

Developing test systems for multi-modules

hardware designs

Mikhail Chupilko

Institute for System Programming of RAS

Moscow, Russia

chupilko@ispras.ru

Abstract—The paper proposes the approach of creating test

systems for complex hardware designs. The designs can be

subdivided into modules and verified separately. The proposed

architecture of separated verification systems and the way to

combine them into a complex test system are based on

simulation-based verification of hardware designs. The

components of test systems are connected in a TLM-like way that

allows to use high-level model of commutation based on messages

and thereby to simplify merging of several test systems into a test

system for the complex component.

Keywords-complex hardware designs; simulation-based

verification;combination of test systems

I. INTRODUCTION

The importance of hardware verification has been urgent
for many years. There are several techniques to conduct it but
there is still not unified solution. Hardware designs are
developed by means of languages of hardware behavior
description (hardware description languages, HDLs, e.g.,
Verilog [1]). Even relatively simple modules (i.e., parts of
complex designs or very simple designs) can hardly be checked
by means of a code inspection, to say nothing of complicated
designs. Therefore, the verification, i.e. checking of designs’
behavior and their specification to mutual consistency, is of
importance and attention. There are some estimates talking that
about 70% total amount of development efforts are spent on the
verification [2]. The real practice shows that usually at least
half of total design development time is spent on this aim. The
code written in HDLs called HDL-model can be translated into
a net-list and then on this base the real device will be created. If
no modifications of a net-list take place, the functionality of the
produced device will be the same as of the HDL-model. Even
if the corrections took place, the equivalence can be checked by
means of special tools, e.g. [3]. Therefore, to reveal and correct
functional errors is possible at the stage of HDL-model
development. It should be noticed that the correction of
functional errors on later stages and, in particular, after chip
manufacturing requires more efforts and time, because
necessity to pass all stages of manufacturing again.

Complicated designs are usually developed by means of
abstraction and decomposition techniques. The common
approach is to develop the whole system abstractly and then to
create the subparts (modules) more carefully. Usually the test
system for the whole design under verification (DUV) is
created but it is rather abstract one. As some parts of the system

can be critical for the total system behavior, the module-
oriented test systems are developed. If these “little” test
systems can help to improve the common test system for the
whole DUV, it will be good for code reuse and debugging
abilities of the common test system.

This work is organized as follows. First, the review of
works related to verification of complicated hardware designs
is given. In the following section, the architecture of test
systems formerly proposed in [4] is described. Next section
introduces the architecture of multi-module test system.
Section 5 includes case studies. Section 6 concludes the paper.

II. RELATED WORKS

There are two common ways of hardware verification.
First, we could use formal methods, e.g. to prove satisfiability
of a logical constructions in a formal model based on hardware
design in model checking [5]. All corrections are made over
static hardware designs. They are applicable well in case of
module-level verification but their scalability is insufficient [6]
to use them in case of the whole designs. To improve the
scalability, the hardware designs can be checked dynamically
during the simulation process. Simulation-based verification
allows checking the designs in real cases of their work.
Usually, simulation-based approaches possess the high level of
scalability and the thoroughness of verification varies
according to available resources and time. Below, when we are
talking of verification we are meaning only simulation-based
verification.

Typical components of the test systems are test sequence
generator (stimuli generator), reaction checker (or oracle), test
completeness estimator. The generation of sequence or stimuli
can be made manually and explicitly by means of test cases
description. Other stimuli generators produce test actions self-
automatically requiring manual description of variables set in
each stimulus with restrictions for their values. To generate
stimuli, special mechanism selects subset of available stimuli,
solves constraints in their variables assigning fit numbers to the
fields and start stimuli. This approach is called constrained-
driven verification (CDV) [7]. Another well-distinguished way
of stimuli generation is FSM traversing [8], where states of the
FSM are states of system under test and transitions between
them are applied operations. The reaction checker always
knows the correct behavior of DUV, e.g. utilizing a reference
model. Test completeness estimator usually works on the base

of source code coverage or functional model code or aspects
coverage.

The main subject of the article is the possibility for
developing test systems allowing reuse in the multi-module
complex design case. To reduce extra problems we suggest
using a uniform architecture for all test systems. When merging
test systems the question about merging of each component
from their structure arises. Consequently, the parts should be
intended for easy merging initially, their architecture should
provide such possibilities.

