
Towards a real-time simulation environment on the

edge of current trends

Eugene Chemeritskiy

The Faculty of Computational Mathematics and

Cybernetics, Moscow State University,

Moscow, Russia

tyz@lvk.cs.msu.su

Konstantin Savenkov (advisor)

The Faculty of Computational Mathematics and

Cybernetics, Moscow State University,

Moscow, Russia

savenkov@cs.msu.su

This paper is devoted to renewing of the simulation project that

has been undoubtedly a successful one and has endured a wide

range of tasks, but is slowly and inevitable getting obsolete. In

attempt to stay in the top, the development of the new runtime is

started taking into account some historical regularities and

currents trends in the distributed real-time simulation and some

adjoining areas. The paper describes the problem scope resulted

from application of the considered technologies, analyzes its

possible solutions and estimates the related labor cost.

General Terms: Simulation Runtime, Distributed Real-time and

Embedded Systems, High Level Architecture.

I. INTRODUCTION

In the 1990s the Computer Systems Laboratory (CS Lab) at
Computational Mathematics and Cybernetics department of the
Moscow State University developed a parallel modeling and
simulation system called DYANA [1]. This simulation system
has been used a lot as a basis for researches and development
of a number of specialized simulation tools. One of these tools
called STAND [2] is a hardware/software environment for
hardware-in-the-loop simulation of the distributed real-time
and embedded systems (DRE).

The STAND environment has been applied to a number of
DRE simulation projects and proved its efficiency. To remain
at the same high advantageous level in the context of fast
progress in the whole IT area, it was decided to construct new
runtime following the current trends to standardization in the
simulation fields.

The standard-compliant runtime subsystem automatically
guarantees model compatibility. Models written in accordance
with the standard specifications could be always executed with
use of this runtime. Similarly, natively developed models could
be executed by any other certified system. This compatibility
could result in product popularization and the formation of user
community, and a large number of users, in its turn, could
accelerate the project development and lead to its further
improvement.

Replacement of the STAND native runtime raises a number
of problems that could be separated into the following groups
in accordance with their nature.

A. Designing of DRE-supporting runtime in pursuance of the

latest simulation trends

Being quite a specific simulation case, DRE simulation
imposes some additional requirements to the runtime.
Currently, there is no any off-the-rack and well-fitted
simulation standard. Thereby some adjoining simulation areas
have been explored. In attempt to mark the current trends in
these areas, the third section of this paper gives a brief concept
of the simulation historical path and its progress regularities.
For each of the adverted innovations, the application goals and
prospects are described in context of the considered project
development.

Once the runtime is conceptually designed, the time comes
to its implementation. Despite the considered technologies are
relatively new, all of them have certain users and it is possible
to learn from their experience. The refinement of the existing
solutions and their adaptation to the purposes of the considered
project is far less labor-intensive than the development from
scratch. Thereby, the paper describes some possibilities for the
adoption of the turnkey solutions.

B. Integration to the STAND environment and maintenance

of the legacy projects

The next aspect of STAND runtime replacement is reuse of
the other STAND components. STAND software package
includes a number of additional assistance subsystems such as
trace collector, dynamic visualizer, version control system,
integrated model development environment and so on. All
listed subsystems are interconnected and have certain
dependencies from each other. Due to the runtime is not a rule
exception, replacement of this subsystem generates a large
amount of integration problems.

The integration problems are compounded by the necessity
of legacy project maintenance. The STAND environment
provides a highly specialized C-based model development
language. This language includes some functionality to

This work was supported in part by the Ministry of education and science

of the Russian Federation under Grant “Development of an integrated
environment and complex analysis methods for distributed real-time computer

systems functioning”.

mailto:tyz@lvk.cs.msu.su
mailto:savenkov@cs.msu.su

simplify DRE simulation (e.g. integrated support of the DRE
data transmitting channels). These features are often
implemented as low-level functions integrated deeply inside
the runtime. Because of the interface limitations imposed to the
new simulation runtime by specifications of the selected
simulation standard, the effective implementation of the
mentioned functionality becomes a serious research challenge.

II. THE STAND SIMULATION ENVIRONMENT

Modern DRE systems consist of multiple devices
connected by data transfer network which contain dozens of
channels. Development of DRE devices and of the DRE itself
is a distributed process performed by several workgroups and
the device prototypes become ready for integration in different
points of time. To meet the deadlines for DRE development,
the integration testing operations should begin in advance,
when some of the components are not implemented yet [2].

