
Recognition and Explanation of Incorrect Behavior
in Simulation-based Hardware Verification

Mikhail Chupilko∗, Alexander Protsenko∗†
∗ Institute for System Programming of the Russian Academy of Sciences (ISPRAS)

† National Research University Higher School of Economics (NRU HSE)
{chupilko,protsenko}@ispras.ru

Abstract—Simulation-based unit-level hardware verification is
intended for dynamical checking of hardware designs against
their specifications. There are different ways of the specification
development and design correctness checking but it is still difficult
to diagnose something more than incorrect data on some or
other design outputs. The proposed approach is not only to find
erroneous design behavior but also to make an explanation of
incorrectness on the base of resulted reactions based on special
mechanism using a list of explanatory rules.

I. INTRODUCTION

Taking up to 80% of the total verification efforts [1],
verification of HDL designs remains being very important. We
expect the verification labor costs to be decreased by means
of more convenient and substantial diagnostic information. The
most complicated problem that underlies in all the approaches
to hardware verification is how to represent the specification
in machine-readable form that can be both convenient for
development and useful for verification purposes. Typically,
the specifications can be represented by means of temporal
assertions (like in SystemVerilog in general and in Unified
verification methodology [2] in particular), or using implicit
contracts in form of pre- and post-conditions applied for each
operation and micro-operation [3], or by means of executable
models. The way of assertion usage lacks of certain incom-
pleteness as assertions covers some of other quality and their
possible violation shows only the quality without any guesses
why it has happened. To guess something in this case, we
should have had a bit higher representation of specifications.
The way of implicit specification by means of contracts allows
showing which micro operation does not work, but it is still
difficult to interpret such information as such interpretation
requires lower specification representation.

The executable specification can be considered as being
the most useful in the error explanation. To be the most ap-
propriate, the specification should imitate the logic architecture
of HDL designs, and the test system is to have mechanisms
of explanations the results of simulation. Exactly such mech-
anisms based on executable specifications are implemented in
the proposed approach to test system development as it will
be shown later.

The rest of the paper is organized as follows. The following
chapter introduces the method of specification and test system
development. The third chapter tells about reaction checker
work. The fourth chapter reveals the theory underlying the
explanatory mechanism. The fifth chapter says a few words
about implementation of the approach in C++ library named
C++TESK Testing ToolKit [4].

Fig. 1. Common architecture of test system

Then a few words about the approach application are given.
The seventh chapter concludes the paper.

II. SPECIFICATION AND TEST SYSTEM ARCHITECTURE

The typical test system for unit-level simulation-based
hardware verification includes the following three parts: gener-
ator of stimuli, reaction checker, and design under verification
(DUV) connected to the test system via special adapter. The
proposed approach follows the same tradition but formulates
properties of test system components more strictly. Let us
shortly consider all the parts of the ordinary test system
developed according to the approach (see Figure 1) and then
review reference model development more thoroughly.

It should be noticed that fully colored elements in Figure 1
are derived from the supporting library (C++TESK), half-
colored elements are developed for each DUV manually on
the base of the supporting library, and white-boxed elements
are developed fully manually.

Test oracle is the test system core. In fact, the test or-
acle works as a typical reaction checker; it receives stimuli
flow from stimuli generator, receives implementation reactions
(DUV reactions) enveloped into messages, and compares them
with model reactions produced by reference model. Each
message consists of a number of fields carrying data. Only
messages with the fields of the same data types are comparable.
The test oracle includes a replacement for the reference model
which is called reference model environment. The environment
consists of a list of operations and functional dependencies
between data on output and input interfaces. The operation

description is based on extension of external reference model
with timing properties.

The other parts of the test oracle are reaction matcher,
and diagnostics subsystem. The reaction sequence made by
the reference model is processed by the reaction matcher. It
consists of processes each of which processes reactions on one
particular reference model interface. As each reference model
reaction is bound to a particular output interface, so that all
the reactions are subdivided into a set of model interfaces. A
reaction arbiter is defined for each output model interface. This
component orders model reaction as follows.

