listing 3). All vertices shall
be in the same class, if their columns in the characteristic
matrix are equal.

LISTING 3. BUILDING CLASSES OF VERTICES

List<List<int>> BuildClasses(Matrix CharMatrix)
{ int i,j ;
 List<List<int>> result=new List<List<int>>();
 result.Add(new List<int>());
 result[0].Add(0);
 for (i=1;i<CharMatrix.ColumnsCount;i++)
 { For (j=0;j<result.Count;j++)
 { If (CharMatrix.Columns[i] ==
 CharMatrix.Columns[result[j][0]])
 {
 result[j].Add(i);
 break;
 }
 }
 If (j==result.Count)
 { result.Add(new List<int>());
 result[result.Count-1].Add(i);
 }
 }
}

After that, the vertices of the sought-for graph should be
attributed to the already existing class, so columns of the
characteristic matrix of the sought-for graph compares with
the columns of the characteristic matrix of the host graph.

Thus such a relationship is built between the vertices of
the two graphs, which preserve the classes of vertices. As a
result, the partition to the classes can reduce the dimension of
the problem, at best, by reducing it to the trivial, when all
classes have only one vertex. However, the partition can not
be useful at all, if all vertices will be in the same class.

The lower boundary of the time complexity of this
algorithm is O(N

2
), the upper – O(N × N!).

Vento and Foggia algorithm. Vento and Foggia’s
genetic algorithm [9] is an algorithm developed for solving
the problem of finding a subgraph isomorphic to a given
graph. Starting with a set of subgraphs, algorithm calculates
the fitness function for them, which characterizes their
similarity to the original graph. After calculating of the
fitness function, the new generation of the subgraphs is
building. A set of easy-to-compute graph invariants is often
taken as the fitness function. The functions listing below can
be used as the invariants.

1. Ordered set of vertices degrees (Listing 4).

LISTING 4. EVALUATING THE INVARIANT
“SET OF VERTICES DEGREES”

List<int> GetDegrees(graph g)
{
 List<int> result=new List<int>();
 Foreach (node n in g.Nodes)
 { result.Add(n.degree);
 }
 result.Sort();
 return result;
}

2. The characteristic path length – the average length of
the shortest paths between each pair of vertices (Listing 5).

LISTING 5. EVALUATING THE INVARIANT
“CHARACTERISTIC PATH LENGTH”

double AverageDist(graph g)
{
 Double res=0;
 For (int i=0;i<g.NodesCount;i++)
 {
 For (int j=0;j<g.NodesCount;j++)
 {
 res+=g.GetDist(i,j);
 }
 }
 return res/n/n;
}

3. Number of second neighbors (the vertices adjacent to
the neighbors of this one) for each vertex. The numbers are
ordered ascending (Listing 6).

LISTING 6. EVALUATING THE INVARIANT
“NUMBER OF SECOND NEIGHBORS”

List<int> SecondNeighbors(graph g)
{
 List<int> result=new List<int>();
 int t;
 foreach (node n in g.Nodes)
 {
 t=0;
 foreach (node n1 in g.Nodes)
 {
 if(g.GetDist(n,n1)==2)
 {
 t++;
 }
 }
 result.Add(t);
 }
 result.Sort();
 return result;
}

4. The number of paths between the vertices x and y,
passing through the vertex i.

Other functions can be used as the invariants too.

The boundaries of the algorithm depend on the selected
set of invariants. Author’s fitness function gave the following
boundaries: the lower boundary of the algorithm is O(N

2
),

the upper – O(N × N!)

The later modification of the algorithm [9], named VF2,
exists. It has the same complexity boundaries, but smaller
hidden constants. The authors of this algorithm have shown
[10] that their algorithm is faster than the Schmidt-Dryuffel
algorithm.

