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Abstract—Nested Petri nets is an extension of Petri net formal-
ism with net tokens for modelling multi-agent distributed systems
with complex structure. While having a number of interesting
properties, NP-nets have been lacking tool support. In this paper
we present the NPNtool toolset for NP-nets which can be used to
edit NP-nets models and check liveness in a compositional way.
An algorithm to check m-bisimiliarity needed for compositional
checking of liveness has been developed. Experimental results of
the toolset usage for modelling and checking liveness of classical
dinning philosophers problem are provided.

Index Terms—Petri nets, nested Petri nets, multi-agent systems,
compositionality, liveness

I. INTRODUCTION

In our world distributed, multi-agent and concurrent systems
are used everyday to the point that we don’t even notice them
working for us. Not only civilian and military air and water
carriers are equipped with hi-tech electronics and software,
but even laundry machines, microwave ovens, refrigerators,
air-condition systems and other implements are controlled by
distributed software.

In the great amount of research on defining parallel and
concurrent systems, in recent years a range of formalisms have
been introduced, modified or extended to cover agent systems.
One of such approaches, which gained widespread usage, is
Petri nets. One downside of the classical Petri nets formalism
is its flat structure, while multi-agent systems commonly
have complex nested apparatus. This prevents us from easily
specifying models of multi-agent systems in a natural way.
The solution to this problem was found by R. Valk [12]], who
originated the net-within-nets paradigm. According to the nets-
within-net paradigm [L1], the tokens in a Petri net can be nets
themselves. Usually, there is some sort of hierarchy among the
networks: there is a system net, the top level network, and all
other nets are assigned each to their initial place, providing
us with the hierarchy of the nets in one big higher-order net.

One of the non-flat Petri net model is Nested Petri nets [9],
[10], [7]. In nested Petri nets (NP-nets), there is a system net,
in some places of which element nets resign, in the form of
net tokens. NP-nets have internal means of synchronization
between element nets and the system net.
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But the application and evolution of the formalism is
hampered by the lack of tool support So far, there are
no instruments (simulators, model checker software) which
provide any kind of support for the nested Petri nets formalism.
In this paper we present our newly developed project NPNtool

The paper is organized as follows. To start with, we give
some necessary foundations of Petri nets and nested Petri
nets. After that we describe our toolset (both frontend and
backend). We describe a simple experiment we’ve conducted
and conclude the paper with the directions of future research.

II. PETRI NETS

In literature, there is a variety of definitions for Petri nets,
a common one would be the following.

Definition 1. A Petri net (P/T-net) is a 4-tuple (P, T, F,W)
where
e P and T are disjoint finite sets of places and transitions,
respectively;
o« FC(PxT)U(T x P) is a set of arcs;
e W: F — N\O0 - an arc multiplicity function, that is, a
function which assigns every arc a positive integer called
an arc multiplicity.

A marking of a Petri net (P, T, F,W) is a multiset over P,
i.e. a mapping M : P — N. By () we denote a set of all
markings of a P/T-net V.

We say that transition ¢ in P/T-net N = (P,T,F,W) is
active in marking M iff for every p € {p | (p,t) € F}:
M(p) > W (p,t). An active transition may fire, resulting in a
marking M’, such as for all p € P: M'(p) = M (p) — W (p,t)
itpe{p|(pt) € F}, M'(p) = M(p) — Wi(p,t) + W(t,p)
if pe{p]| (t,p) € F} and M'(p) = M(p) otherwise.

However, for our purpose we use a definition in algebraic
representation. Firstly, we define a low-level abstract net

Definition 2. A Low-level Abstract Petri Net is a 4-tuple
(P, T, pre, post) where

o P and T are disjoint finite sets of places and transitions,
respectively;

e pre:T — N(P) is a precondition function;

e post : T — N(P) is a postcondition function;



Here, N : Set — Set is a functor, defined by N = G o F,
where F' is a functor from the category of sets to the category
of some structures Struct and G is a forgetful functor from
Struct to Set.