When the model reaction is received by the reaction
matcher, special process waiting for correspondent implemen-
tation reaction is started. If the implementation reaction is
found, the process asks the reaction arbiter of the interface
whether it can catch the reaction. The reaction arbiter contains
a list of model reactions, registered at the interface where the
arbiter is defined and not yet matched to the implementation
reactions. The match process asking the arbiter about possi-
bility of catching, the arbiter checks the list and according
with a strategy of reaction selection (i.e. FIFO, LIFO, data
matching) permits or forbids the matching process to catch
the implementation reaction.

It is the way of reaction arbitration on each output interface.
If the catching is allowed, the model reaction is deleted from
the arbiter‘s reaction list, and the couple of model and imple-
mentation reaction is sent to the diagnostics subsystem. If the
catching is forbidden, the matching process returns to the state
of looking for the next implementation reaction. If the waiting
for implementation reaction timeout is reached (the timeout
can be set up to each interface separately), the reaction is sent
to the diagnostics subsystem alone without implementation
reaction marked as missing reaction. Besides processes looking
for implementation reactions launched by model reactions,
special processes named listeners are launched by test system
for each interface. Each listener is bound to a particular
interface and works as follows.

It contains an infinite loop of receiving implementation
reaction, shaping the message with the reaction data, checking
whether the reaction is matched to the correspondent model
reaction at the next cycle after the implementation is com-
pletely received by test system. If the matching has happened,
the listener returns to its first state and starts looking for the
next implementation reaction. If the listener finds out that the
implementation reaction has not been taken by any model
reactions, it has been waiting for a certain implementation
reaction timeout, having placed the implementation reaction
into special buffer, offering next model reaction to match with
the given implementation reaction. If the implementation reac-
tion timeout is reached, the reaction is sent to the diagnostics
subsystem alone without model reaction marked as unexpected
reaction.

III. REACTION CHECKER ALGORITHM

The reaction checker work can be described by means of an
algorithm showing clearly its possibility of catching all visible
DUV defects. To provide the algorithm, some introduction
might be useful. There are two definitions, the algorithm and
a theorem about the reaction checker work.

All the input and output signals of DUV (implementa-
tion) are subdivided into input and output interfaces. The
set of input and output interfaces of the reference model
(specification) matches the one of the implementation (In and
Out). Alphabets of stimuli and reactions of the implementation
and specification also match each other (X and Y). Set of
implementation state (Simpl) and specification states (Sspec)
speaking generally might differ but initial states of implemen-
tation and specification are marked out (simpl0 ∈ Simpl and
sspec0 ∈ Sspec).

Applied during testing to input interface in ∈ In stimuli
are elements of the sequence X̄in = 〈(xi, ti)〉ni=1, where
xi ∈ X is a single stimulus, ti ∈ N0 is the time mark
of its application (ti < ti+1, i = 1, n− 1). The set of
stimuli sequences applied during testing to input interfaces
will be denoted as X̄ =< X̄in1 , . . . , X̄inn > and called
stimuli sequence. Stimuli sequence admissibility is defined by
definitional domain Dom ⊆

⋃∞
k=0(X × N0)k.

Implementation answering the stimuli sequence X̄ pro-
duces reactions Ȳ out

impl(X̄) = 〈(y′i, t′i)〉mi=1 and sends them to
the output interface out ∈ Out, where y′i ∈ Y is a single
reaction, t′i ∈ N0 is time of its sending (t′i < t′i+1, i =
1,m− 1). Let the set of reaction sequences emitting by the
implementation to all interfaces be denoted as Ȳimpl =<
Ȳ out1
impl , . . . , Ȳ

outM
impl > and called implementation reaction se-

quence.

