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Abstract – Nowadays approaches, based on models, are 

used in the development of the information systems. The 

models can be changed during the system development process 

by developers. They can be transformed automatically:  visual 

model can be translated into program code; transformation 

from one modeling language to other can be done. The most 

appropriate way of the formal visual model presentation is 

metagraph. The best way to describe changes of visual models 

is the approach, based on graph grammars (graph rewriting). 

It is the most demonstrative way to present the transformation. 

But applying the graph grammar to the graph of model means 

to find the subgraph isomorphic to the left part of the 

grammar rule. This is an NP-complete task. There are some 

algorithms, developed for solving this task. They were designed 

for ordinary graphs and hypergraphs. In this article we 

consider some of them in case of using with the metagraphs 

representing models. 

 Keywords – subgraph isomorphism, metagraphs, graph 

grammars, model transformations. 

I. INTRODUCTION 

Nowadays approaches, based on models, are used at 
information systems development (Model Driven Design, 
Model Driven Engineering, Model Based Development, 
etc.). A graph is the most obvious way to represent a visual 
model. As shown in [1], using domain-specific models is the 
most convenient way of representing information about the 
system.  

The created models can be changed during the system 
development process by developers (data base designers, 
system analysts). The developed models can be transformed 
automatically:  visual model can be translated into program 
code; transformation from one modeling language to other 
can be done. Therefor, the task of transformation rules 
development is important for information system developers. 

There are some approaches to create a special language 
and automatically generate model transformation rules using 
this language. Thus, the Model Driven Architecture (MDA) 
[5] involves the construction of two domain models – 

platform independent (PIM) and platform-specific models 
(PSM). In this case the platform-specific model can be 
constructed automatically.  

The most appropriate way to describe the changes is an 
approach based on graph grammars. Graph grammars 
provide a powerful tool of describing transformation of 
models. However, in their work, these tools should solve the 
problem of finding a subgraph isomorphic to a given graph. 
This is a NP-complete problem. There are some efficient 
algorithms, developed for solving this problem, and many of 
them are applicable for model transformation by graph 
grammars. However, all of them were originally designed for 
digraphs or hypergraphs. As we are going to use the  
metagraphs, we should consider the applicability of the 
existing algorithms to metagraphs and evaluate the 
effectiveness of these algorithms in this case. 

II. GRAPH MATCHING ALGORITHMS 

Graph is an ordered pair G = (V, E), where 
V = {v1, …, vn}   is a non-empty set of vertices of the graph 
and E = {e1, …, em}  is the set of edges of the graph.  

The graph in which we need to find and replace subgraph 
usually is called “host graph”, and the graph we need to find 
is called “sought-for graph”. 

The most of theoretical research in graph theory was 
conducted specifically for ordinary graphs; in particular, 
there are some algorithms for comparing graphs. We will 
consider the following algorithms: the Ulman algorithm; the 
Schmidt-Druffel algorithm; the Vento and Foggia algorithm; 
Nauty-algorithm; the algorithm for checking the 
isomorphism of colored hypergraphs basing on easy-to-
compute parameters of graph; the algorithm of checking the 
structure of the neighbors for directed hypergraphs and 
checking isomorphism by invariants. 

Ullman algorithm. Ullmann algorithm [8] is one of the 
first algorithms proposed for solving the problem of graph 
isomorphism. It is a backtracking algorithm, but it uses the 
refining procedure (Listing 1) to reduce search field. 

This paper is supported by Russian Foundation for Basic Research  
(Grant 12-07-00763) 



Algorithm constructs a subgraph, which is suspected to be 
isomorphic to the sought-for graph. At each step the 
algorithm tries to add to constructing subgraph a new vertex 
(V for the host-graph and v to the sought-for graph). After 
that, for each vertex v1 of the sought-for graph adjacent to the 
vertex v; function Refine is trying to find a vertex V1 in the 
host graph, such as: V1 is connected to V, and 

deg(V1)  deg(v1). If a match is found, the function Refine 
returns “Ok” and constructed subgraph will be extended on 
the next step. Otherwise, the function returns failure and 
algorithm will fall back on the search tree. 