Among well-spread approaches of verification, we selected
Open Verification Methodology (OVM [9]) as the most spread
and seemed to be most suitable for our purposes to observe its
abilities of merging. Test systems according to OVM are
developed in accordance to the given architecture and
subdivision of test system’s components into several layers
[10]. The test system for each single module is named Open
Verification Component (OVC) (see Figure 1). Each OVC
contains basic means of creating CDV stimuli flow
(transaction sequencers, where transaction is a abstract
message containing information about test situation) and
delivering the flow to the DUV (so called transactors, i.e.
components which make direct and reverse transformation of
transactions and DUV’s wire signals). OVC can be connected
to each other when they are put under control of the united test
controller or in other words virtual generator [7]. In this case,
all the OVCs will generate stimuli flows. Developer of test
system modifies the redundant generators connected with
unavailable DUV’s wires to switch them off. The OVCs with
turned off generators check their target modules correctness
regarding to the stimuli flow to the components influence their
target modules work. Components checking correctness (or
scoreboards) continue checking using only available data from
DUV. Summarizing, test systems made according to OVM
satisfy many tasks usually arising in verification including
connection of several test systems. It should be noticed that
OVM is oriented to programming in SystemVerilog so that
connection with other languages is possible but knotted with
development of intermediate components.

Figure 1. Open verification component

We developed new approach and presented some aspects of
it in [4]. That paper touched upon only the problems of oracles’
development for single test systems. We will shortly review the

approach in this section and thoroughly in the next. The
method utilizes simulation-based verification and implies the
subdivision of test system components generally into stimuli
generator and oracle (or reaction checker). The generator
should create a flow of stimuli and apply them into the oracle
usually based on a reference model developed on selected level
of abstraction. Test is complete when the generator indicates it
according to a strategy of generation.

This approach has a distinctive feature when compared with
OVM: the reference models used in reaction checkers can be
originally written at a high level of abstraction and then can be
specified according to a progress of DUV development. To
make it possible, there are several techniques in the approach
such as model reactions’ arbitration mechanism, DUV
reactions’ detection mechanism, etc. After all, while DUV is
developed, the verification engineers usually develop the
software simulator of the total DUV. As they usually do it by
means of C++, to use exactly this language is useful to reuse
parts of simulators to create reference models with no extra
efforts. As the approach described in [4] uses C++, it has a
certain advantage over OVM while task of system simulator
reuse is conducting.

III. ARCHITECTURE OF SINGLE TEST SYSTEM

The architecture described in [4] was based on UniTESK
technology [11] developed in Institute for System
Programming of RAS. The architecture includes stimuli
generators (including FSM-based one), oracle (reaction
checker), and after all coverage tracker and verification report
generator (see Figure 2). The stimuli generator produces
sequence of messages and sends them as a parameter while
calling interface operations of the reference model. These calls
are named sending model stimuli:

dut.start(&DUT::pop_stimulus, dut.iface1, msg);

Reaction checker processes messages and makes model
reactions. Then it sends stimuli (which now are called design
stimuli) to the target design and receives its design reactions.
At last, reaction checker checks correspondence between
model and design reactions and returns a verdict about
correctness of DUV at the current cycle. The coverage tracker
saves the information about functional coverage at the current
cycle. The report generator dumps important information about
the verification process such as called operations, reached
functional coverage and verification result.

Figure 2. Single test system architecture

The most complex component requiring and allowing reuse
is reaction checker (see Figure 3). The reaction checker
supplies the reference model with all the necessary functions,
which make it possible for the stimuli generator (or other
reaction checker) to utilize the reference model and model
adapter.

Reaction checker

Precondition checkers

MS

Failed

Stimuli generator

Model adapter

Ref. model

Input interfaces models

Functional model

Control logic

Datapath

Commutation

Output interfaces models

Reactions queues

Reaction matchers

Postcondition checkers

Input interfaces adapters

Reaction detectors

Output interfaces adapters

MR MR

MR MR

MR

MR

CR

DS

Input interface

Target design

DR

Output interface

Verdict

Stimuli generator

MS - Model stimulus (abstract message)

DS - Design stimulus (cycle- and pin-accurate serialization of MS)
MR - Model reaction (reference message or constraint)
DR - Design reaction (cycle- and pin-accurate series)

CR - Checked reaction (deserialization of DR)

Primary arbiters

Secondary arbiters

Figure 3. Reaction checker architecture

The messages sent into the checker are called model stimuli
(MS). The generator (or other reaction checker) addresses the
MS flow to one of the input interfaces models.