Nauty-algorithm. This algorithm is designed by B.
McKay [4]. The Nauty-algorithm uses a tightening

transformation in order to bring graph to its canonical code.
A code that is the same for isomorphic graphs and not the
same for non-isomorphic is named canonical. After the
construction of a canonical code the isomorphism checking
becomes trivial task. The Nauty-algorithm is considered as
the fastest algorithm known to nowadays.

The algorithm divides the set of vertices into classes
basing of the special properties of the vertices.

B. McKay gave his implementation of the Nauty-
algorithm in the public domain. In this implementation he
uses a significant number of optimizations and means of
reducing the search, such as “granted automorphisms”. The
author admitted that not all of the optimization techniques
used by him are documented.

III. HYPERGRAPH MATCHING ALGORITHMS

Hypergraph is a pair G = (X, E), where X is a non-empty
set of objects of a certain nature, called vertices of the
hypergraph, and E – a family of non-empty subsets of X,
named hyperedges.

Algorithm for checking the isomorphisms of colored
hypergraphs basing on easy-to-compute parameters of
graph [2]. This algorithm is a combination of the “divide
and conquer” approach and dynamic programming. First,
the vertices of both graphs are divided into classes (Cosets)
in order to reduce the problem of graph isomorphism to
problems in the theory of permutation groups, in particular,
to the problem of intersection classes. Then these problems
can be solved by dynamic programming.

The computational complexity of the algorithm –
2

O(b)
× N

O(1)
, where b – the maximum number of nodes of the

same color.

Algorithm of checking the structure of the neighbors
for directed hypergraphs [3]. It is an improved
backtracking algorithm. Before adding a new vertex V in the
expanding subgraph, this algorithm counts the number of
different paths of a certain length for each vertex, which is
connected to V. Resulting set of numbers is named a
structure of the adding vertex. With such information
algorithm checks whether it is possible to expand the
subgraph further, and if not, algorithm will fall back.

The authors of the algorithm do not lead to count of the
complexity. However they compare this algorithm [3] with
the algorithm VF2 (Vento-Foggia 2). While checking
algorithm structure neighbors greatly reduced number of
analyzed variants, each test takes too much time. As a result,
the algorithm is almost always slower than the algorithm
VF2.

Checking isomorphism by invariants. This algorithm
[6] involves the invariants to compare hypergraphs. The
authors propose an algorithm to consider a number of
invariants to more quickly identify nonisomorphic graphs.
These invariants can be, for example, a set of ordered vertex
degrees, the lowest path length between each pair of vertices,
the number of entries in each of the graphs of the same

subgraphs of smaller dimensions (e.g., the number of cycles
of length 3), etc.

This algorithm is developed to solve the problem of
testing isomorphism of two graphs. However, it can be
applied to the problem of finding isomorphic subgraph. Such
invariants as the length of the shortest paths between vertices
and vertex degrees will no longer be useful in this case, but
the invariant “number of entries in each of the graphs of the
same subgraphs smaller” can be adapted to subgraph search.

The problem of this approach is that it can determine
only the difference of graphs. If all the above graphs matched
invariants coincide, this does not guarantee isomorphism.
The authors propose to increase the number of invariants to
increase the likelihood of a negative response to the issuance
of non-isomorphic graphs.

IV. METAGRAPH MATCHING ALGORITHMS

Metagraph is an ordered pair G = (X, E), where X = {xi}

(ni ,1) is a finite nonempty set of metavertices, E – the set

of edges of the graph. Each edge ek = (Vi, Wi), mk ,1 ,

Vi, Wi X and Vi Wi , that is, each edge in metagraph
connects two subsets of vertices.

It is shown [1] that the most convenient way to represent
the domain model is metagraph. This leads us to the problem
of searching metasubgraph isomorphic to the given one in
order to execute graph rewriting at model transformation
process.

In this section we will consider the applicability of
existing graph matching algorithms to metagraphs.

Ullman algorithm. The most flexible element of the
algorithm is a function Refine. We can make it to check not
only the degree of vertices, but the number of subvertices in
the metavertex (Listing 7).

