
Static Verification “Under The Hood”:
Implementation Details and Improvements of

BLAST

Pavel Shved1 Vadim Mutilin1 Mikhail Mandrykin2

1Institute for System Programming, RAS

2Moscow State University

Sprint Young Researchers’ Colloquium on Software Engineering
12 May 2011

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

“Heavyweight” Static Program analysis

Static analysis — checking programs against specific properties
without executing them (by their source or machine code).
Features:

+ all possible inputs are checked
+ certain methods can prove the program correct
− expressiveness of checkable programs is limited

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Linux Driver Verification challenge

The aim is to statically verify Linux Kernel device drivers against
Kernel core interface.

+ no actual equipment is necessary
+ driver source code is not too complex for static analysis
− there is a lot of drivers
! static checker should be fast and yield few false positives

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Overview of BLAST

BLAST — “Berkeley Lazy Abstraction Software verification Tool”.
Developed in 2002 by Henzinger, Jhala, and Majumdar. Introduced
in their “Lazy Abstraction” paper.

BLAST tries to solve reachability problem: given
a source code of a C program
an entry point, i. e. a name of the “main function”
an error location, i. e. a name of a label

report if there exists a valid path from the entry point to the error
location.

Which means it may verify safety properties with inserted
assertions:

void assert(bool condition)
{ if (! condition)

ERROR: goto ERROR;
}

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Overview of BLAST

BLAST — “Berkeley Lazy Abstraction Software verification Tool”.
Developed in 2002 by Henzinger, Jhala, and Majumdar. Introduced
in their “Lazy Abstraction” paper.

BLAST tries to solve reachability problem: given
a source code of a C program
an entry point, i. e. a name of the “main function”
an error location, i. e. a name of a label

report if there exists a valid path from the entry point to the error
location.

Which means it may verify safety properties with inserted
assertions:

void assert(bool condition)
{ if (! condition)

ERROR: goto ERROR;
}

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

The approach used in BLAST

Keywords: “lazy cartesian predicate abstraction CEGAR of C
programs with Craig interpolation”:

input is a C source code:
no spec is necessary (one assert() is enough!)
undefined funcitons are treated as pure

auto abstraction — automatically creates an “abstract
model” of a program just precise enough to prove
inreachability (if it’s the case)
precise elaboration of potential errors: feasibility in the
“abstract model” is not enough to claim it’s an error!
counterexample-based refinement: deduce properties to
watch for from the ruled out error traces
path-specific analysis: not just annotates the CFG, but
explores all possible paths

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

BLAST as a tool

BLAST as a tool features:

configurable analysis — supports (limited) modularity
utilizes external tools such as SAT Solvers and Interpolating
Provers
open-source implementation in OCaml, an expressive
compileable language

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

The other side of BLAST

In theory it looks good, but in practice (Linux Driver Verification):

BLAST was slow
BLAST couldn’t parse the Linux Kernel’s source code (at all)
BLAST relied on obsolete tools

Our aim was to overcome these difficulties, retaining all the
features.

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

The other side of BLAST

In theory it looks good, but in practice (Linux Driver Verification):

BLAST was slow
BLAST couldn’t parse the Linux Kernel’s source code (at all)
BLAST relied on obsolete tools

Our aim was to overcome these difficulties, retaining all the
features.

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Input source code

BLAST transforms the program into a set of per-function
control-flow automata (or, graphs).

parse errors — updated and patched C frontend
(improved from 0% to 95%)
overspecification — too slow if all undefined functions are
found

option to limit function call depth (unsound, but lets us find
bugs, at least)

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Specifying properties

Safety properties are found in the program or instrumented into it.
Assertions (“if it doesn’t hold, there’s a bug”):

void assert(bool condition)
{ if (! condition) ERROR: goto ERROR; }

Preconditions (“we assume this is true”):

void assume(bool condition)
{ if (! condition) NOT_ERROR: goto NOT_ERROR; }

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Specifying properties

Safety properties are found in the program or instrumented into it.
Assertions (“if it doesn’t hold, there’s a bug”):

void assert(bool condition)
{ if (! condition) ERROR: goto ERROR; }

Preconditions (“we assume this is true”):

void assume(bool condition)
{ if (! condition) NOT_ERROR: goto NOT_ERROR; }

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Precise analysis of error trace

Check: is “path formula” (conjunction of local post-conditions along
a potential error path) satisfiable?

