
Hand Recognition in Live-Streaming Video

Mikhail Belov

Department of business-informatics

Higher School of Economics

Moscow, Russian Federation

mpbelov@gmail.com

Abstract— The article describes the algorithmic component of the

pattern recognition method for extracting hand patterns from a

video stream. Methods removing excess information from

frames, localizing fragments with a hand and extracting hand

contours to classify them are described.

Keywords-pattern recognition; Hu invariants; Canny detector;

video stream processing

I. INTRODUCTION

One can input data into a computer in a form of graphical
information. There are methods for processing the graphical
information and for treating it not only as a set of dots with
color codes, but also as a container for another data. This fact
gives an opportunity to extend the number of human computer
interaction (HCI) ways. Such systems are described in [5] and
[6].

It is planned to develop a system prototype for direct and
online controlling the graphical objects displayed on a screen.
Currently this idea has been implemented in two types of
systems: sensor screens and ―smart boards‖. In the first case, a
transparent sensor pad is placed over the screen, which catches
the user’s touches and translates them into control signals to
the processor. Due to an existing technology such screens are
expensive and produced mostly in small and medium formats.
In case of the ―smart boards‖ the projector’s light is not
focused on a usual board, but aimed to a special sensor surface.
Unlike sensor screens, there are large ―smart boards‖ because
of projector, but this approach remains rather expensive and
not suitable as a mass solution. Instead, building such a HCI
system based on a video camera and a projector will reduce the
dependency of the cost from the display size.

The article describes the algorithmic component of the
pattern recognition method for extracting hand patterns from a
video stream.

II. PREPARING A FRAME

To remove excess information from a frame one can use
the Histogram Backprojection method. In this case a hand is
being searched by its color characteristics. The method can be
applied to search for pixels satisfying the histogram, or to
search a pattern (of a hand image) by shifting the pattern w.r.t.
the initial image. A frame fragment containing the hand image
should be used as a template histogram.

In Histogram Backprojection the model (target) and the
image are represented by their multidimensional color
histograms M and I as in Histogram Intersection. A ratio

histogram R, defined as

 , is computed from

the model and image histograms. It is this histogram R that is
backprojected onto the image, that is, the image values are
replaced by the values of R that they index. The backprojected
image is then convolved by a mask, which for compact objects
of unknown orientation could be a circle with the same area as
the expected area subtended by the object. The peak in the
convolved image is the expected location of the target,
provided the target appears in the image [1].

III. LOCALIZING A FRAME FRAGMENT WITH A HAND

We can locate a fragment with hand by calculating the
difference image characteristics [4]. We have to use an image
template, which contains a hand picture.

One of possible methods is a square difference matching
method. Perfect match leads to 0 result. Large result means bad
match:

Correlation matching methods multiplicatively match the
template against the image so a perfect match will be large and
bad matches will be small or 0.

Correlation coefficient matching methods match a template
relative to its mean against the image relative to its mean, so a
perfect match will be 1 and a perfect mismatch will be –1; a
value of 0 simply means that there is no correlation (random
alignments).

These factors may be normalized [4]. The normalized

methods are useful because they can help reduce the effects of

lighting differences between the template and the image. In

each case, the normalization coefficient is the same:

IV. EXTRACTING HAND CONTOURS

Then we extract contours from the image using the Canny

detector [2]. The Canny algorithm runs in 5 separate steps.

A. Smoothing: Blurring of the image to remove noise

It is inevitable that all images taken from a camera will
contain some amount of noise. To prevent that noise is
mistaken for edges, noise must be reduced. Therefore the
image is first smoothed by applying a Gaussian filter.

B. Finding gradients: The edges should be marked where the

gradients of the image has large magnitudes

Gradients at each pixel in the smoothed image are
determined by applying what is known as the Sobel-operator.