LISTING 1. REFINE PROCEDURE 

bool Refine(graph Host, graph Small)  
{  
Foreach (node n in Host.Nodes)  
{  bool Found=false;  
 foreach (node n1 in Small.Nodes)  
 {  If (n.Degree()>n1.Degree())  
  {  
   Found=true;  
   break;  
  }  
 }  
 If (!Found)  
 return false;  
}  
return true;  
}  

The lower boundary of the time complexity of this 
algorithm is O(N

3
), the upper – O(N

3
 × N!). 

Schmidt-Druffel algorith. Schmidt-Druffel algorithm 
[7] is a backtracking algorithm, which is using a matrix of 
distances between vertices of the graph to reduce the space 
of search. Using this matrix, the characteristic matrix of size 
N × (N˗˗1) is built (Listing 2). The element cij of a 
characteristic matrix is the number of vertices in the graph, 
which are placed at the distance j from vertex i. 

LISTING 2. BUILDING CHARACTERISTIC MATRIX 

Matrix BuildCharMatrix(graph g) 
{ 
 Matrix result = ClearCharacteristicMatrix 
     (g.NodesCount, g.NodesCount-1);  
 For (int n=0;i<NodesCount;i++)  
 { 
  For (j=0;j<NodesCount;j++)  
  { 
   int dist=g.GetDist(i, j);  
   result [i][dist]++;  
  } 
 } 
 Return result; 
} 

The vertices of the host-graph are divided into classes 
after constructing such a matrix (Listing 3). All vertices shall 
be in the same class, if their columns in the characteristic 
matrix are equal. 

LISTING 3. BUILDING CLASSES OF VERTICES 

List<List<int>> BuildClasses(Matrix CharMatrix) 
{ int i,j ; 
 List<List<int>> result=new List<List<int>>(); 
 result.Add(new List<int>()); 
 result[0].Add(0);  
 for (i=1;i<CharMatrix.ColumnsCount;i++) 
 { For (j=0;j<result.Count;j++) 
  { If (CharMatrix.Columns[i] ==   
    CharMatrix.Columns[result[j][0]]) 
   { 
    result[j].Add(i);  
    break; 
   } 
  } 
  If (j==result.Count) 
  { result.Add(new List<int>());  
   result[result.Count-1].Add(i); 
  } 
 } 
} 

After that, the vertices of the sought-for graph should be 
attributed to the already existing class, so columns of the 
characteristic matrix of the sought-for graph compares with 
the columns of the characteristic matrix of the host graph. 

Thus such a relationship is built between the vertices of 
the two graphs, which preserve the classes of vertices. As a 
result, the partition to the classes can reduce the dimension of 
the problem, at best, by reducing it to the trivial, when all 
classes have only one vertex. However, the partition can not 
be useful at all, if all vertices will be in the same class. 

The lower boundary of the time complexity of this 
algorithm is O(N

2
), the upper – O(N × N!). 

Vento and Foggia algorithm. Vento and Foggia’s 
genetic algorithm [9] is an algorithm developed for solving 
the problem of finding a subgraph isomorphic to a given 
graph. Starting with a set of subgraphs, algorithm calculates 
the fitness function for them, which characterizes their 
similarity to the original graph. After calculating of the 
fitness function, the new generation of the subgraphs is 
building. A set of easy-to-compute graph invariants is often 
taken as the fitness function. The functions listing below can 
be used as the invariants. 

1. Ordered set of vertices degrees (Listing 4). 

LISTING 4. EVALUATING THE INVARIANT  
“SET OF VERTICES DEGREES” 

List<int> GetDegrees(graph g) 
{ 
 List<int> result=new List<int>(); 
 Foreach (node n in g.Nodes) 
 { result.Add(n.degree); 
 } 
 result.Sort(); 
 return result; 
} 



2. The characteristic path length – the average length of 
the shortest paths between each pair of vertices (Listing 5). 

LISTING 5. EVALUATING THE INVARIANT  
“CHARACTERISTIC PATH LENGTH” 

double AverageDist(graph g) 
{ 
 Double res=0; 
 For (int i=0;i<g.NodesCount;i++) 
 { 
  For (int j=0;j<g.NodesCount;j++) 
  { 
   res+=g.GetDist(i,j); 
  } 
 } 
 return res/n/n;  
} 

3. Number of second neighbors (the vertices adjacent to 
the neighbors of this one) for each vertex. The numbers are 
ordered ascending (Listing 6). 