Specification answering the stimuli sequence X̄ produces
reactions Ȳ out

spec(X̄) = 〈(yi, ti)〉ki=1 and sends them to the
output interface out ∈ Out, where yi ∈ Y is a single reaction,
ti ∈ N0 is time of its sending (ti ≤ ti+1, i = 1, k − 1). Let
the set of reaction sequences emitting by the implementation
to all interfaces be denoted as Ȳspec =< Ȳ out1

spec , . . . , Ȳ
outK
spec >

and called specification reaction sequence.

Let each output interface out ∈ Out to be equipped with
reaction production timeout ∆tout ∈ N0. Let also each finite
stimuli sequence results in a finite reaction sequence. Let us
denote single element of reaction sequence Ȳ = 〈(yi, ti)〉ki=1
as Ȳ [i] = (yi, ti). The operation of element removing from the
reaction sequence Ȳ \(y, t) is defined as follows: if the element
being removed is absent in the sequence, the result consists of
the former sequence; if the element is in the sequence, its first
entrance in the sequence will be removed. The sequence length
is denoted as m = |Ȳ |.

Definition 1: The implementation is said to correspond to
the specification if ∀out ∈ Out and ∀X̄ ∈ Dom |Ȳ out

impl(X̄)| =
|Ȳ out

spec(X̄)| = mout is satisfied and there is a rearrangement
πout of the set {1, ,mout} so that ∀i ∈ {1, . . . ,mout}{

y′i = yj
tj ≤ t′i ≤ tj + ∆tout

}
is satisfied, where j = πout(i).

Definition 2: The implementation behavior is said to have
an observable failure if the implementation does not corre-
spond to the specification or ∃X̄ ∈ Dom and ∃out ∈ Out so
that either |Ȳ out

impl(X̄)| 6= |Ȳ out
spec(X̄)|, or for each rearrangement

πout of the set {1, . . . ,mout} ∃i ∈ {1, . . . ,mout} for which[
y′i 6= yj
tj > t′i

t′i > tj + ∆tout

]
is satisfied, where j = πout(i).

Action 1 reactionMatcher[Ȳimpl, Ȳspec]

Guard: true
Input: Ȳimpl, Ȳspec
Ȳ ∗spec ⇐ Ȳspec
for all i ∈ |Ȳimpl| do

tnow ⇐ t′i
Y now
spec ⇐ {(y, t)|∃j · (y, t) = Ȳ ∗spec[j] ∧ t ≤ tnow}
Y now
missing ⇐ {(y, t) ∈ Y now

spec |t+ ∆t < tnow}
if Y now

missing 6= ∅ then
Ydefect ⇐ Ydefect ∩ Y now

missing
end if
Y now
matched ⇐ {(y, t) ∈ Y now

spec |y = y′i ∧ t ≤ t′i ≤ t+ ∆t}
if Y now

matched = ∅ then
Ydefect ⇐ Ydefect ∩ (y′i, t

′
i)

end if
(ymatched, tmatched)⇐ argmin(y,t)∈Y now

matched
t

Ȳ ∗spec ⇐ Ȳ ∗spec \ (ymatched, tmatched)
end for
if |Ȳ ∗spec| 6= ∅ then

Ydefect ⇐ Ydefect ∩ Ȳ ∗spec
end if
return Ydefect

Lemma 1: If reaction sequence Ȳimpl and Ȳspec are finite,
and |Ȳimpl| 6= |Ȳspec| then test oracle returns negative verdict.

Proof: Suppose the main cycle of the algorithm not to find
a failure. In this case the number of elements in sequence Ȳ ∗spec
(which at the first step was equal to the number of elements
in Ȳspec) will be decreased to the number, which the sequence
Ȳimpl contains. If |Ȳimpl| > |Ȳspec|, then there is no step of
the test oracle algorithm to find reaction from sequence Ȳspec
correspondent to current being worked under reaction from
sequence Ȳimpl. In this case test oracle finishes its work with
negative verdict. We had supposed that such a situation cant
occur, so that |Ȳimpl| < |Ȳspec|. In this case |Ȳ ∗spec| = |Ȳspec|−
|Ȳimpl| > 0 and the oracle finishes its work with negative
verdict in due to condition if |Ȳ ∗spec| 6= ∅ then return (false)
after the main cycle having finished.