STAND enables incremental DRE gradual integration the
DRE according to the schedule of incoming devices. On early
stages of the DRE integration, most (or all) of the devices are
represented by the simplest simulation models reflecting only a
basic schedule of data exchanges. Then the detail level is
gradually increased upto full-scale models that include
software of real devices and generate appropriate data
matching the one generated by the device prototypes. On the
next step of integration the models are step-by-step replaced by
real devices that perform data exchange through the real
channels.

On every listed stage of the DRE integration, the available
set of devices and models could be analyzed and validated.
This approach provides the abilities to detect and fix existing
device errors in the earliest development phases and to reduce
the DRE development cost subsequently.

The considered simulation environment contains tools
intended to solve the following simulation-related tasks [2]:

1. Development of simulation models of DRE devices
and auxiliary synthetic simulation models (e.g. model of the
external environment);

2. Support for real-time execution of the available DRE
component set including the model-device interactions through
hardware channels;

3. Dynamic visualization of the simulation state and
results in graphical and tabulated form and abilities for human-
assisted control of the simulation;

4. Recording and processing of the simulation results,
interaction with hardware monitors for data exchange channels.

III. TRACING CURRENT TRENDS

A. Interface standardization

Simulation as a method for exploration of diverse object
properties and regularities among them outruns the advent of
computers for many years. However, its rapid development
started after the complex mathematical calculations had been
assigned to fast and reliable computers. In the beginning of the

1950s, the term simulation acquired the default meaning of
digital computer simulation. Subsequently the simulation was
defined as a combination of designing of the observed system
model and holding the necessary experiment set on digital
computers [3].

The observed system here means a separated part of the
world corresponding to the domain of researcher interests. This
world view is isolated during the experiment and consists of a
component set. Each of these components is characterized by
its property set and the dynamics of their change. Such a
system could exist in reality or be imagined, can receive
information and/or transmit it to its environment [4].

Abstraction that holds a subset of the observed system
properties is called a model. The selected property subset
should meet the objectives of the simulation. The result of
simulation has any sense only in case of the simulation goals
were properly identified and the constructed model is adequate
to these goals [4].

From the very beginning of the simulation history the
observed systems always tended to be represented in deeper
detail level. This tension results in the increasing size and
complexity of developed simulation model. This growth
required a respective performance increase from computer
systems, and this fact resulted in emergence of parallel
simulation systems. These systems share the simulation task
across multiple computing nodes. Typically such systems were
implemented locally within the organization that wanted to use
it (in accordance with this classification STAND is a parallel
system created in the CS Lab) [5].

The complexity of the models was not the only factor
leading to computer simulation tool evolution. The scope of
simulation has been growing either. After new simulation
problem types appeared, the related requirements were
imposed to modeling and simulation tools. For instance,
distributed simulation is often required in case of joint product
development when different product component are produced
by a number of workgroups located in different organizations.
This type of simulation intends encompassing of several
geographically separated simulation systems, which in turn
may consist of a single compute node, or be a parallel system.
Historically, the appearance of this task type led to the creation
of distributed simulation systems that provide an essential set
of services to the simulation participants and ensure its
consistent behavior [5].

The next and the latest commonly recognized step in the
modeling and simulation tool evolution is a standardizing of
the distributed system interfaces. Using of this principle results
in possibility to combine among a variety of independent
simulation systems and create a general model that can be
handled by every distributed system corresponding to the
standard specifications [6].

B. DRE simulation specific

The above classification groups existing simulation tasks
and tools according to node configuration of the underlying
computer system. There are lots of other features that could
serve as a classification criterion. The one that is important in

context of this paper is a range of supported participant types:
syntactic (could be completely represented by its model) or live
participants (represented by external entities). Generally live
simulation type is further separated into human-in-the-loop and
hardware-in-the-loop simulation depending weather the
experiments requires the human presence or the external entity
is a fully automated one.

Hardware-in-the-loop simulation often includes a number
of physical devices, which require their data to be delivered
with the respect to a given period of time (deadline), as the
participants. A meeting of the deadlines in such systems is a
focus of the of real-time system problematic, which are defined
as those systems in which a correctness of the system depends
not only on the logical results of computation, but also on the
time at which these results are produced. Thereby model time
must be synchronized with the astronomical one when the
model interacts with hardware.