On having received the MS, pre-condition checkers check
if the MS can be started. The MS, which staring requirements
are not satisfied at the current state of the functional model, is
rejected. In the other case they proceed both to the DUV via
input interface adapters (in this step processed MS is called
design stimuli, DS) and to the functional model via input
interface models set by the generator.

The functional model produces model reactions (MR) and
places them into one of the output interface models according
to rules included into the functional model.

The output interface models contain reaction queues
keeping MR and primary arbiters selecting MR subset at the
current simulation cycle. The arbiters work according to a
strategy selected by the test developer. The MR subset is sent

into reaction detectors to help recognizing DUV’s reactions
(DR).

The reaction matchers fetch the MR sub-subset from the
output interfaces models and then start expecting the
corresponding reactions from the DUV. The restrictions are
made by the second arbiters and customized by test developer.
There are certain time restrictions for the waiting. If they are
violated, the test system shows the timeout error and stops
working.

When the DR are found, they are put into one of the output
interface adapters (corresponding MR, if it is found, helps to
select which one). If some of DR does not have the
corresponding MR, the test system shows an unexpected
reaction error and stops working.

The output interfaces adapters send the checked reactions
(CR) into the reaction matcher to find the corresponding MR
satisfied the restrictions made by secondary arbiters. After all,
post-condition checkers check equivalence between
corresponding MR and CR. If the MR and CR are equal, the
test process goes on. If there is a problem with messages, the
test system shows a given error and stops working.

Test successfully finishes when the stimuli generators
makes everything it was asked to do by the test developer (like
visiting all reachable states of the FSM, etc.).

IV. ARCHTECTURE OF MERGED TEST SYSTEM

The proposed TLM-based approach to develop single test
system can be used while the task is to make test system for a
total DUV on the base of test systems for the components of
the DUV. To reuse test systems for components is convenient
when parts of test systems can be connected to each other be
means of the interfaces they have. Therefore, the selected
TLM-based way of interface development has a certain
advantage: it allows reusing components of test systems as they
are, not taking only parts from components or using copy-paste
method. To develop complex test system is possible by means
of the following steps.

When there are several test systems to connect some of
them will miss their connection with DUV. We propose to
create common test system and inject all small reaction
checkers from earlier developed test systems connected to each
other (see Figure 4). Therefore, input and output interfaces
adapters and reaction detectors should be modified to connect
with other reaction checkers. Fortunately, their separation from
the reference model allows us to do without huge reference
model modifications.

 When merging the reaction checkers, we create the
common test system and place sub reaction checkers into it.
The common test system possesses its own stimuli generator,
reaction checker and coverage tracker. While developing all
these parts, to reuse some parts of test systems previously
developed would be great achievement.

.

Figure 4. Architecture of multi-module test system

The stimuli generator can inherit scenario functions from
sub generators but only if the part of message prepare and call
of original reaction checkers were split from each other to
different functions. In this case, the reaction checker used can
be easily changed to a common by means of overloading the
appropriate functions.

The coverage tracker is a common component for all test
systems. To use it, a coverage structure should be described
and registered in a tracker. The registration is identical in cases
of single or multi-module test systems. To refresh the coverage
information, some functions from functional models are
usually used. Since the models have been inserted into the
common test system, the reuse of the coverage becomes free of
charge. The common test system just calls all of them at every
cycle to make them collect data. It should be noticed, that
coverage structures from single test systems in some cases do
not provide important information for the case of combined
DUV and in this case either cross-coverage is created or new
coverage structures for the whole DUV are developed.

The combined reaction checkers is one of the most difficult
parts of combined test systems. The common reaction checker
looks like the single reaction checker but it should use included
reaction checkers functionality. Only the common reaction
checker is allowed to change values of DUV’s wires while sub
reaction checkers’ input and output interfaces adapters are
switched off. To switch them off is possible by means of
overloading to make them send model message not in the
absent DUV but to the other reaction checkers (see Figure 5).

To facilitate the connection between reaction checkers we
propose to use channels. Channel is a way to connect an output
interface model and an input interface model together. To do it
the message from the input interface should be translated into a
form applicable to the output interface to put into it. The
channel can also broadcast message into several input
interfaces. Usage of channels is given in Figure 6.