Using this concept we can define P/T net as a low-level
abstract Petri net where Struct is the category of commutative
monoids and F' maps each set = to a free monoid F'(z) over
2l

This definition suggests for a straightforward embedding in
Haskell:

data Net p t n m = Net

{ places Set p

, trans Set t

, pPre :: t => n p

, post t =>np

, initial :: mp

}
type PTNet = Net PTPlace Trans MultiSet MultiSet
type PTMark = MultiSet PTPlace
type PTTrans = Int
type PTPlace = Int

III. NESTED PETRI NETS

In this section we define nested Petri nets (NP-nets) [9)]. For
simplicity we consider here only two-level NP-nets, where net
tokens are usual Petri nets.

Definition 3. A nested Petri net is a
(Atom, Expr,Lab, SN,(ENy, ..., ENy)) where

o Atom = VarU Con — a set of atoms;

o Lab is a set of transition labels;

e (ENy,...,ENy), where k > 1 — a finite collection of
P/T-nets, called element nets;

e SN = (Psn,Tsn, Fsn,v,W,A) is a high-level Petri
net where

tuple

— Psy and Tsy are disjoint finite sets of system
places and system transitions respectively;

- Fsn C (Psy x Tsn) U (Tsy x Psy) is a set of
system arcs;

- UZPSN—){EN]_,..
function;

- W : Fsgn — Expr is an arc labelling function, where
Expr is the arc expression language;

- A : Tsy — Lab U {7} is a transition labelling
function, T is the special “silent” label;

., EN}U{e} is a place typing

The arc expression language Expr is defined as follows.

o Con is a set of constants interpreted over A = A, .;U{e}
and Anee = {(EN,m) | 3 = 1,...,k : EN =
EN;;m € IM(EN;)}, ie. Aper is a set of marked
element nets, A is a set of element nets with markings
and a regular black token e familiar to us from flat Petri
nets (see section above);

e Varis a set of variables, we use variables z, ¥, z to range
over Var.

ISince there is no commutative monoid datatype in Haskell, we use
(isomorphic) representation via multisets.

Definition 4. Expr is a language consisting of multisets over
Con U Var.

The arc labeling function W is restricted in such way that
constants or multiple instances of the same variable are not
allowed in input arc expressions of the transition, constants
and variables in the output arc expressions should correspond
to the types of output places, and each variable in an output
arc expression of the transition should occur in one of the
input arc expressions of the transition.

We use notation like © + 2y + 3 to denote multiset
{2,9,y,0,0,0}.

A marking M in an NP-net NPN is a function mapping
each p € Psy to some (possibly empty) multiset M (p) over
A.

Let Vars(e) denote a set of variables in an expression
e € Expr. For each t € Tgy we define W(t) = {W(z,y) |
(x,y) € Fsy A (x =tV y =t)} - all expressions labelling
arcs incident to .

Definition 5. A binding b of a transition t is a function b :
Vars(W (t)) — A, mapping every variable in the t-incident
arc expression to some value.

We say that a transition ¢ is active w.r.t. a binding b iff

Vpe{p| (pt) € Fsn}:b(W(p,t)) € M(p)

An active transition may fire (denoted M ﬂ M) yielding a

new marking M'(p) = M(p) — b(W (p,t)) + b(W (¢,p)) for
each p € Pgy.

A behavior of an NP-net consists of three kinds of steps:
system-autonomous step, element-autonomous step and syn-
chronization step.

o An element-autonomous step is a firing of a transition in
one of the element nets, which abides standart firing rules
for P/T-nets.

e A system-autonomous step is a firing of a transition,
labeled with 7, in the system net.

o A (vertical) synchronization step is a simultaneous firing
of a transition, labeled with some A\ € Lab, in a system
net together with firings of transitions, also labeled with
A, in all net tokens involved in (i.e. consumed by) this
system net transition firing.