Theorem 1: Test oracle working according to the proposed
algorithm allows constructing significant tests (it means that
oracle is not mistaken having found certain defect).

Proof: The case when |Ȳimpl| 6= |Ȳspec| meaning that
there are different numbers of implementation and specification
reactions is considered to be erroneous according to the
definition 2. It was considered in the lemma and shown that
the test oracle in this case does return negative verdict.

Let us consider the case |Ȳimpl| = |Ȳspec| = 0. Here the
main cycle of test oracle work is not executed, the condition
if |Ȳ ∗spec| 6= ∅ then return (false) is not satisfied too and the
test oracle returns positive verdict (true). The case of empty
sequences is understood as correct according to the definition
2. According to the induction rule of inference, let us suppose
that for the case |Ȳimpl| = |Ȳspec| = n test oracle returns
verdict correctly. Let us prove that the same situation takes
place if the numbers of elements in sequences are equal to
n + 1. According to the definition 2, defect can be found if
for each rearrangement π of set 1, . . . , n∃i ∈ 1, . . . , n, when

Type name Reaction pair Definition of type

NORMAL (rspec, rimpl) dataspec =
dataimpl & ifacespec =
ifaceimpl & timemin < time <
timemax

INCORRECT (rspec, rimpl) dataspec 6=
dataimpl & ifacespec =
ifaceimpl & timemin < time <
timemax

MISSING (rspec, NULL) @rimpl ∈ Rimpl \
Rnormal,incorrect

impl : ifacespec =
ifaceimpl & timemin < time <
timemax

UNEXPECTED (NULL, rimpl) @rspec ∈ Rspec \
Rnormal,incorrect

spec : ifaceimpl =
ifacespec & timemin < time <
timemax

TABLE I. REACTION CHECKER REACTION PAIR TYPES

[
y′i 6= yj
tj > t′i

t′i > tj + ∆tout

]
is satisfied, where j = π(i).

Let us remove last elements of sequences and make se-
quences where the numbers of elements are equal to n and to
which test oracle works correctly. Let us consider the case of
the following two removed reactions. Negative verdict can be
returned only in two cases: the first one is if Y now

missing 6= ∅
then return (false), the second one is if Y now

matched = ∅ then
return (false). The first case occurs only when t′i > tj +∆tout

according to the definition 2, and the second case takes

place only in when
[
y′i 6= yj
tj > t′i

]
according to the definition 2.

Therefore, test oracle returns negative verdict only when there
is erroneous reaction in any finite reaction sequences.

IV. DIAGNOSTICS SUBSYSTEM

Let reaction checker use two sets of reactions:
Rspec = {rspeci}

N
i=0 and Rimpl = {rimplj}

M
j=0.

Each specification reaction consists of four elements:
rspec = (data, iface, timemin, timemax). Each
implementation reaction includes only three elements:
rimpl = (data, iface, time). Notice that timemin and
timemax show an interval where specification reaction
is valid, while time corresponds to a single timemark:
generation of implementation reaction always has concrete
time mark.

The reaction checker has already attempted to match each
reaction from Rspec with a reaction from Rimpl, making a
reaction pair. If there is no correspondent reaction for either
specification or implementation ones, the reaction checker
produces some pseudo reaction pair with the only one reaction.
Each reaction pair is assigned with a certain type of situation
from the list normal, missing, unexpected, incorrect.

For given reactions rspec ∈ Rspec and rimpl ∈ Rimpl,
these types can be described as in Table I. Remember that
each reaction can simultaneously be located only in one pair.