LISTING 6. EVALUATING THE INVARIANT  
“NUMBER OF SECOND NEIGHBORS” 

List<int> SecondNeighbors(graph g) 
{ 
 List<int> result=new List<int>(); 
 int t; 
 foreach (node n in g.Nodes) 
 { 
  t=0; 
  foreach (node n1 in g.Nodes) 
  { 
   if(g.GetDist(n,n1)==2) 
   { 
    t++; 
   } 
  } 
  result.Add(t); 
 } 
 result.Sort(); 
 return result; 
} 

4. The number of paths between the vertices x and y, 
passing through the vertex i. 

Other functions can be used as the invariants too. 

The boundaries of the algorithm depend on the selected 
set of invariants. Author’s fitness function gave the following 
boundaries: the lower boundary of the algorithm is O(N

2
), 

the upper – O(N × N!) 

The later modification of the algorithm [9], named VF2, 
exists. It has the same complexity boundaries, but smaller 
hidden constants. The authors of this algorithm have shown 
[10] that their algorithm is faster than the Schmidt-Dryuffel 
algorithm. 

Nauty-algorithm. This algorithm is designed by B. 
McKay [4]. The Nauty-algorithm uses a tightening 

transformation in order to bring graph to its canonical code. 
A code that is the same for isomorphic graphs and not the 
same for non-isomorphic is named canonical. After the 
construction of a canonical code the isomorphism checking 
becomes trivial task. The Nauty-algorithm is considered as 
the fastest algorithm known to nowadays. 

The algorithm divides the set of vertices into classes 
basing of the special properties of the vertices. 

B. McKay gave his implementation of the Nauty-
algorithm in the public domain. In this implementation he 
uses a significant number of optimizations and means of 
reducing the search, such as “granted automorphisms”. The 
author admitted that not all of the optimization techniques 
used by him are documented. 

III. HYPERGRAPH MATCHING ALGORITHMS 

Hypergraph is a pair G = (X, E), where X is a non-empty 
set of objects of a certain nature, called vertices of the 
hypergraph, and E – a family of non-empty subsets of X, 
named hyperedges. 

Algorithm for checking the isomorphisms of colored 
hypergraphs basing on easy-to-compute parameters of 
graph [2]. This algorithm is a combination of the “divide 
and conquer” approach and dynamic programming. First, 
the vertices of both graphs are divided into classes (Cosets) 
in order to reduce the problem of graph isomorphism to 
problems in the theory of permutation groups, in particular, 
to the problem of intersection classes. Then these problems 
can be solved by dynamic programming. 

The computational complexity of the algorithm – 
2 

O(b) 
× N 

O(1)
, where b – the maximum number of nodes of the 

same color. 

Algorithm of checking the structure of the neighbors 
for directed hypergraphs [3]. It is an improved 
backtracking algorithm. Before adding a new vertex V in the 
expanding subgraph, this algorithm counts the number of 
different paths of a certain length for each vertex, which is 
connected to V. Resulting set of numbers is named a 
structure of the adding vertex. With such information 
algorithm checks whether it is possible to expand the 
subgraph further, and if not, algorithm will fall back. 

The authors of the algorithm do not lead to count of the 
complexity. However they compare this algorithm [3] with 
the algorithm VF2 (Vento-Foggia 2). While checking 
algorithm structure neighbors greatly reduced number of 
analyzed variants, each test takes too much time. As a result, 
the algorithm is almost always slower than the algorithm 
VF2. 

