
Introduction

Model checking approach to the correctness
proof of complex systems

Marina M. Alekseeva, Ekaterina A. Dashkova

First-year Masters of Information Systems Chair
Yaroslavl State University

10th May 2011

Marina M. Alekseeva, Ekaterina A. Dashkova Model checking approach to the correctness proof of complex systems



Introduction

Outline

1 Introduction
Model-checking
Automata-based programming
Conclusion

Marina M. Alekseeva, Ekaterina A. Dashkova Model checking approach to the correctness proof of complex systems



Introduction
Model-checking
Automata-based programming
Conclusion

Introduction

Correctness of Information and Communication
Technology (ICT) systems is the background for their
safety.

The key instrument for design process is verification
techniques.

Model checking is one of various verification techniques.

Marina M. Alekseeva, Ekaterina A. Dashkova Model checking approach to the correctness proof of complex systems



Introduction
Model-checking
Automata-based programming
Conclusion

Outline

1 Introduction
Model-checking
Automata-based programming
Conclusion

Marina M. Alekseeva, Ekaterina A. Dashkova Model checking approach to the correctness proof of complex systems



Introduction
Model-checking
Automata-based programming
Conclusion

Model-checking

The accurate modeling of systems often leads to the
discovery of incompleteness, ambiguities, and
inconsistencies in informal system specifications.

The system model is usually automatically generated from
a model description that is specified in some appropriate
dialect of programming or hardware description languages.

Models are mostly expressed using finite-state automaton,
consisting of a finite set of states and a set of transitions.

Simulation can be used effectively to get rid of the simpler
category of modeling errors.

Marina M. Alekseeva, Ekaterina A. Dashkova Model checking approach to the correctness proof of complex systems



Introduction
Model-checking
Automata-based programming
Conclusion

Outline

1 Introduction
Model-checking
Automata-based programming
Conclusion

Marina M. Alekseeva, Ekaterina A. Dashkova Model checking approach to the correctness proof of complex systems



Introduction
Model-checking
Automata-based programming
Conclusion

Types of programming systems

Transforming systems

Finite automaton in programming traditionally used in design of
compilers. In this situation automaton is understood as some
calculating feature which has an input line and output line.

Reactive systems
In this case automaton is a device that has several parallel
input lines (often binary), on which in real time the signals from
the environment is coming. Processing such kind of signals,
automaton is forming values for several parallel outputs.

Marina M. Alekseeva, Ekaterina A. Dashkova Model checking approach to the correctness proof of complex systems



Introduction
Model-checking
Automata-based programming
Conclusion

"Complex behavior"

compilers,

archivators,

telecommunication systems,

systems of control and managing of physical devices.

Transition systems (TS) are fundamental instrument for
modeling software and hardware systems.

Marina M. Alekseeva, Ekaterina A. Dashkova Model checking approach to the correctness proof of complex systems



Introduction
Model-checking
Automata-based programming
Conclusion

Example

Figure: A simple transition system

Marina M. Alekseeva, Ekaterina A. Dashkova Model checking approach to the correctness proof of complex systems



Introduction
Model-checking
Automata-based programming
Conclusion

Example

The state space is S = {pay , select , tea, coffee}.

Act is a set of actions:
Act = {insert_coin,get_tea,get_coffee, τ}.

AP is a set of atomic propositions.

TS is called finite if S, Act, and AP are finite.

Marina M. Alekseeva, Ekaterina A. Dashkova Model checking approach to the correctness proof of complex systems



Introduction
Model-checking
Automata-based programming
Conclusion

Outline

1 Introduction
Model-checking
Automata-based programming
Conclusion

Marina M. Alekseeva, Ekaterina A. Dashkova Model checking approach to the correctness proof of complex systems



Introduction
Model-checking
Automata-based programming
Conclusion

Results

The Model Checking approach was applied for verification
of the error control algorithm.

Simulation was used to improve modeling results.

Incompleteness of the algorithm was discovered as well as
some mistakes during realization process.

Marina M. Alekseeva, Ekaterina A. Dashkova Model checking approach to the correctness proof of complex systems



Introduction
Model-checking
Automata-based programming
Conclusion

Results (con.)

Parameters were used in the model:

Pam - amount of packets in a group.

timeout - on the SENDER side

tr , (ts) - is the interval between consecutive packets of the
group which are received by the RECEIVER (SENDER).

Marina M. Alekseeva, Ekaterina A. Dashkova Model checking approach to the correctness proof of complex systems



Introduction
Model-checking
Automata-based programming
Conclusion

Conclusion

Theory of programming even in the 1968 openly accepted
the crisis of software development.
Theoreticians and practitioners of software underline that
the crisis of methods of the development of software shows
mainly during the design of the systems with complex
behavior.
Automata-based approach can deal with this problem.

Marina M. Alekseeva, Ekaterina A. Dashkova Model checking approach to the correctness proof of complex systems



Introduction
Model-checking
Automata-based programming
Conclusion

The bibliography

Anikeev M., Madlener F., Schlosser A., Huss S.A., Walter
C., ”Automated Correctness Proof of Algorithm Variants in
Elliptic Curve Cryptography”
Baier Christel, Katoen Joost-Pieter. ”Principles of Model
Checking”
Egor V. Kuzmin, ”Introduction to the theory of mathematical
processes and structures”
N.I. Polikarpova, A.A. Shalyto, ”Automata-based
programming”

Marina M. Alekseeva, Ekaterina A. Dashkova Model checking approach to the correctness proof of complex systems


	Introduction
	Model-checking
	Automata-based programming
	Conclusion