A real-time application is usually comprised of a set of
cooperating tasks and they need a reliable prediction of the
worst-case scenario. Apart from satisfying the timing
constraints, another important characteristic of real-time
systems is the notion of predictability.

Real-time systems are usually classified into two categories
based on the nature of deadline, namely, hard real-time
systems, in which the consequences of deadline breaking may
be catastrophic and soft real-time systems, in which the utility
of results produced by a task with a soft deadline decreases
over time after the deadline expires. Examples of hard real-
time systems are avionic control and nuclear plant control.
Telephone switching system and video streaming applications
are examples for soft real-time systems [6].

Besides the support of hard and soft real-time simulation,
the simulation system intended to be used in DRE development
should interact with additional tools providing the following
capabilities:

1. Verification of the DRE devices compliance to the
technical specification;

2. Integrated testing and debugging of distributed DRE
software;

3. Performance and robustness evaluation of the DRE
architecture;

4. Scheduling of data transfers and validation of the
constructed schedules.

IV. DESIGNING THE RUNTIME

The High Level Architecture (HLA) is the conventional
standard in the field of distributed simulation and de facto is
supported by the most of non-distributed simulation tools and
by the community of distributed model developers. This
standard is acceptable for DRE simulation, so it was chosen as
a base standard.

Despite its initial focus on distributed simulation, using the
HLA standard results in some benefits in case of the parallel
simulation system (the nodes are located closely) development
either. The system based on this standard can become a

member of the distributed simulation and supports a range of
polytypic simulation models (e.g. as-fast-as-possible synthetic
models and any other types supported by the HLA standard)
out of the box. In addition, the operational power of utilities
devoted to distributed simulation enables easy setup of parallel
simulation system node set.

The HLA standard does not currently address real-time
simulation and HLA compliant simulation could not require
any Quality of Service (QoS) from the underlying middleware
(RTI). Indeed, there are several problems that should be solved
to enable it [8]:

1. No interfaces provided to specify end to end
prediction requirements for federate;

2. Management of underlying operating system(s) is
unavailable;

3. In distributed case, HLA supports two transportation
types only: the reliable one and the best-effort one (usually
encoded with the TCP and UDP network protocols) which are
not suitable for real-time constraints.

These different limitations have crucial impact for real-time
simulation systems where the amount and predictability of RTI
overhead is an important design factor. Thereby the considered
project requires development of an additional data transmitting
layer with a real-time support. Fortunately, there exist a
number of related standards and associated implementations.
One of the most widespread standards in this domain is the
OMG Data Distribution Service (DDS) [9].

The DDS standard defines a large number of QoS policies
for inter-process connection. Considering the need to meet the
constraints of real time, the represented project implementation
should follow the HLA standard specifications in context of
inter-process communication semantics and be based on DDS
standard in context of data transmission protocols.

To summarize the above, the new simulation runtime is
conceptually formed around the HLA simulation standard.
Because of the DRE simulation requires from the runtime some
extra features (such as QoS enabled connections) not specified
by HLA, the additional data transmitting middleware level
(specified by the DDS standard) should underlay the usual
HLA middleware (RTI) and possibly extend its functionality.
STAND consists of a number of computational nodes and this
imposes the resulting combined middleware to be deployed on
each of them.

A. The High Level Architecture standard

The roots for the HLA stem from distributed virtual
environments into which users, possibly at geographically
distant locations, can be encompassed. The HLA standard is a
conceptual heir of Distributed Interactive Simulation (DIS)
[10], which is a highly specialized simulation standard in the
domain of training environments, and is used mostly for
military purposes. The primary mission of DIS is to enable
interoperability among separated modeling and simulation
systems and to allow the joint simulation with the merged
systems participation.

HLA standard remains the DIS principle relevant and
extends it to the idea of polytypic model merging. Thus the
HLA development began in 1993 when the Defense Advanced
Research Projects Agency (DARPA) designated an award for
developing of an architecture that could combine all existing
modeling and simulation system types into one federation
providing the reuse of existing models and simulation utilities.