Checking isomorphism by invariants. This algorithm 
[6] involves the invariants to compare hypergraphs. The 
authors propose an algorithm to consider a number of 
invariants to more quickly identify nonisomorphic graphs. 
These invariants can be, for example, a set of ordered vertex 
degrees, the lowest path length between each pair of vertices, 
the number of entries in each of the graphs of the same 



subgraphs of smaller dimensions (e.g., the number of cycles 
of length 3), etc. 

This algorithm is developed to solve the problem of 
testing isomorphism of two graphs. However, it can be 
applied to the problem of finding isomorphic subgraph. Such 
invariants as the length of the shortest paths between vertices 
and vertex degrees will no longer be useful in this case, but 
the invariant “number of entries in each of the graphs of the 
same subgraphs smaller” can be adapted to subgraph search. 

The problem of this approach is that it can determine 
only the difference of graphs. If all the above graphs matched 
invariants coincide, this does not guarantee isomorphism. 
The authors propose to increase the number of invariants to 
increase the likelihood of a negative response to the issuance 
of non-isomorphic graphs. 

IV. METAGRAPH MATCHING ALGORITHMS 

Metagraph is an ordered pair G = (X, E), where X = {xi} 

( ni ,1 ) is a finite nonempty set of metavertices, E – the set 

of edges of the graph. Each edge ek = (Vi, Wi), mk ,1 , 

Vi, Wi  X and Vi  Wi  , that is, each edge in metagraph 
connects two subsets of vertices. 

It is shown [1] that the most convenient way to represent 
the domain model is metagraph. This leads us to the problem 
of searching metasubgraph isomorphic to the given one in 
order to execute graph rewriting at model transformation 
process.  

In this section we will consider the applicability of 
existing graph matching algorithms to metagraphs. 

Ullman algorithm. The most flexible element of the 
algorithm is a function Refine. We can make it to check not 
only the degree of vertices, but the number of subvertices in 
the metavertex (Listing 7). 

LISTING 7. FUNCTION REFINE, MODIFIED FOR METAGRAPHS 

bool Refine(graph Host, graph Small) 
{ Foreach (node n in Host.Nodes) 
 { bool Found=false; 
  foreach (node n1 in Small.Nodes) 
  { If (n.Degree()>n1.Degree()   
    && n.SubNodes.Count ==  
    n1.SubNodes.Count) 
   { Found=true; 
    break; 
   } 
  }  
  If (!Found) return false; 
 } 
 return true; 
} 

Although we can quicker weed out unsuitable subgraphs, 
it does not affect the evaluation of the algorithm, but only 
reduces the hidden constants. 

The lower boundary of the algorithm complexity is 
O(N

3
), the upper – O(N

3
 × N!). 

Schmidt-Druffel algorithm. This algorithm can be 
optimized as follows: in the division into classes of vertices 
we may consider not only the value of the characteristic 
matrix, but the number of subvertices (Listing 8). 

LISTING 8. MODIFIED CONDITION OF VERTICES PARTITION  

If (CharMatrix.Columns[i] == 
 CharMatrix.Columns[result[j][0]] 
 && g.Nodes[i].SubNodes.Count == 
 g.Nodes[result[j][0]].SubNodes.Count) 
{ 
 result[j].Add(i);  
 break; 
} 

So we will get more classes, and reduce the likelihood of 
a worse situation when all the vertices are included in the 
same class. Thus, the estimates will not change, but the 
distribution of probabilities of the worst and the best 
situation will improve.  

The lower boundary of the algorithm complexity is 
O(N

2
), the upper – O(N×N!). 

Vento and Foggia algorithm. Efficiency of this 

algorithm depends on the used set of invariants. The most 

obvious invariant for metagraphs is an ordered set of 

capacities of metavertices (Listing 9). 

LISTING 9. EVALUATING THE INVARIANT  
“ORDERED SET OF CAPACITIES OF METAVERTICES” 

List<int> SubNodesCounts(graph g) 
{ List<int> result=new List<int>(); 
 Foreach (node n in g.Nodes) 
 { 
  result.Add(n.SubNodes.Count); 
 } 
 result.Sort(); 
 return result; 
} 

Adding such an invariant will decrease the hidden 
constant in the estimates of the complexity. 
The lower boundary of the algorithm complexity O(N

2
), the 

upper – O(N×N!). 