Path formula is laid out in an internal format, then converted for an
external solver to check (and not once for each path!)

tight optimization: a better code makes the difference
caching: reuse already converted parts of the folmula

Result: conversion speedup approached 1000 times; Total: 20%
(Amdhal’s law).

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Precise analysis of error trace

Check: is “path formula” (conjunction of local post-conditions along
a potential error path) satisfiable?

Path formula is laid out in an internal format, then converted for an
external solver to check (and not once for each path!)

tight optimization: a better code makes the difference
caching: reuse already converted parts of the folmula

Result: conversion speedup approached 1000 times; Total: 20%
(Amdhal’s law).

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Precise analysis of error trace

Check: is “path formula” (conjunction of local post-conditions along
a potential error path) satisfiable?

Path formula is laid out in an internal format, then converted for an
external solver to check (and not once for each path!)

tight optimization: a better code makes the difference
caching: reuse already converted parts of the folmula

Result: conversion speedup approached 1000 times; Total: 20%
(Amdhal’s law).

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Using external SAT Solver

BLAST’s default was Simplify solver (proprietary, not maintained).
We tried CVC3 SMT solver instead. To make it work, we

removed formula simplification from BLAST code:
modern optimized solvers do it much faster

tuned solver for less precision, as BLAST may accept
“unknown” as “UNSAT”. Improved memory usage (50M
instead of 4G)

patched solver to improve its speed and compatibility

Now BLAST uses open-source, free CVC3 solver, and the
conversion overhead is small.

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Predicate discovery

The path formula undergoes several Craig interpolations, with
cut-points between each pair of statements.

Sample program:

int main()
{

int x=0;
int y=5;

/* statements */
/* statements */
/* statements */

if (x>1){
error ();

}
}

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Predicate discovery

The path formula undergoes several Craig interpolations, with
cut-points between each pair of statements.

Sample program:

int main()
{

int x=0;
int y=5;

/* statements */
/* statements */
/* statements */

if (x>1){
error ();

}
}

x = 0∧
y = 5∧
...∧
...∧
...∧
x > 1

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Predicate discovery

The path formula undergoes several Craig interpolations , with
cut-points between each pair of statements.

Sample program:

int main()
{

int x=0;
int y=5;

/* statements */
/* statements */
/* statements */

if (x>1){
error ();

}
}

x = 0∧
y = 5∧
...∧ → x ≤ 0
...∧
...∧ ...∧
x > 1 x > 1

UNSAT

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Predicate discovery

The path formula undergoes several Craig interpolations, with
cut-points between each pair of statements.

Sample program:

int main()
{

int x=0;
int y=5;

/* statements */
/* statements */
/* statements */

if (x>1){
error ();

}
}

x = 0∧ → x ≤ 0
y = 5∧ y = 5∧
...∧ ...∧
...∧ ...∧
...∧ ...∧
x > 1 x > 1

UNSAT

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Predicate discovery

The path formula undergoes several Craig interpolations, with
cut-points between each pair of statements.

Sample program:

int main()
{

int x=0;
int y=5;

/* statements */
/* statements */
/* statements */

if (x>1){
error ();

}
}

x = 0∧
y = 5∧ → x ≤ 0
...∧ ...∧
...∧ ...∧
...∧ ...∧
x > 1 x > 1

UNSAT

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Predicate discovery

The path formula undergoes several Craig interpolations, with
cut-points between each pair of statements.

Sample program:

int main()
{

int x=0;
int y=5;

/* statements */
/* statements */
/* statements */

if (x>1){
error ();

}
}

x = 0∧
y = 5∧ → x ≤ 0
...∧
...∧ ...∧
...∧ ...∧
x > 1 x > 1

UNSAT

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Predicate discovery

The path formula undergoes several Craig interpolations, with
cut-points between each pair of statements.

Sample program:

int main()
{

int x=0;
int y=5;

/* statements */
/* statements */
/* statements */

if (x>1){
error ();

}
}

x = 0∧
y = 5∧
...∧ → x ≤ 0
...∧
...∧ ...∧
x > 1 x > 1

UNSAT

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Predicate discovery

The path formula undergoes several Craig interpolations, with
cut-points between each pair of statements.

Sample program:

int main()
{

int x=0;
int y=5;

/* statements */
/* statements */
/* statements */

if (x>1){
error ();

}
}

x = 0∧
y = 5∧
...∧ → x ≤ 0
...∧
...∧
x > 1 x > 1

UNSAT

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Predicate discovery

The path formula undergoes several Craig interpolations, with
cut-points between each pair of statements.