There are several federation types (so called proto-
federations) in accordance to the encompassed participant set
[11]:

1. The Platform federation type includes DIS-style
training simulations (that is real-time human-in-the-loop
training simulations);

2. The Joint Training federation type stands for as-fast-
as-possible time-driven and event-driven simulation (e.g.
command-level military trainings);

3. The Analysis federation includes as-fast-as-possible
event-driven simulations such as those that might be used in
acquisition decisions;

4. The Engineering federation including hardware-in-
the-loop simulations with hard real-time constraints.

The standard already has a pretty reach history and several
HLA versions have been published since its appearance. Most
of commercial tools currently support HLA version 1516-2000
specification. Some long term projects have being developed
less intensively since of their appearance before this version
have been published and are still specialized in DMSO 1.3
version. The most advanced tools are compatible with the latest
IEEE 1516-2010 (Evolved).

Middleware in computing terms is used to describe a
software agent acting as an intermediary between different
distributed processes. It is connectivity software which allows,
usually, several applications to run on one or several
computational nodes and to interact across a network [6].

The middleware involved in HLA is named the Run Time
Infrastructure (RTI). The RTI is the software implementation
of the HLA Interface Specification. It is a middleware for the
proper functioning of distributed simulation in accordance with
the principles and specifications from HLA standard [11].

B. The Data Distribution Service standard

OMG DDS specifications set the standard of inter-process
communication, which is applicable to a broad class of
distributed real-time and embedded systems (DRE). The basis
of DDS is a data-centric model with the publisher-subscriber
architecture (DCPS). The DCPS model forms layer, which
allows the integrated processes to set a typed shared data or get
the latest its version. As parts of DCPS, the global data space
and namespace are created. The publisher process (the one who
wants to create a shared object) should make the appropriate
entries in the global data and name spaces. Similarly, the
subscriber process can find the proper objects in the global
namespace and access to relevant data. It is important that the
announcement of the need to use the shared data and its direct
use are time separated, and this approach enables the quality of
service connection [7].

TABLE I

RTI IMPLEMENTATIONS

RTI Developer License type

ARTIS GAIA University of Bologna Open Source
1

CERTI ONERA GPL v2 or later

EODiSP P&P Software GPL
2

MAK MAK Technologies Commercial

NCWare Nextel Commercial

Portico Portico CDDL
3

pRTI Pitch Technologies Commercial

RTI NG Raytheon Commercial
1Full license text is available http://pads.cs.unibo.it/
2General Public License
3Common Development and Distribution License

C. Evaluating of a suitable turnkey RTI implementation

There are a lot of off-the-rack RTI implementations (Table
I) and this fact gives a hope to get some developments from
other projects, learning from their mistakes. Thereby, it was
decided to explore the area in more details. The study was
conducted among the tools, satisfying (at least partially) to the
following criteria:

1. The description of the architecture and principles of
implementation are available;

2. The source code of the product is available.

3. The product continues to maintain and develop;

4. The implementation is used for real-time simulation;

5. The implementation is based on the DDS standard;

Most of the examined tools are commercial, and their
source code is unavailable. Thereby, benefits from the use of
these implementations, taken by the developers of the target
simulation system, are limited to the theoretical base. For
example it is known that NCWare implementation conforms to
DDS standard, and this scheme corresponds to the architectural
ideas founded into the basis of considered project. The study
found a number of open source systems also, and it was
decided to build the target simulation system on the basis of the
most suitable of them.

Unfortunately, all of the listed systems have a certain
drawbacks in accordance with the purposes of the submitted
project. The ARTIS GAIA implementation attracts by its
advanced load balancing mechanism supplementation, but the
license for this product does not allow the free use of its source
code (although it is stated that the project will be fully open in
future) [12]. The open source project EODiSP stopped the
development in 2006 [13]. Accordingly, there is no one to
assist in solving of possible development difficulties
encountered. Portico project RTI is implemented using Java
and, due to the language specific, it is badly compatible with
the real-time simulation that is a primary goal of considered
project.

Thereby the best base RTI realization for the development
of the considered simulation system a priori is the CERTI one.
CERTI is distributed under the GPL license, continues to

http://pads.cs.unibo.it/dokuwiki/doku.php?id=pads:download

evolve, and is implemented in C++ (a number of extra bindings
including Java, Python, Fortran and even MATLAB is
currently available). In addition, CERTI could be deployed on
several combinations of platforms (Windows and Linux,
Solaris, FreeBSD…) and compilers (gcc, MSVS, Sun Studio,
MinGW…).