Nauty-algorithm. Nauty-algorithm differs from the 
previously discussed algorithms. The process of constructing 
the canonical code is not changed for graphs and metagraphs. 
We can assume that the vertices belonging to the metavertex 
– a new special property of vertex. It allows us to perform 
the first step of the algorithm automatically. As this 
algorithm is the fastest, it is a main candidate for the 
implementation in the model transformation component of 
MetaLanguage system. The algorithm implementation 
suggested by B. McKay is useless for us – it takes just a data 
structure that stores the graph. This representation does not 
allow to transfer a set of vertices belonging to metavertex. 

Algorithm for checking the isomorphisms of colored 
hypergraphs basing on easy-to-compute parameters of 
graph. When we try to apply this algorithm to metagraphs, 
the number of subvertices in metavertex will be considered a 



special color of the vertex. If the original graph is colored, it 
grinds partition by color and reduces the number of vertices 
of each color. However, the complexity of this algorithm is 
always 2

O(b) 
× N

O(1)
. It can be a significant disadvantage 

because the other algorithms can work faster in the average. 

Algorithm of checking the structure of the neighbors 
for directed hypergraphs. This algorithm can not use the 
information of vertices in metavertex (only path lengths are 
important to this algorithm), and it is often slower than the 
algorithm Vento-Foggia (VF2). So this algorithm is useless 
in practice. 

Checking isomorphism by invariants. This approach 
can be applied to regular graphs, and to hyper- and 
metagraphs, but it can say only that the sought-for subgraph 
is in the graph or not, but can not identify the vertices that 
form it. Thus this method is useless for solving the problem 
of graphs transformation with graph grammars. However, it 
can be used in conjunction with any other algorithm for the 
preliminary analysis. If the algorithm reports that there is no 
subgraph isomorphic to a given, running of a more powerful 
algorithm is not necessary.  

As it seems from the Table 1, the leadings algorithms are 
the algorithm Vento and Foggia and Nauty algorithm.  

TABLE 1. THE COMPARISON OF THE ALGORITHMS 

Algorithm 
Best-case 

complexity 

Worth-case 

complexity 

Always 

finds 

correct 

answer 

Ullman algorithm O(N2) O(N×N!) + 

Schmidt-Druffel 

algorithm 

O(N2) O(N×N!) + 

Vento and Foggia 

algorithm 

O(N2) O(N×N!) + 

Nauty-algorithm Not leaded by 

the author 

Not leaded 

by the author 

+ 

Algorithm for checking 

the isomorphism of 

colored hypergraphs 

basing on easy-to-

compute parameters of 

graph 

2O(b) × N
O(1) 2O(b) × N

O(1) + 

Algorithm of checking 

the structure of the 

neighbors for directed 

hypergraphs 

Not leaded by 

the authors, 

more than for 

Vento and 

Foggia 

algorithm 

Not leaded 

by the 

authors, more 

than for 

Vento and 

Foggia 

algorithm 

+ 

Checking isomorphism 

by invariants 

Depends on the 

chosen 

invariants  

Depends on 

the chosen 

invariants 

– 

V. CONCLUSION 

Graph matching is important task for implementation of 
DSM-platform, where new visual domain specific modeling 
languages (DSML) are created and model transformation 
rules based on graph grammars are defined. 

This article covers seven graph matching algorithm in the 
case of their applicability to the metagraphs comparison in 
order to search subgraph of model metagraph. All of them 
can be applied to compare metagraphs, and many of them 
can use the features of the metagraphs structure to get some 
acceleration. However, the difference in the complexity is 
only a constant for all of them. 

Our analysis revealed the two leaders – the algorithm 
Vento and Foggia and Nauty algorithm. We plan to 
implement both of them and test them to identify the most 
effective algorithm to execute graph matching in component 
of visual model transformation, included in MetaLanguage 
DSM-platform. 
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