IV. USER INTERFACE

The modelling tool of the toolset consists of the meta-
model of NP-nets and the tree-based editor which supports
editing of NP-nets models. This tool is implemented via well-
known modelling framework and code generation facility EMF
(Eclipse Modeling Framework). The core of any EMF-based
application is the EMF Ecore metamodel which describes
domain-specific models. The crucial part of the developed NP-
nets metamodel is depicted in fig. |1l The root element of the
model is the instance of PetriNetNestedMarked class which
represents marked NP-nets. TokenTypeElementNet class rep-
resents element nets. NetConstant class represents net con-
stants which bound constants with marked element nets at the



time of NP-net model construction. We omit here the technical
details of the remaining part of the metamodel. The metamodel
resembles the formal definition of NP-nets given in section [[TI}

The Tree-based editor for the developed metamodel is
generated from the Ecore metamodel via EMF codegenerators
and modified for the model specific needs. The editor takes
care of standard model editing procedures like move, copy,
delete, or create fragments of a model and provides undo/redo
and serialization/deserialization support.

A NP-net model can be serialiazed into XMI (XML Meta-
data Interchange) representation via the standard serialization
mechanism of EMF. Serialized XMI documents are exported
to the Haskell backend which carries out analysis procedures.

V. BACKEND

The backend for the tool is written in Haskell [5] and
consists of the following parts:

o A library for constructing flat Petri nets;

o A library for constructing nested Petri net;

o Algorithms for checking compositional liveness of nested
Petri nets [3];

e A CTL model checker for classical Petri nets;

o Communication layer.

We also make use of a number of GHC extensions which
enrich the Haskell’s type system.

A. Import

There are two ways to load models into the library: to load
the XML file generated by the frontend or to construct the
model using specialised library (see section [V-B].

For parsing input we use the HXT [6] library based on
Arrows [8]]. We process the definitions into a NPNConstr
code which is later converted to NP-net.

B. Dynamic construction

Libraries for dynamic construction of Petri nets are used in
all the other modules of the system. To understand why they
are useful, let’s take a look at the straightforward definition of
a Petri net using the datatype described in the section

pnl PTNet
pnl = Net { places = Set.fromList [1,2,3,4]
, trans = Set.fromList [tl,t2]
, pre = \ (Trans x) -> case x of
"t1" —=> MSet.fromList [1,2]
"t2" —=> MSet.fromList [1]
, post = \ (Trans x) —-> case x of
"t1" —=> MSet.fromList [3,4]
"t2" => MSet.fromList [2]
, initial = MSet.fromList [1,1,2,2]
t
where tl1 = Trans "t1"
t2 = Trans "t2"

However, it does get tedious after a while to write out all
the nets this way. In addition, such approach is not modular or
compositional. We’ve included a library with simple monadic
interface for constructing P/T-nets.

The module PTConstr includes a monad PTConstrM 1
which is used for constructing P/T-nets, which transitions

might be labelled with 1. Among others it also includes the
following functions:

mkPlace PTConstrM 1 PTPlace
mkTrans PTConstrM 1 PTTrans
label PTTrans -> 1 -> PTConstrM 1 ()

used for creating places and labelling transitions. In order to
have more slick API we use Type Families [1] for providing
the interface for arc construction:
class Arc k where

type Co k :: =

arc :: k => Co k => PTConstrM 1 ()
instance Arc Trans where

type Co Trans = PTPlace

arc =
instance Arc PTPlace where

type Co PTPlace = Trans

arc =

This allows us to uniformly use arc for constructing arcs
both from transitions to places and from places to transitions,
as shown in the example:

pn3 PTNet
pn3 = run \$ do
[tl,t2] <- replicateM 2 mkTrans
[pl,p2] <— replicateM 2 mkPlace
label t1 "L1"
arc pl tl
arc pl t2
arc tl p2
arc t2 p2

Furthermore, this allows us to take advantage of type
polymorphism and define functions such as
arcn Arc k => k => Co k -> Int -> PTConstrM 1
arcn a b n = replicateM_ n \$ arc a b

Similar library for constructing nested Petri nets -
NPNConstr — also has facilities for lifting PTConstrM code
into NPNConst rM monad, which allows for better code reuse.