C. Non-maximum suppression: Only local maxima should be

marked as edges

The purpose of this step is to convert the ―blurred‖ edges in
the image of the gradient magnitudes to ―sharp‖ edges.
Basically this is done by preserving all local maxima in the
gradient image, and deleting everything else. The algorithm is
for each pixel in the gradient image:

1) Round the gradient direction θ to nearest 45 ◦ ,

corresponding to the use of an 8-connected neighbourhood;

2) Compare the edge strength of the current pixel with the

edge strength of the pixel in the positive and negative gradient

direction. I.e. if the gradient direction is north (theta = 90◦),

compare with the pixels to the north and south;

3) If the edge strength of the current pixel is largest;

preserve the value of the edge strength. If not, suppress (i.e.

remove) the value.

D. Double thresholding: Potential edges are determined by

thresholding

Edge pixels stronger than the high threshold are marked as
strong; edge pixels weaker than the low threshold are
suppressed and edge pixels between the two thresholds are
marked as weak.

E. Edge tracking by hysteresis: Final edges are determined

by suppressing all edges that are not connected to a very

certain (strong) edge

Strong edges are interpreted as ―certain edges‖, and can
immediately be included in the final edge image. Weak edges
are included if and only if they are connected to strong edges.
The logic is of course that noise and other small variations are
unlikely to result in a strong edge (with proper adjustment of
the threshold levels). Thus strong edges will (almost) only be
due to true edges in the original image. The weak edges can
either be due to true edges or noise/color variations.

V. CLASSIFYING THE FOUND CONTOUR

We classify found contours after the extraction. Hu

invariant moments of contours are used for this. Moment is a

gross characteristic of the contour computed by integrating

over all of the pixels of the contour [3]. The (p, q) moment of a

contour is defined as:

Here p is the x-order and q is the y-order, whereby order

means the power to which the corresponding component is

taken in the sum just displayed. The summation is over all of

the pixels of the contour boundary (denoted by n in the

equation).

The moment computation just described gives some

rudimentary characteristics of a contour that can be used to

compare two contours. However, the moments resulting from

that computation are not the best parameters for such

comparisons in most practical cases. In particular, one would

oft en like to use normalized moments (so that objects of the

same shape but dissimilar sizes give similar values). Similarly,

the simple moments of the previous section depend on the

coordinate system chosen, which means that objects are not

matched correctly if they are rotated.

A central moment is basically the same as the moments

just described except that the values of x and y used in the

formulas are displaced by the mean values:

where

 and

.

The normalized moments are the same as the central

moments except that they are all divided by an appropriate

power of m00:

The Hu invariant moments are linear combinations of the

central moments.

The following factors are used to detect similarity between

two contours [4]:

Here
 and

 are defined as:

 ,

 ,

where
 and

 are the Hu moments of A and B,

respectively.

After classification system performs the action associated
with a certain gesture.

VI. FUTURE WORK

The described image processing methods may be used with

various parameters. It is planned to implement the investigated

algorithm and to choose the best methods among the available

alternatives at the next step of the research. It is also needed to

assess the capabilities of usage Hu moments for hand contour

comparison and similarity detection. As further research of the

described method it is required to compare the contour

similarity coefficient metrics listed above based on Hu

moments by quality of classification result.

REFERENCES

[1] M. Swain, D. Ballard, ―Color Indexing‖. International Journal of
Computer Vision, 7:1, Kluwer Academic Publishers, Manufactured in
The Netherlands, 1991, pp. 11-32.

[2] J. Canny. ―A computational approach to edge detection. Pattern Analysis
and Machine Intelligence‖, IEEE Transactions on, PAMI-8(6), Nov.
1986, pp. 679–698.

[3] M. Hu, ―Visual pattern recognition by moment invariants‖ IRE
Transactions on Information Theory 8, 1962, pp. 179–187

[4] G. Bradski, A. Kaehler. ―Learning OpenCV‖. O'Reilly Media. 2008.
Pages: 576.

[5] P. Garg, N. Aggarwal, S. Sofat. ―Vision Based Hand Gesture
Recognition‖, World Academy of Science, Engineering and Technology
– 49, 2009.

[6] C. Keskin, A. Erkan, L. Akarun, ―Real Time Hand Tracking and 3D
Gesture Recognition for Interactive Interfaces Using Hmm‖,
ICANN/ICONIPP, 2003.

http://www.oreillynet.com/pub/au/3270
http://www.oreillynet.com/pub/au/3271