The diagnostics subsystem has its own interpretation of
reaction pair types (see Table II). In fact, the subsystem
translates original reaction pairs received from the reaction
checker into new representation. This process can be described
as M ⇒ M∗, where M = {(rspec, rimpl, type)i} is a

Type name Reaction pair Definition of type

NORMAL (rspec, rimpl) dataspec = dataimpl

INCORRECT (rspec, rimpl) dataspec 6= dataimpl

MISSING (rspec, NULL) @rimpl ∈ Rimpl\Rnormal,incorrect
impl

UNEXPECTED (NULL, rimpl) @rspec ∈ Rspec \Rnormal,incorrect
spec

TABLE II. DIAGNOSTICS SYSTEM REACTION PAIR TYPES

set of reaction pairs marked with type from the list above.
M∗ = {(rspec, rimpl, type

∗)i} is a similar set of reactions
pairs but with different label system. It should be noticed that
these might be different M∗ dependent on the algorithm of
its creation (accounting for original order, strategy of reaction
pair selection for recombination, etc). This question will be
discussed after so called transformation rules are presented.

Having made reaction pair set, reaction matcher sends
it to the diagnostics subsystem to process them providing
verification engineers with explanation of problems having
occurred in the verification process. The diagnostics subsystem
is underlain with a special algorithm, consisting of consequent
application of the set of so called rules, each of which trans-
forms the reaction pairs. Some rules decrease the number of
pairs, having found pairs with correspondent implementation
and specification reactions, collapse them and write diagnostics
information into log-file. Other rules make it possible to
recombine reaction pairs for better application of rules from
the first type. The third part of rules uses special technique
to find similar reactions according to the distant function to
recombine the reaction pairs for better readability but do. The
distant function can be implemented in three possible ways. To
begin with, it may account the number of equal data fields in
two given messages. Second, Hamming distance may be used
as one can compare not only the fields but the bits of data
carried by the fields. The measure of closeness between two
given reactions is denoted as C(rspec, rimpl).

Each rule consists of one or several pairs of reactions.
In cases of missing of unexpected reactions, one of the pair
elements is undefined and called null. Each pair of reaction
is assigned with model interface. Left part of the rule shows
initial state and right part (after the arrow) shows result of the
rule application. If the rule is applied to several reaction pairs,
they are separated with comma. Now, let us review all these
twelve rules that we found.

Rule 1: If there is a pair of collapsed reactions, it should
be removed from the list of reaction pairs. (null, null)⇒ ∅.

Rule 2: If there is a normal reaction pair
(aspec, aimpl) : dataaspec

= dataaimpl
, it should be

collapsed. (aspec, aimpl)⇒ (null, null).

Rule 3: If there are two incorrect reaction
pairs (aspec, bimpl), (bspec, aimpl) : dataaspec

=
dataaimpl

& databspec = databimpl
, these reaction pairs

should be regrouped. {(aspec, bimpl), (bspec, aimpl)} ⇒
{(aspec, aimpl), (bspec, bimpl)}.

Rule 4: If there is a missing reaction pair and an unex-
pected reaction pair (aspec, null), (null, aimpl) : dataaspec =
dataaimpl

, they should be united into one reaction pair.
{(aspec, null), (null, aimpl)} ⇒ {(aspec, aimpl)}.

Rule 5: If there is a missing reaction pair and an
incorrect reaction pair (aspec, null), (bspec, aimpl) :
dataaspec = dataaimpl

, these reaction pairs should
be regrouped. {(aspec, null), (bspec, aimpl)} ⇒
{(aspec, aimpl), (bspec, null)}.

Rule 6: If there is an unexpected reaction pair and
an incorrect reaction pair (null, aimpl), (aspec, bimpl) :
dataaspec

= dataaimpl
, these reaction pairs should

be regrouped. {(null, aimpl), (aspec, bimpl)} ⇒
{(aspec, aimpl), (null, bimpl)}.