Sample program:

int main()
{

int x=0;
int y=5;

/* statements */
/* statements */
/* statements */

if (x>1){
error ();

}
}

x = 0∧
y = 5∧
...∧
...∧
...∧
x > 1
UNSAT

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Predicate discovery

The path formula undergoes several Craig interpolations, with
cut-points between each pair of statements.

Sample program:

int main()
{

int x=0;
int y=5;

/* statements */
/* statements */
/* statements */

if (x>1){
error ();

}
}

x = 0∧ → x ≤ 0
x > 1 x > 1
UNSAT UNSAT

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Predicate discovery

BLAST selects “useful blocks” (think unsatisfiability core) by
analyzing the trace with SMT solver calls.

requires O(logN) solver calls instead of O(N), where
trace length N ∼ 5000

caching makes the conversion overhead negligible
only “useful” block sets undergo interpolation
interpolants are split into CNF, and each conjunct is added as
an atomic predicate

5000
log 5000

∼ 400

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Predicate discovery

BLAST selects “useful blocks” (think unsatisfiability core) by
analyzing the trace with SMT solver calls.

requires O(logN) solver calls instead of O(N), where
trace length N ∼ 5000

caching makes the conversion overhead negligible
only “useful” block sets undergo interpolation
interpolants are split into CNF, and each conjunct is added as
an atomic predicate

5000
log 5000

∼ 400

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Miscellaneous

OCaml virtual machine spent 35% of runtime to manage memory.

We tuned VM (via documented options) and achieved 25%
performance increase.

BLAST has an option for a correct pointer aliasing algorithm,
which requires a lot of enumeration (slow!).

We tried to improve the data structures involved, achieving 100x
speedup of computing aliases, but that was still not enough to use
alias analysis for large programs.

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Miscellaneous

OCaml virtual machine spent 35% of runtime to manage memory.

We tuned VM (via documented options) and achieved 25%
performance increase.

BLAST has an option for a correct pointer aliasing algorithm,
which requires a lot of enumeration (slow!).

We tried to improve the data structures involved, achieving 100x
speedup of computing aliases, but that was still not enough to use
alias analysis for large programs.

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Miscellaneous

OCaml virtual machine spent 35% of runtime to manage memory.

We tuned VM (via documented options) and achieved 25%
performance increase.

BLAST has an option for a correct pointer aliasing algorithm,
which requires a lot of enumeration (slow!).

We tried to improve the data structures involved, achieving 100x
speedup of computing aliases, but that was still not enough to use
alias analysis for large programs.

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Miscellaneous

OCaml virtual machine spent 35% of runtime to manage memory.

We tuned VM (via documented options) and achieved 25%
performance increase.

BLAST has an option for a correct pointer aliasing algorithm,
which requires a lot of enumeration (slow!).

We tried to improve the data structures involved, achieving 100x
speedup of computing aliases, but that was still not enough to use
alias analysis for large programs.

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Configurable analysis

BLAST contains limited configurable analysis opportunities.
Predicate-based analysis may be supplemented with lattice-based
analysis, which has:

+ much greater speed
− high rate of false posistives
→ rule out some infeasible paths with fast lattices, and analyze

the rest with slower predicates
− stopjoin as coverage checking is hardcoded, leads to missing

errors

+ implemented several stop and merge operators available as
options, and chose stopsep and mergepred−join

Now lattice-supplemented analysis works 50% slower, but
it doesn’t elicit errors

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Configurable analysis

BLAST contains limited configurable analysis opportunities.
Predicate-based analysis may be supplemented with lattice-based
analysis, which has:

+ much greater speed
− high rate of false posistives
→ rule out some infeasible paths with fast lattices, and analyze

the rest with slower predicates
− stopjoin as coverage checking is hardcoded, which makes the

checker miss real errors
+ implemented several stop and merge operators available as

options, and chose stopsep and mergepred−join

Now lattice-supplemented analysis works 50% slower, but
it doesn’t elicit errors

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Configurable analysis

BLAST contains limited configurable analysis opportunities.
Predicate-based analysis may be supplemented with lattice-based
analysis, which has:

+ much greater speed
− high rate of false posistives
→ rule out some infeasible paths with fast lattices, and analyze

the rest with slower predicates
− stopjoin as coverage checking is hardcoded, which makes the

checker miss real errors
+ implemented several stop and merge operators available as

options, and chose stopsep and mergepred−join

Now lattice-supplemented analysis works 50% slower, but
it doesn’t elicit errors

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Performance evaluation

Linux Kernel 2.6.31.6, lock()-unlock() correctness checks,
2160 drivers.
Resource limit per driver: 15 minutes CPU time, 1 Gb virtual
memory.