Figure 5. Architecture of multi-module reaction checkers

Figure 6. Architecture of multi-module reaction checkers

The overloaded input interfaces models usually contain
precondition checkers so that they check protocols of the
communications between sub modules. It can help to reveal
problems, which can be found if the reference model takes
input stimuli only from stimuli generator: the input variables
values have wide variance and this variance usually
corresponds to the real work situation for the DUV’s parts.

The most distinctive feature of the approach, as it has been
said before, is that it uses C++ and can use some parts of
system simulators usually written in C++. Moreover, the
reference models due to their architecture can be reused in
development of Verilog-models. In this case, input and output
interface adapters do not work as usual: input interface adapters
should take the messages from the DUV, process them in
functional model and send the messages to the DUV by means
output interface adapters (see Figure 7).

Reaction checker

Precondition checkers
MS

Failed

Model adapter

Ref. model

Input interfaces models

Functional model

Control logic

Datapath

Commutation

Input interfaces adapters

Output interfaces adapters

MR

DS

Input interface

Target design

DR

Output interface

MS - Model stimulus (abstract message)

DS - Design stimulus (cycle- and pin-accurate serialization of MS)
MR - Model reaction (reference message or constraint)

DR - Design reaction (cycle- and pin-accurate series)

Figure 7. Architecture of reaction checker built into DUV

Common test system controls the reaction checkers built in
DUV. The checkers help Verilog-model developer in
accelerated development of the model as code in C++ with the
same functionality as in Verilog is usually written quicker.

Summing up, the approach allows developing test systems,
which can be reused as parts of common test system. These test
systems check not only the output data of DUV but input data
from, say, stimuli generator (by means of precondition
checkers). When the test systems are connected to each other
not to DUV, they can check the behavior of their neighbors, i.e.
they check the interconnection protocol of DUV’s components.
The test system supports special means to make the
interconnection such as interfaces and channels. After all, to
reduce the time spent to make the first version of DUV for
system-level verification, the test systems can be inserted into
the Verilog code of DUV while the last is still under designing.
The approach is supported by a library developed in C++, so
that test systems being developed according to the approach,
are also based on C++. It gives wide range of opportunities to
use all means of C++ to facilitate the development of the test
systems. It should be noticed, that C++ is usually used in
system level simulators of DUV, so that parts of the simulators
can be easily reused as reference models in the test systems and
vice versa. At last, the library is compatible with UniTESK
approach, which means the opportunity to develop high-quality
tests based on FSM-traversing even for the system-level case
and to spread test systems among clusters of computers.

V. CASE STUDY

The approach to develop single test systems has shown its
effectiveness in several projects [4]. The most interesting cases
are generalized in Table 1.

TABLE I. APPLICATIONS OF THE SUGGESTED APPROACH

Design under

verification

Depth of

verification

Source code,

KLOC

Labor costs,

man-months

Translation lookaside

buffer (TLB)
Up to cycle-accurate 2.5 2.5

Non-blocking L2 cache Up to detailed-timed 3 6

Northbridge data switch Up to cycle-accurate 3 3

Memory access unit

(MAU)
Up to cycle-accurate 1 1

The labor costs in Table 1 include verification plan writing,
test system development, as well as verification process and
debug of the developed test system. In case of non-blocking L2
cache the costs also include test system maintaining due to
permanent modifications in the DUT. Table 1 shows that time
spent to the verification can be roughly estimated to be one
man-month per one KLOC. The L2 cache case is an exception
from this rule, but it required additional supporting as it has
been already said.

A comparison between our results and the second approach
(OVM) could be worth knowing. Very little estimations of the
OVM application efforts prevented us from doing it. We
suggested those spent to the development of test systems with
close functionality to be similar to the proposed methodology.
It is because OVM also utilizes object-oriented language and
the set of test system components looks like proposed.
Nevertheless, there is a certain difference between approach
given in this article and OVM: our approach provides
additional means of FSM-based stimuli flow creation.
Actually, this question has not been thoroughly analyzed by us.
It is a point of the following research.

