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Abstract—The paper proposes the approach of creating test 

systems for complex hardware designs. The designs can be 

subdivided into modules and verified separately. The proposed 

architecture of separated verification systems and the way to 

combine them into a complex test system are based on 

simulation-based verification of hardware designs. The 

components of test systems are connected in a TLM-like way that 

allows to use high-level model of commutation based on messages 

and thereby to simplify merging of several test systems into a test 

system for the complex component. 

Keywords-complex hardware designs; simulation-based 

verification;combination of test systems 

I. INTRODUCTION 

The importance of hardware verification has been urgent 
for many years. There are several techniques to conduct it but 
there is still not unified solution. Hardware designs are 
developed by means of languages of hardware behavior 
description (hardware description languages, HDLs, e.g., 
Verilog [1]). Even relatively simple modules (i.e., parts of 
complex designs or very simple designs) can hardly be checked 
by means of a code inspection, to say nothing of complicated 
designs. Therefore, the verification, i.e. checking of designs’ 
behavior and their specification to mutual consistency, is of 
importance and attention. There are some estimates talking that 
about 70% total amount of development efforts are spent on the 
verification [2]. The real practice shows that usually at least 
half of total design development time is spent on this aim. The 
code written in HDLs called HDL-model can be translated into 
a net-list and then on this base the real device will be created. If 
no modifications of a net-list take place, the functionality of the 
produced device will be the same as of the HDL-model. Even 
if the corrections took place, the equivalence can be checked by 
means of special tools, e.g. [3]. Therefore, to reveal and correct 
functional errors is possible at the stage of HDL-model 
development. It should be noticed that the correction of 
functional errors on later stages and, in particular, after chip 
manufacturing requires more efforts and time, because 
necessity to pass all stages of manufacturing again. 

Complicated designs are usually developed by means of 
abstraction and decomposition techniques. The common 
approach is to develop the whole system abstractly and then to 
create the subparts (modules) more carefully. Usually the test 
system for the whole design under verification (DUV) is 
created but it is rather abstract one. As some parts of the system 

can be critical for the total system behavior, the module-
oriented test systems are developed. If these “little” test 
systems can help to improve the common test system for the 
whole DUV, it will be good for code reuse and debugging 
abilities of the common test system. 

This work is organized as follows. First, the review of 
works related to verification of complicated hardware designs 
is given. In the following section, the architecture of test 
systems formerly proposed in [4] is described. Next section 
introduces the architecture of multi-module test system. 
Section 5 includes case studies. Section 6 concludes the paper. 

II. RELATED WORKS 

There are two common ways of hardware verification. 
First, we could use formal methods, e.g. to prove satisfiability 
of a logical constructions in a formal model based on hardware 
design in model checking [5]. All corrections are made over 
static hardware designs. They are applicable well in case of 
module-level verification but their scalability is insufficient [6] 
to use them in case of the whole designs. To improve the 
scalability, the hardware designs can be checked dynamically 
during the simulation process. Simulation-based verification 
allows checking the designs in real cases of their work. 
Usually, simulation-based approaches possess the high level of 
scalability and the thoroughness of verification varies 
according to available resources and time. Below, when we are 
talking of verification we are meaning only simulation-based 
verification. 

Typical components of the test systems are test sequence 
generator (stimuli generator), reaction checker (or oracle), test 
completeness estimator. The generation of sequence or stimuli 
can be made manually and explicitly by means of test cases 
description. Other stimuli generators produce test actions self-
automatically requiring manual description of variables set in 
each stimulus with restrictions for their values. To generate 
stimuli, special mechanism selects subset of available stimuli, 
solves constraints in their variables assigning fit numbers to the 
fields and start stimuli. This approach is called constrained-
driven verification (CDV) [7]. Another well-distinguished way 
of stimuli generation is FSM traversing [8], where states of the 
FSM are states of system under test and transitions between 
them are applied operations. The reaction checker always 
knows the correct behavior of DUV, e.g. utilizing a reference 
model. Test completeness estimator usually works on the base 



 

 

of source code coverage or functional model code or aspects 
coverage. 

The main subject of the article is the possibility for 
developing test systems allowing reuse in the multi-module 
complex design case. To reduce extra problems we suggest 
using a uniform architecture for all test systems. When merging 
test systems the question about merging of each component 
from their structure arises. Consequently, the parts should be 
intended for easy merging initially, their architecture should 
provide such possibilities. 