Rule 7: If there are two incorrect reaction
pairs (aspec, bimpl), (cspec, aimpl) : dataaspec

=
dataaimpl

, these reaction pairs should be
regrouped. {(aspec, bimpl), (cspec, aimpl)} ⇒
{(aspec, aimpl), (cspec, bimpl)}.

The rules 1-7 allow finding the closest reaction pairs.
The algorithm of their implementation is shown in 2 and 4
algorithms.

Action 2 match[(r1spec , r1impl
), (r2spec , r2impl

)]

Input: RP1 = (r1spec , r1impl
), RP2 = (r2spec , r2impl

)
for all rule number ∈ |NormalRules| do

if rules[rule number].isApplicable(RP1, RP2) then
return rule number

end if
end for
return 0

Action 3 fuzzy match[(r1spec , r1impl
), (r2spec , r2impl

), rule]

Input: RP1 = (r1spec , r1impl
), RP2 = (r2spec , r2impl

)
proximity metric⇐ 0
for all rule number ∈ |FuzzyRules| do

if (metric∗ = rules[rule number].metric(RP1, RP2)) >
proximity metric then

proximity metric⇐ metric∗

rule⇐ rule number
end if

end for
return proximity metric

Action 4 apply normal rules[{(rspec, rimpl)i}]
Input: {(rspec, rimpl)i}

for all r ∈ |{(rspec, rimpl)i}| do
if !r.collapsed then

for all p ∈ |{(rspec, rimpl)i|} do
if !r.collapsed&!p.collapsed then

if rule number = match(r, p) then
(rspeci+1

, rimpli+1
), (rspeci+2

, rimpli+2
)⇐

rules[rule number].apply rule(r, p)
r.collapsed⇐ true
p.collapsed⇐ true
return

end if
end if

end for
end if

end for

Action 5 apply fuzzy rules[{(rspec, rimpl)i}]
Input: {(rspec, rimpl)i}

for all r ∈ |{(rspec, rimpl)i}| do
if !r.collapsed then

metric∗ ⇐ 0
for all p ∈ |{(rspec, rimpl)i|} do

if !r.collapsed&!p.collapsed then
metric = fuzzy match(r, p, rule number)
if metric > metric∗ then

metric∗ ⇐ metric
rule number∗ ⇐ rule number
s1 ⇐ r
s2 ⇐ p

end if
end if

end for
if metric∗ > 0 then

(rspeci+1
, rimpli+1

), (rspeci+2
, rimpli+2

) ⇐
rules[rule number∗].apply rule(s1, s2)

s1.collapsed⇐ true
s2.collapsed⇐ true
return

end if
end if

end for

When the rules from the list of normal rules have been
applied, the sets Rspec and Rimpl does not contain any not
yet collapsed reactions with identical data. In this part of
diagnostics subsystem work the stage of fuzzy rules (See 3
and 5 algorithms) comes.

Rule 8: If there are two reaction pairs
{(aspec, bimpl), (b

′
spec, a

′
impl)} : c(aspec, a

′
impl) <

c(aspec, bimpl) & c(aspec, a
′
impl) < c(b′spec, a

′
impl) or

c(b′spec, bimpl) < c(aspec, bimpl) & c(b′spec, bimpl) <
c(b′spec, a

′
impl), where c is the selected distance

function and the value of c is the best amoung
other fuzzy rules, these reaction pairs should
be regrouped. {(aspec, bimpl), (b

′
spec, a

′
impl)} ⇒

{(aspec, a′impl), (b
′
spec, bimpl)}

Rule 9: If there are two reaction pairs
{(aspec, null), (null, a′impl)} and the value of the selected
distant function c = (aspec, a

′
impl) is the best amoung

other fuzzy rules, these reaction pairs should be regrouped.
{(aspec, null), (null, a′impl)} ⇒ {(aspec, a′impl)}

Rule 10: If there are two reaction pairs
{(aspec, null), (bspec, a′impl)} : c(aspec, a