C. Algorithms

Algorithmically we have implemented a CTL model checker
(as shown in [2]) with memoization, algorithm for determin-
ing the existence of m-bisimilarity (the algorithm is shown
Appendix A) and liveness algorithms (as shown in [4]) which
are used for checking liveness in a compositional way.

Definition 6 (Liveness). A net N is called live if every
transition t in its system net is live, eg: Ym € 9M(N).Jo €
T*m S m/ Am' S m/ Ates

Theorem 1. Let NPN be a marked NP-net with a system net
SN and initial marking mg. Let also NPN satisfy the following
conditions:

1) (SN, mq |sn) is live (if considered as a separate compo-
nent);

2) all net tokens in mq and all net constants in every arc
expression in NPN are live (if considered as separate
components);

3) for each net token o in my, residing in a place p, o (if
considered as a separate component) is m-bisimilar to
the a-trail net of p.
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Then (NPN,my) is is live.
Walk

For proof of this theorem, definition of a-trail net and
algorithm for its construction see [3]. In out project we’ve
implemented the a-trail net construction algorithm and devel-
oped the m-bisimilarity checking algorithm (see section [A).

VI. EXPERIMENT

For our experiment we decided to check liveness in a
compositional way [3] on the following examples: the example
net from [3]] was checked instantly, due to it’s facile structure.

We’ve decided to test our tool on the classical problem
of dining philosophers extended with the ability of philoso-
phers to walk: walking philosophers. In our modification
philosophers are modeled as separate agents who may exist
in different states. Thinking is an important philosophical
activity, but who would turn down an opportunity to have a
nice walk after a pleasant meal? Therefore philosophers can
be either thinking, walking or eating.

Walking Thinking

D/

Return

FEating

Fig. 2. philAgent - A net token representing a single philosopher

Walking FEating

Fig. 3.

lastPhil Agent - A net token representing the last philosopher

Given a table with n philosophers and n forks, a net,
modeling the first n — 1 philosophers is shown in figure
However, the n-the philosopher is left-handed, and his net is
a little bit different (see Fig. [3).



Fig. 4. phil - A portion of net representing a philosopher and his right fork

The system net consists of a number of repeated pieces.
First n — 1 pieces are shown in Fig. [4| and connected in the
following way: for each ¢ there is an arc from Fork;y; to
Pickg, and an arc from Put; to Fork;;;. The last piece
looks somewhat differently (see Fig. [5) and have arcs from
Fork; to Pickr,, and from Put, to Fork;.

Fig. 5. lastPhil - A portion of net representing the last philosopher and
his right fork

This system modeled via both interfaces. Firstly the system
of 5 philosophers modelled via the frontend modeling tool. We
also use API of the backend to automatically generate several
system instances with different amount of philosophers and
check their liveness.

Due to the modular nature of this task, it was easy to encode
it using the construction library from the previous section. The
code for the problem is shown in the appendix.

We’ve verified the compositional liveness of the system for
n =3,5,7,11 and got the following results:

Number  of 3 5 7 11
philosophers

Mean execu- | 8.23ms | 1449ms | 2.17s | 415.5s
tion time

The tests were performed using the criterion library on
the 1.66GHz machine with 993mb RAM running Linux 3.5.0.
The data was collected from 20 samples for each test.

VII. CONCLUSIONS AND FURTHER WORK

In this paper we have presented NPNtool — a support pro-
gram for nested Petri nets formalism, capable of modeling NP-
nets, checking them for liveness in a compositional way, model
checking separate components for CTL specifications. We
have also developed an algorithm for checking m-bisimilarity
needed for liveness. The toolset can be used in both ways - to
create and check models with the usage of the NP-nets editor
and with the usage of the Haskell-based backend APL

The case study was presented in which we showed how to
model NP-nets in a modular way, by modeling a “walking
philosophers” problem and testing our tool against it.

Our future works directions includes: implementing a nCTL
model checker, implementing a remote simulator. Tree based
editor is pretty convenient to create or modify a model,
however it is not very helpful to get quick overview of the
model or its fragment. So the next step is to implement
graphical editor of NP-nets diagrams.