D. CERTI

For years, the French Aerospace Laboratory (ONERA)

develops its own HLA compliant RTI called CERTI. The

project started in 1996 and its primary research objective was

the distributed simulation itself whereas the appeared HLA

standard was the project experiment field. CERTI started with

the implementation of the small subset of RTI services, and

was used to solve the concrete applications of distributed

simulation theory [6].

Since the CERTI project was open sourced in 2002, a large

distributed simulation developer community has been formed

around the project. In many ways due to contributions of

enthusiasts, the CERTI project has grown from basic RTI into

a toolset including a number of additional software

components that may be useful to potential HLA users.

The CERTI project has always served a base for researches

in the domain of distributed simulation, and a number of

innovative ideas have been implemented with its use. Thus,

the problem of confidential data leak was solved in context of

CERTI RTI architecture, and the considered RTI guarantees

secure interoperation of simulations belonging to various

mutually suspicious organizations [14]. The certain interest for

the considered project is a couple of application devoted to

high performance and hard real-time simulation.

In spite of HLA is initially designed to support fully

distributed simulation applications, it provides a framework

for composing not necessarily distributed simulations.

Thereby there was created an optimized version of CERTI

devoted to simulation deployed on the same shared memory

platform and composed simulation running on high-

performance clusters [15].

Some experience could also be adopted from ONERA

project on simulation of satellite spatial system. Each federate

in this federation is a time-stepped driven one. It imposes an

additional requirement of hard real-time: the simulation

system should meet the deadlines of each step and synchronize

the different steps of the different federates [16].

Despite the distribution of commercial products, the project

development is still continuing in accordance with the HLA

simulation standard progress. Thus, CERTI supports HLA

IEEE 1516-2000 version since 2010 in addition to previous

DMSO 1.3 version.

V. WORK SCOPE ANALYSIS

During the searches of the turnkey projects, the well
suitable open source RTI implementation (CERTI) was found.
To meet the real-time system requirement the internal of this
middleware should gain the property of predictability and an
acceptable performance.

The first problem could be solved by RTI refining in
according with DDS specifications. During the constructing of
the considered RTI to the DDS middleware, it is important to
remain the ability of usual distributed simulation. The possible
solutions are to implement the optional real-time support or
provide the usual RTI-internal interface to the external
simulation participants whereas staying the real-time simulator
inside.

Test results show that the selected RTI loses to its
commercial analogues [17], and this is largely resulted from its
centralized architecture. Also the centralized architecture could
be a barrier during the refinement related to DDS-compliance.
Devoid of the central component the federated architecture
seems to be more suitable one. However, the best suitable
architecture should be identified in a separate study.
Nevertheless, the architectural changes are necessary and
justified. Fortunately, the CERTI RTI has been already served
as a basis for creating a hard real-time simulator and some
experience could be learned from that project.

There is an extra problem caused by high specialization of
the STAND runtime. In some cases the functionality of the
current STAND runtime could not be simulated even by the
combined HLA&DDS middleware, thereby it should be
injected into the middleware. Integrated support of physical
data transmitting channels is a good example of this case.

Besides the mere building of a new runtime, its replacement
results into a number of integration problems related to other
components of the STAND environment. Each subsystem
provides a certain interface to the others whereas the HLA-
compliant runtime has completely different interface set. The
best and the easiest way to solve the incompatibility problem is
a development of appropriate interface wrappers.

The history of highly specialized standards (and HLA in
particular) demonstrates a certain interface steadiness. Even if
the interface has changed, the modifications are usually related
to the service names and signatures whereas their semantic is
the same. This solution provides an ability to replace the
runtime again to the better HLA-compliant one or disintegrate
some other STAND subsystems into runtime independent
separated projects.

Unfortunately, there are some peculiar cases that could not
be solved in the described manner. These cases require an
embedding the additional hooks into RTI and lead to partial
loss of benefits considered above.

The problem of the legacy project maintenance can also be
considered as an integration problem, but it deserves more
detailed consideration. HLA defines a set of common service
devoted to a wide range of simulation tasks. This service set is
redundant and inconvenient to be used with the usual DRE
simulations whereas the absence of functionalities that could be
useful in this particular task.

Despite all the reasoning related to common integration
problems remains relevant, the legacy project maintenance
problem could be solved with use of another principle. There
could be some STAND subsystems requiring renewal, besides
its runtime. Thereby if there exists any programming language
which is acceptable to DRE simulation, there is a sense in

constructing the HLA-compliant binding for this language and
develop an additional translator for old projects.