LISTING 7. FUNCTION REFINE, MODIFIED FOR METAGRAPHS

bool Refine(graph Host, graph Small)
{ Foreach (node n in Host.Nodes)
 { bool Found=false;
 foreach (node n1 in Small.Nodes)
 { If (n.Degree()>n1.Degree()
 && n.SubNodes.Count ==
 n1.SubNodes.Count)
 { Found=true;
 break;
 }
 }
 If (!Found) return false;
 }
 return true;
}

Although we can quicker weed out unsuitable subgraphs,
it does not affect the evaluation of the algorithm, but only
reduces the hidden constants.

The lower boundary of the algorithm complexity is
O(N

3
), the upper – O(N

3
 × N!).

Schmidt-Druffel algorithm. This algorithm can be
optimized as follows: in the division into classes of vertices
we may consider not only the value of the characteristic
matrix, but the number of subvertices (Listing 8).

LISTING 8. MODIFIED CONDITION OF VERTICES PARTITION

If (CharMatrix.Columns[i] ==
 CharMatrix.Columns[result[j][0]]
 && g.Nodes[i].SubNodes.Count ==
 g.Nodes[result[j][0]].SubNodes.Count)
{
 result[j].Add(i);
 break;
}

So we will get more classes, and reduce the likelihood of
a worse situation when all the vertices are included in the
same class. Thus, the estimates will not change, but the
distribution of probabilities of the worst and the best
situation will improve.

The lower boundary of the algorithm complexity is
O(N

2
), the upper – O(N×N!).

Vento and Foggia algorithm. Efficiency of this

algorithm depends on the used set of invariants. The most

obvious invariant for metagraphs is an ordered set of

capacities of metavertices (Listing 9).

LISTING 9. EVALUATING THE INVARIANT
“ORDERED SET OF CAPACITIES OF METAVERTICES”

List<int> SubNodesCounts(graph g)
{ List<int> result=new List<int>();
 Foreach (node n in g.Nodes)
 {
 result.Add(n.SubNodes.Count);
 }
 result.Sort();
 return result;
}

Adding such an invariant will decrease the hidden
constant in the estimates of the complexity.
The lower boundary of the algorithm complexity O(N

2
), the

upper – O(N×N!).

Nauty-algorithm. Nauty-algorithm differs from the
previously discussed algorithms. The process of constructing
the canonical code is not changed for graphs and metagraphs.
We can assume that the vertices belonging to the metavertex
– a new special property of vertex. It allows us to perform
the first step of the algorithm automatically. As this
algorithm is the fastest, it is a main candidate for the
implementation in the model transformation component of
MetaLanguage system. The algorithm implementation
suggested by B. McKay is useless for us – it takes just a data
structure that stores the graph. This representation does not
allow to transfer a set of vertices belonging to metavertex.

Algorithm for checking the isomorphisms of colored
hypergraphs basing on easy-to-compute parameters of
graph. When we try to apply this algorithm to metagraphs,
the number of subvertices in metavertex will be considered a

special color of the vertex. If the original graph is colored, it
grinds partition by color and reduces the number of vertices
of each color. However, the complexity of this algorithm is
always 2

O(b)
× N

O(1)
. It can be a significant disadvantage

because the other algorithms can work faster in the average.

Algorithm of checking the structure of the neighbors
for directed hypergraphs. This algorithm can not use the
information of vertices in metavertex (only path lengths are
important to this algorithm), and it is often slower than the
algorithm Vento-Foggia (VF2). So this algorithm is useless
in practice.

Checking isomorphism by invariants. This approach
can be applied to regular graphs, and to hyper- and
metagraphs, but it can say only that the sought-for subgraph
is in the graph or not, but can not identify the vertices that
form it. Thus this method is useless for solving the problem
of graphs transformation with graph grammars. However, it
can be used in conjunction with any other algorithm for the
preliminary analysis. If the algorithm reports that there is no
subgraph isomorphic to a given, running of a more powerful
algorithm is not necessary.