The proposed way of merging is a new revealed ability of
the basic approach. Only some experiments were conducted to
estimate the possibility of merging. First, the test system for a
simple FIFO module was developed. It took about two men-
days including efforts spent for documenting of the project.
Then this FIFO module was multiplied to become three FIFO-
modules into one envelop. Two of them were input buffers and
the third one was output buffer. We placed between them an
arbiter to select which one of the input buffers sends data to the
output one. It always selected the first FIFO if it contained any
data. To test this combination we combined three test systems
for original FIFO-module and added functionality of the arbiter
in a very simple way: functional model always reads data from
the first FIFO if it contained any data and in other case read the
second FIFO. Stimuli generator used original scenario
functions like “pop” and “push” but with a little modification
as now two FIFO played role of the input and the last one did
of the output. The interface adapters of sub test systems were
overloaded. Formerly, to make pop and push operations only
two interfaces had been used: one input and out output. In case
of input FIFOs, input interfaces were not changed (the
functionality of setting values to the DUV’s wires from sub
reaction checkers had been removed before). Output interfaces
were overloaded to send messages into output FIFO’s input
interfaces. Initially, the registration of adapters of interfaces
had looked like:

CPPTESK_SET_OUTPUT_ADAPTER(iface3,

 FIFOMediator::deserialize_iface3);

where deserializer is a function which translates DUV’s
wires signals into message. As the output interface iface3 was
not already output one, we overloaded this adapter:

CPPTESK_SET_INNER_IFACE_ADAPTER(FIFOMediator,

fifo0, fifo0.iface3, MM::deserialize_inner_iface0);

New deserializer calls the output FIFO fifo2:

CPPTESK_DEFINE_PROCESS(

 MM::deserialize_inner_iface0)

{

 …

 if(!fifo2.is_full()) {

 …

 fifo2.start(&FIFO::push_msg,

 fifo2.iface1, data);

 }

}

The output interface model of output FIFO just gave the
messages into common reaction checker’s output interface
model. To create the common test system we spent about half a
day accounting the time to research of merging possibility. The
time could have been spent for developing of complex test
system from scratch is expected to be about 2 days, but it is not
the most important. The time to connect sub test systems
slightly correlates with complexity of DUV’s sub part. Mostly,
it depends on amount of input and output interfaces and efforts
to connect them together. We have an estimate that to connect
exactly one input interface to one output is possible in about
one hour. This time will be spent to develop channel between
them that will translate messages between channels. The
average DUV’s part, by our estimates, consists of about ten
input and ten output interfaces, so that to connect two average
DUV’s parts is possible in one-two men-days, according to the
productivity of the verification engineer.

VI. CONCLUSIONS

This approach gives us a useful way to develop test systems
for separated parts of DUVs and then to merge the test systems
with high level of reuse. The main advantages of the approach
are the check of interconnection behavior with no additional
code and special means to facilitate reuse. The architecture is

supported by a library developed in C++ that allows using the
great opportunities of the language while developing test
systems. The fact that usually system level simulators are based
on C++ points to the ability of reusing parts of system-level
reference models and reference models of the developed test
systems and vice versa. There are two bonuses: the test systems
can control communications between functional models inside
the DUV as its parts, especially when the DUV is still under
construction, and that the library supporting the approach
supports UniTESK technology which allows developing high-
quality tests based on FSM-traversing and spreading test
systems among clusters of computers.

REFERENCES

[1] IEEE 1364-2005, Verilog Standard.

[2] J. Bergeron, Writing testbenches: functional verification of HDL
models. Kluwer Academic Publichers, 2003.

[3] Tool called Formality by Synopsys (http://www.synopsys.com/Tools/
Verification/FormalEquivalence/Pages/Formality.aspx)

[4] M. Chupilko, A. Kamkin. A TLM-based approach to functional
verification of hardware components at different abstraction levels. 12th
Latin-American Test Workshop, 2011.

[5] E. Clarke, O. Grumberg, D. Peled. Model Checking. MIT Press, 1999.

[6] R. Kneuper. Limits of Formal Methods. Formal Aspects of Computing
(1997) 3: 1-000, 1997.

[7] S. Iman. Step-by-step Functional Verification with SystemVerilog and
OVM. Hansen Brown Publishing Company, 2008.

[8] V. Ivannikov, A. Kamkin, V. Kuliamin, A. Petrenko. Application of the
UniTESK technology to functional verification of software.
http://citforum.ru/SE/testing/unitesk_hard/, 2006 (in Russian)

[9] Open Verification Methodology, http://www.ovmworld.org.

[10] Y. Gubenko, A. Kamkin, M. Chupilko. Comparative analisys of modern
technologies of hardware designs test development.
http://citforum.ru/SE/testing/hardware_models/, 2009 (in Russian)

[11] A. Barancev et al. UniTesK approach to the software development:
achievements and prospects. http://citforum.ru/SE/testing/unitesk/, 2004.
(in Russian)