′
impl) <

c(bspec, a
′
impl), where c is the selected distance

function and the value of c is the best amoung
other fuzzy rules, these reaction pairs should
be regrouped. {(aspec, null), (bspec, a′impl)} ⇒
{(aspec, a′impl), (bspec, null)}

Rule 11: If there are two reaction pairs
{(null, aimpl), (a

′
spec, bimpl)} : c(a′spec, aimpl) <

c(a′spec, bimpl), where c is the selected distance
function and the value of c is the best amoung
other fuzzy rules, these reaction pairs should be

regrouped. {(null, aimpl, null), (a
′
spec, bimpl)} ⇒

{(a′spec, aimpl), (null, bimpl)}
When all the metrics of fuzzy rules have been measured

and all the most suitable rules have been applied, the time of
the last rule comes.

Rule 12: If there is a reaction pair (aspec, a
′
impl) with both

specification and implementation parts, it should be collapsed.
(aspec, a

′
impl)⇒ (null, null).

The last rule allows transforming all the incorrect reaction
pairs to show the diagnostics for the whole list of reaction
pairs. Typically, after the application of each rule, the history
of transformation is traced and then it is possible to reconstruct
the parents of the given reaction pairs and all the rules they
are undergone. Such a reconstruction of the rule application
trace we understand as the diagnostics information.

V. IMPLEMENTATION

The proposed approach to development of test systems,
reference model construction, reaction correctness checking,
and diagnostics subsystem has been implemented in the open
source library C++TESK Testing ToolKit [4] developed by
ISPRAS. The library is developed in C++ language to be
convenient for verification engineers. It contains macros en-
abling the engineers to develop all the parts of the test systems
which should be done by hands. Some parts, like diagnostics
subsystem algorithm, are hidden inside of the tool.

Results of diagnostics work are shown each time after the
verification is over. Now they look like tables with all found
errors and results of rule application: new reaction pair sets
and the way of their obtaining.

VI. RESULTS

The C++TESK testing toolkit including diagnostics sub-
system has been used in the number of projects of industrial
microprocessor development in Russia. The aim of the all
approach is unit-level verification and on this level it can be a
competitor to widely used UVM mentioned in the introduction.

It might be shown by the following fact. Typically, we
started verification by means of C++TESK starts when the
whole system had been already verified by UVM-like ap-
proaches. In spite of power of UVM, it does not include means
to direct test sequence generation, which C++TESK does,
means of quick analysis of verification results as diagnostics
subsystem etc.

Results of application of different approaches depend on
the qualification of the engineers and their familiarity with the
approach. And on this point, we should say that our toolkit was
used by people now being close to its development kitchen and
despite it, they exactly managed to find those bugs we have
already mentioned.

VII. CONCLUSION

The proposed approach to simulation-based unit-level hard-
ware verification solves in some sense the task of dynamical
checking of hardware designs against their specifications. It
includes both means of specification development and diag-
nostics subsystem producing an explanation of incorrectness

on the base of special mechanism using formally represented
specifications and a list of explanatory rules.

The approach has been used in the number of projects
and shown its possibility to find defects and help verification
engineers to correct them by means of diagnostics information.

Our future research is connected with more convenient rep-
resentation of diagnostics results by means of wave-diagrams,
localization of found problems in source-code.

REFERENCES

[1] J. Bergeron, Writing Testbenches: Functional Verification of HDL Mod-
els. Kluwer Academic Pub, 2003.

[2] Unified verification methodology. [Online]. Available:
http://www.uvmworld.org

[3] M. Chupilko and A. Kamkin, “Specification-driven testbench develop-
ment for synchronous parallel-pipeline designs,” in Proceedings of the
27th NORCHIP, nov. 2009, pp. 1–4.

[4] C++tesk homepage. [Online]. Available:
http://forge.ispras.ru/projects/cpptesk-toolkit/