As it seems from the Table 1, the leadings algorithms are
the algorithm Vento and Foggia and Nauty algorithm.

TABLE 1. THE COMPARISON OF THE ALGORITHMS

Algorithm
Best-case

complexity

Worth-case

complexity

Always

finds

correct

answer

Ullman algorithm O(N2) O(N×N!) +

Schmidt-Druffel

algorithm

O(N2) O(N×N!) +

Vento and Foggia

algorithm

O(N2) O(N×N!) +

Nauty-algorithm Not leaded by

the author

Not leaded

by the author

+

Algorithm for checking

the isomorphism of

colored hypergraphs

basing on easy-to-

compute parameters of

graph

2O(b) × N
O(1) 2O(b) × N

O(1) +

Algorithm of checking

the structure of the

neighbors for directed

hypergraphs

Not leaded by

the authors,

more than for

Vento and

Foggia

algorithm

Not leaded

by the

authors, more

than for

Vento and

Foggia

algorithm

+

Checking isomorphism

by invariants

Depends on the

chosen

invariants

Depends on

the chosen

invariants

–

V. CONCLUSION

Graph matching is important task for implementation of
DSM-platform, where new visual domain specific modeling
languages (DSML) are created and model transformation
rules based on graph grammars are defined.

This article covers seven graph matching algorithm in the
case of their applicability to the metagraphs comparison in
order to search subgraph of model metagraph. All of them
can be applied to compare metagraphs, and many of them
can use the features of the metagraphs structure to get some
acceleration. However, the difference in the complexity is
only a constant for all of them.

Our analysis revealed the two leaders – the algorithm
Vento and Foggia and Nauty algorithm. We plan to
implement both of them and test them to identify the most
effective algorithm to execute graph matching in component
of visual model transformation, included in MetaLanguage
DSM-platform.

REFERENCES

[1] Сухов А.О. Анализ формализмов описания визуальных языков
моделирования // Современные проблемы науки и образования.
– 2012. – № 2; URL: www.science-education.ru/102-5655 (дата
обращения: 10.11.2012).

[2] Arvind V., Das B., Köble J., Toda S. Colored Hypergraph Isomor-
phism is Fixed Parameter Tractable // In Proceedings of the
Conference on Foundations of Software Technology and Theoretical
Computer Science, 2010.

[3] Battiti R., Mascia F. An Algorithm Portfolio for the Sub-Graph
Isomorphism Problem, Universit`a degli Studi di Trento.

[4] McKay B.D. Practical Graph Isomorphism // Congressus
Numerantium. – 1981. - №30. – с. 45-87.

[5] MDA Guide Version 1.0. OMG document, Miller, J. and Mukerji, J.
Eds., 2003. Available: http://www.omg.org/docs/omg/03-06-01.pdf
[19.06.2012].

[6] Remie V. Bachelors Project: Graph isomorphism problem,
Eindhoven University of Technology Department of Industrial
Applied Mathematics, 2003.

[7] Schmidt D., Druffel L. A Fast Backtracking Algorithm to Test
Directed Graphs for Isomorphism Using Distance Matrices // Journal
of the Association for Computing Machinery. – 1976. – №23. –
P. 433-445.

[8] Ullmann J.R. An Algorithm for Subgraph Isomorphism // Journal of
the Association for Computing Machinery. – 1976. – №23. –
P. 31-42.

[9] Vento M., Foggia P., Sansone С. An Improved Algorithm for
Matching Large Graphs // IAPR-TC-15 International Workshop on
graphbased Representations. – 2001. – №3. – P. 193-212.

[10] Vento M., Foggia P., Sansone C. A Performance Comparison of Five
Algorithms for Graph Isomorphism // In Proceedings of the 3rd
IAPR TC-15 Workshop on Graph-based Representations in Pattern
Recognition, 2001.