We also intend this tool to be used as a framework for
implementing algorithms on nested Petri nets.

APPENDIX A
ALGORITHM FOR CHECKING M-BISIMILARITY

Algorithm 1: mBisim — checking for existence of a m-
bisimilarity relation

Data: Two nets pt;, pto with their labelling functions
l1,l2 and initial markings mq,ms. R of type
M(pt1) x M(pts) is a relation we are building
(initially empty).

Result: True if nets are m-bisimilar, False otherwise

begin

if (m1,m2) € R then

L return True

Tsy < {t |t € trans(ptl) A enabled(pt1,m1,t)}

Tsy < {t |t € trans(pt2) A enabled(pta, m2,t)}

insert (m1,m2) in R

for t € T'sy do

|+ ll(t)
m} « fire(pty,my,t)
nodes < {n | n € M(pta) A mq KN n}
if null(nodes) then
L return False
return A{mBisim(ptl, pt2,11,12,m}, m}, R) |
| mb € nodes}

for t € T'sy do

| lg (t)

mh < fire(pty, ma,t)

nodes < {n | n € M(pt1) A my N n}

if null(nodes) then

L return False

return A{mBisim(ptl,pt2,11,12,m}, m}, R) |

mb € nodes}




The algorithm is implemented using the
StateT (Set (PTMark,PTMark)) Maybe monad
which allows for a more or less direct translation of the above
code.

APPENDIX B
WALKING PHILOSOPHERS

import NPNTool.PTConstr
import NPNTool.NPNConstr
(arcExpr, 1iftPTC, liftElemNet
, addElemNet, NPNConstrM)
import qualified NPNTool.NPNConstr as NPC

—— Labels
data ForkLabel = PickR | PickL | Put
deriving (Show, Eq,Ord)
—-— Variables
data V = X —- we only need one
deriving (Show, Eq, Ord)

—-— Code for a single philosopher-agent
philAgent PTConstrM ForkLabel ()
philAgent = do

—— Code for the n-th philosopher
lastPhilAgent PTConstrM ForkLabel
lastPhilAgent = do

0

-— returns (Fork i,PickI,_i,Put_1)

phil NPNConstrM
ForkLabel V (PTPlace, Trans, Trans)
phil = do
[fork,pl,p2,p3] <— replicateM 4 NPC.mkPlace

[pickL,pickR,put] <- replicateM 3 NPC.mkTrans
—-— get the philAgent token

agent <— liftElemNet philAgent

let x = Var X

NPC.label pickL PickL

NPC.label pickR PickR

NPC.label put Put

—-— mark the Fork position with a single token
NPC.mark fork (Left 1)

—-— mark the philosopher position with an agent
NPC.mark pl (Right agent)

NPC.
NPC.
NPC.
NPC.
NPC.
NPC.
NPC.
NPC.

arc fork pickR
arcExpr pl x pickR
arcExpr pickR x p2
arcExpr p2 x pickL
arcExpr pickL x p3
arcExpr p3 x put
arcExpr put x pl
arc put fork
return (fork,pickL,put)
lastPhil

lastPhil = do

—> NPNConstrM ForkLabel V ()

cyclePhils Int
cyclePhils n = do

(forkl,pickLl,putl) <- phil

(pickL, put) <- midPhils (n-2)
(forkLast,pickLLast,putLast)
lift $ do
NPC.arc
NPC.arc
NPC.arc
NPC.arc

(pickLl, putl)
<— lastPhil

put forkLast
forkLast pickL
forkl pickLLast
putLast forkl
midPhils Int -> (Trans, Trans)
—> NPNConstrM ForkLabel V
midPhils n interf | n == 0 = return interf
| otherwise = do
(pl,put) <= midPhils (n-1) interf
(f’,pl’,put’) <- phil
NPC.arc put f’ >> NPC.arc f’
return (pl’,put’)

pl

Int —-> NPNet ForkLabel V Int
NPC.run (cyclePhils n) NPC.new

diningPhils
diningPhils n =
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