Measurement Time spent Failures Bugs found Time/mem
Old BLAST 105.8 hours 784 8 446
New BLAST 12.5 hours 368 42 152
Improvement 8.5 times 2 times 5 times 3 times

The actual speedup is greater than 8.5, because both slower and
faster versions had “large” times substituted with 15 minutes (limit).

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Conclusion and future work

Results of the work suggest that:

BLAST was speeded up (more than 8.5 times on lock/unlock
checking), and can now find more errors (5 times more)
BLAST is not obsolete, and is capable to absorb new
algorithms
qualitative alias analysis boost is necessary to use it in
real-world programs
formula conversion overhead is negligible

Future work:
improve memory constumption
create a faster aliasing solution

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Conclusion and future work

Results of the work suggest that:

BLAST was speeded up (more than 8.5 times on lock/unlock
checking), and can now find more errors (5 times more)
BLAST is not obsolete, and is capable to absorb new
algorithms
qualitative alias analysis boost is necessary to use it in
real-world programs
formula conversion overhead is negligible

Future work:
improve memory constumption
create a faster aliasing solution

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Thank you

http://forge.ispras.ru/projects/ldv/
Download LDV tools

(the new BLAST will be included)

:-)

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Counterexample-Guided Abstraction Refinement

Solves reachability problem by iterative algorithm. We build an
“abstraction” of the model of the program until it proves
inreachability of ERROR (BLAST, SLAM, CPAchecker).

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Counterexample-Guided Abstraction Refinement

Solves reachability problem by iterative algorithm. We build an
“abstraction” of the model of the program until it proves
inreachability of ERROR (BLAST, SLAM, CPAchecker).

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Counterexample-Guided Abstraction Refinement

Solves reachability problem by iterative algorithm. We build an
“abstraction” of the model of the program until it proves
inreachability of ERROR (BLAST, SLAM, CPAchecker).

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Counterexample-Guided Abstraction Refinement

Solves reachability problem by iterative algorithm. We build an
“abstraction” of the model of the program until it proves
inreachability of ERROR (BLAST, SLAM, CPAchecker).

?

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Counterexample-Guided Abstraction Refinement

Solves reachability problem by iterative algorithm. We build an
“abstraction” of the model of the program until it proves
inreachability of ERROR (BLAST, SLAM, CPAchecker).

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Counterexample-Guided Abstraction Refinement

Solves reachability problem by iterative algorithm. We build an
“abstraction” of the model of the program until it proves
inreachability of ERROR (BLAST, SLAM, CPAchecker).

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Counterexample-Guided Abstraction Refinement

Solves reachability problem by iterative algorithm. We build an
“abstraction” of the model of the program until it proves
inreachability of ERROR (BLAST, SLAM, CPAchecker).

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Counterexample-Guided Abstraction Refinement

Solves reachability problem by iterative algorithm. We build an
“abstraction” of the model of the program until it proves
inreachability of ERROR (BLAST, SLAM, CPAchecker).

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Counterexample-Guided Abstraction Refinement

Solves reachability problem by iterative algorithm. We build an
“abstraction” of the model of the program until it proves
inreachability of ERROR (BLAST, SLAM, CPAchecker).

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Counterexample-Guided Abstraction Refinement

Solves reachability problem by iterative algorithm. We build an
“abstraction” of the model of the program until it proves
inreachability of ERROR (BLAST, SLAM, CPAchecker).

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

Counterexample-Guided Abstraction Refinement

Solves reachability problem by iterative algorithm. We build an
“abstraction” of the model of the program until it proves
inreachability of ERROR (BLAST, SLAM, CPAchecker).

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

“Automatic” abstraction

BLAST’s abstraction of a program is

predicate-based: a location’s region is predicate over
variables, such as x < 10 or (a < 5) ∨ (a > 100)

cartesian: region of a location is a conjunction of small,
“atomic” predicates
counterexample-based: a set of predicates is discovered
automatically from infeasible error traces

Optimization opportunity: explore independent paths concurrently.
We didn’t try, but [Lopez,Rybalchenko] achievments sound
promising.

Shved, Mutilin, Mandrykin (ISPRAS, MSU) Implementation and Improvements of BLAST

