One Approach to Aspect-
Oriented Programming
Implementation for the C
Programming Language

Evgenij Novikov
PhD student

Institute for System Programming, RAS
joker@ispras.ru

Ekaterinburg, 2011

Aspect-oriented programming (1)

= Source code of a program

lock (res) ;

if (func())
goto exit after error;

unlock (res) ;

exit_aftep_error:

Aspect-oriented programming (2)

= Source code of a program

join points

/

lock (res) ;

if (func/(
goto exit after error;

unlock (res) ;

exit_aftep_error:

Aspect-oriented programming (3)

= Source code of a program

join points

/

lock (res) ;

if (func/(
goto exit after error;

unlock (res) ;

exit_aftep_error:

Aspect

before: call (
int lock (lock t))
{

lock our();

}

before: call (
int unlock (lock t))
{

unlock our();

}

Aspect-oriented programming (4)

= Source code of a program = Aspect
o _ advices pointcuts
Jjoin points
7

before: ca11/(
int lock (lock/ t))

{ advice bodies
lock our() ;| /|

/

lock (res) ;

if (func/(
goto exit after error; }
. before: call (

unlock (res) ; int unlock (lock /t))

{

exit after error: unlock our();

}

Instrumentation in AOP

= |nstrumented source code ofa = Auxiliary routines
program

o int lock aux(lock t a)
lock aux(res); {

. lock our();
1f (func()) return lock(a);
goto exit after error; }
int unlock aux(lock t a)
unlock aux(res); {

unlock our();
exit after error: return unlock(a);

AOP implementation

= AOP implementation depends on a
programming language

= Different AOP implementations for a given
programming language

= determine their own syntax for AOP constructions

= use different ways for source code instrumentation

Specific requirements of C

= Preprocessing
= macro expansion and header files including as join points

= Compilation

= a lot of “standard” join points like function calls, variable usage, ...

= specific join points concerned with pointer operations of C

= Linking
= different object files to be linked shouldn’t contain the same
defined symbols

Requirements of real application

= Support the standard C with all GNU extensions
= Offer a large set of AOP constructions

= Generate Instrumented C source code
equivalent to the original one

= Rather easy maintenance

Related work

ACC InterAspect SLIC
“Preprocessing” - - -
“Compilation”
“Linking” - - +
C with GNU n
extensions
C output —+ - +
Maintenance - +

10

Suggested approach (1)

= Aspect preprocessing (15t stage)

Initial source code

Aspect

lock (res) ;

unlock (res) ;

before: file (
Sthis)

{

#include “aux.h”
int lock flag = 0;
}

Resulting source code

#include “aux.h”
int lock flag = 0;

lock (res) ;

unlock (res) ;

11

Suggested approach (2)

= Macro weaving (2"9 stage)

Source code Aspect Preprocessed source code
#define LOCK (t) .. around: define ("
#define UNLOCK (t) LOCK (t)) lock our();
unlock (t) { -
" lock our() unlock (res) ;
LOCK (res) ; }

+
[

UNLOCK (res) ;

12

Suggested approach (3)

= Advice weaving (3" stage)

Preprocessed source code

lock (res) ;

unlock (res) ;

Aspect

before: call
int lock
(lock t))
{

lock our();

}

(

Resulting source code

lock (res) ;
unlock (res) ;

int lock aux 1
(loct t a) {
lock our();
return lock (a);

}

13

Suggested approach (4)

= Compilation (4th stage)

Preprocessed source code

lock (res) ;
unlock (res) ;

int lock aux 1
(loct t a) {
lock our();
return lock(a);

}

Aspect

before: call
int lock
(lock t))
{

lock our();

}

(

Resulting source code*

lock aux 1 (res);
unlock (res) ;

int lock aux 1
(loct t a) {
lock our();
return lock(a);

}

*In fact object code
14

Suggested approach (5)

» Linking and C code generating (final stages)

Source code*

lock aux 1 (res);

int lock aux 1
(loct t a) {
lock our();
return lock(a);

/

Linked file

Content of

is not shown

this binary file

/

*In fact object code

2N
/i;ck_aux_Z(res);

int lock_aux_2 -

void lock our() {
check (lock flag);
return lock(a):;

}

Resulting source code**

lock aux 1 (res);
lock _aux 2 (res);

int lock aux 1
(loct t a) {
lock our();
return lock(a);

}

int lock aux 2 ..

void lock our() {
check (lock flag);
return lock(a);

}

**In fact it looks quite unlike

15

Approbation

= Drivers of Linux kernel 2.6.31.6 were instrumented by
means of a tool implementing the suggested approach
= a model concerned with mutex lock/unlock rule was used
= almost all 2160 modules were processed successfully

= Subsequent static verification showed that the tool behaves
rather well
= more memory is required in comparison with manual instrumentation
= generated constructions are even simpler as original ones

= Generated source code is too inconvenient for static
verifiers and analysis

16

Conclusion

It was developed the new approach of C AOP
Implementation that covers specific requirements of both
the C programming language and real AOP application

The tool implementing the suggested approach
successfully works

It is required a new way to generate C source code

More AOP constructions like C pointer operations should
be supported

17

Thank you!
Questions?

http://forge.ispras.ru/projects/ldv
joker@ispras.ru

18

drivers/pci/hotplug/fakephp.c

if

if

(preprocessed)

(strict strtoul (buf, 0, &val)
return -22;

(val)

pci rescan bus(slot->dev->bus);

fakephp.ko.linked.cbe.c
blast must tmp 85 = *(&llvm cbe buf addr);

blast must tmp 86 = strict strtoul(blast must tmp 85,
Ou, (&llvm cbe val));

if ((((signed int)blast must tmp 86) < ((signed int
)0u))) -
goto llvm cbe bb;
else
goto 1llvm cbe bbl;
llvm cbe bb:
*(&1lvm cbe tmp 73) = 18446744073709551594ull;
goto 1llvm cbe bb5;
llvm cbe bbl:
blast must tmp 87
blast must tmp 88
blast must tmp 89
if ((blast must tmp 87
goto llvm cbe bb2;
else
goto 1llvm cbe bb3;
llvm cbe bb2:
blast must tmp 90 = *((&blast must tmp 89->fieldl));

blast must tmp 91 =
pci rescan bus(blast must tmp 90);

llvm cbe bb3:

*(&1llvm cbe val);
*(&1llvm cbe slot);
(
!

*((&blast must tmp 88->fieldl));
= Oull))

19