In summary, the replacement of the current STAND
runtime with the concept designed reduces to the following
problem set:

1. Replacement of RTI architecture with more complex
and productive one;

2. Development of the acceptable interface wrappers for
other subsystems;

3. Injecting of some additional functionality and
required low-level services.

VI. CONCLUSION

Using of the HLA distributed simulation standard for
building DRE simulation systems gives a certain benefits to the
developers, namely, automatic ability to execute any HLA-
compliant models and to participate in distributed simulation.
Building of the DRE simulation runtime raises a number of
development problems. The specific of DRE simulation
imposes some additional requirement to the runtime, and
specifications of the HLA standard do not satisfy the
appropriate product. There are two possible solutions: addition
of QoS policies to existing CERTI implementation and using
of the HLA standard over the DDS standard. The considered
solutions were analyzed and a second one was chosen.

Due to existence of some more or less suitable turnkey RTI,
the upcoming development promises to be easier than the
development from scratch. It reduces to refinement of the RTI
architecture, injecting the RTI with some new functionality and
developing of interface wrappers.

REFERENCES

[1] R.L. Smeliansky, A.G. Bakhmurov, and V.A. Kostenko, "DYANA - an

environment for simulation and analysis of distributed multiprocessor
computer systems," Moscow State University, Computational Math. and
Cybern. Dept., 1999.

[2] V.V. Balashov et al., "A hardware-in-the-loop simulation environment
for real-time systems development and architecture evaluation," in

International Conference on Dependability of Computer Systems, 2008,
pp. 80-86.

[3] R.G. Sargent, "Requirements of a modeling paradigm," in Winter
Simulation Conference, Arlington, USA, 1992, pp. 780- 782.

[4] E.H. Page, "Simulation modeling methodology: principles and etiology
of decision support," Department of Computer Science, Virginia Tech,
Blacksburg, USA, Ph.D. Dissertation 1994.

[5] R.E. Nance, A history of discrete event simulation programming
languages. Blacksburg, USA, 1993.

[6] E. Noulard, J.Y. Rousselot, and P. Siron, "Spring Simulation
Interoperability Workshop," in CERTI, an open source RTI, why and
how, San Diego, USA, 2009.

[7] Object Management Group; Object Interface Systems, Inc; Real-Time
Innovations, Inc; THALES, Data Distribution Service for Real-time
Systems, version 1.2., 2007.

[8] M. Adelantado, P. Siron, and Chaudron J.B., "Towards an HLA run-
time infrastructure with hard real-time capabilities," in International
Simulation Multi-Conference, Ottava, Canada, 2010.

[9] Real-Time Innovations, Inc. (RTI), "OMG Data-Distribution Service
(DDS): architectural overview," 2004.

[10] Richard D. Fujimoto, Parallel and distributed simulation systems, 2000.

[11] IEEE Std 1516.1-2000, "IEEE standard for modeling and simulation
(M&S) High Level Architecture (HLA) - federate Interface
specification," 2001.

[12] L. Bononi, M. Bracuto, D’Angelo G., and Donatiello L., "A new
adaptive middleware for parallel and distributed Simulation of
dynamically interacting systems," in Distributed Simulation and Real-
Time Applications, 2004, pp. 178 - 187.

[13] I. Birrer, B. Carnicero-Dominguez, M. Egli, B. Carnicero-Dominguez,
and A. Pasetti, "EODiSP – an open and distributed simulation platform,"
in International Workshop on Simulation for European Space
Programmes, Noordwijk, the Netherlands, 2006.

[14] P. Bieber, D. Raujol, and P. Siron, "Security architecture for federated
cooperative information systems," in Annual Computer Security
Applications Conference, New Orleans, USA, 2000.

[15] M. Adelantado, J.L. Bussenot, J.Y. Rousselot, P. Siron, and Betoule M.,
"HP-CERTI: towards a high performance, high availability open source
RTI for composable simulations," in Fall simulation interoperability
workshop, Orlando, USA, 2004.

[16] B. d’Ausbourg, P. Siron, and E. Noulard, "Running real time distributed
simulations under Linux and CERTI," in European Simulation
Interoperability Workshop, Edimburgh, Scotland, 2008.

[17] L. Malinga and WH. Le Roux, "HLA RTI performance evaluation," in
European Simulation Interoperability Workshop, Istanbul, Turkey, 2009,
pp. 1-6.