Among well-spread approaches of verification, we selected 
Open Verification Methodology (OVM [9]) as the most spread 
and seemed to be most suitable for our purposes to observe its 
abilities of merging. Test systems according to OVM are 
developed in accordance to the given architecture and 
subdivision of test system’s components into several layers 
[10]. The test system for each single module is named Open 
Verification Component (OVC) (see Figure 1). Each OVC 
contains basic means of creating CDV stimuli flow 
(transaction sequencers, where transaction is a abstract 
message containing information about test situation) and 
delivering the flow to the DUV (so called transactors, i.e. 
components which make direct and reverse transformation of 
transactions and DUV’s wire signals). OVC can be connected 
to each other when they are put under control of the united test 
controller or in other words virtual generator [7]. In this case, 
all the OVCs will generate stimuli flows. Developer of test 
system modifies the redundant generators connected with 
unavailable DUV’s wires to switch them off. The OVCs with 
turned off generators check their target modules correctness 
regarding to the stimuli flow to the components influence their 
target modules work. Components checking correctness (or 
scoreboards) continue checking using only available data from 
DUV. Summarizing, test systems made according to OVM 
satisfy many tasks usually arising in verification including 
connection of several test systems. It should be noticed that 
OVM is oriented to programming in SystemVerilog so that 
connection with other languages is possible but knotted with 
development of intermediate components. 

 

Figure 1.  Open verification component 

We developed new approach and presented some aspects of 
it in [4]. That paper touched upon only the problems of oracles’ 
development for single test systems. We will shortly review the 

approach in this section and thoroughly in the next. The 
method utilizes simulation-based verification and implies the 
subdivision of test system components generally into stimuli 
generator and oracle (or reaction checker). The generator 
should create a flow of stimuli and apply them into the oracle 
usually based on a reference model developed on selected level 
of abstraction. Test is complete when the generator indicates it 
according to a strategy of generation. 

This approach has a distinctive feature when compared with 
OVM: the reference models used in reaction checkers can be 
originally written at a high level of abstraction and then can be 
specified according to a progress of DUV development. To 
make it possible, there are several techniques in the approach 
such as model reactions’ arbitration mechanism, DUV 
reactions’ detection mechanism, etc. After all, while DUV is 
developed, the verification engineers usually develop the 
software simulator of the total DUV. As they usually do it by 
means of C++, to use exactly this language is useful to reuse 
parts of simulators to create reference models with no extra 
efforts. As the approach described in [4] uses C++, it has a 
certain advantage over OVM while task of system simulator 
reuse is conducting. 

III. ARCHITECTURE OF SINGLE TEST SYSTEM 

The architecture described in [4] was based on UniTESK 
technology [11] developed in Institute for System 
Programming of RAS. The architecture includes stimuli 
generators (including FSM-based one), oracle (reaction 
checker), and after all coverage tracker and verification report 
generator (see Figure 2). The stimuli generator produces 
sequence of messages and sends them as a parameter while 
calling interface operations of the reference model. These calls 
are named sending model stimuli: 

dut.start(&DUT::pop_stimulus, dut.iface1, msg); 

Reaction checker processes messages and makes model 
reactions. Then it sends stimuli (which now are called design 
stimuli) to the target design and receives its design reactions. 
At last, reaction checker checks correspondence between 
model and design reactions and returns a verdict about 
correctness of DUV at the current cycle. The coverage tracker 
saves the information about functional coverage at the current 
cycle. The report generator dumps important information about 
the verification process such as called operations, reached 
functional coverage and verification result. 

 

Figure 2.  Single test system architecture 



 

 

The most complex component requiring and allowing reuse 
is reaction checker (see Figure 3). The reaction checker 
supplies the reference model with all the necessary functions, 
which make it possible for the stimuli generator (or other 
reaction checker) to utilize the reference model and model 
adapter. 
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Figure 3.  Reaction checker architecture 

The messages sent into the checker are called model stimuli 
(MS). The generator (or other reaction checker) addresses the 
MS flow to one of the input interfaces models. 

On having received the MS, pre-condition checkers check 
if the MS can be started. The MS, which staring requirements 
are not satisfied at the current state of the functional model, is 
rejected. In the other case they proceed both to the DUV via 
input interface adapters (in this step processed MS is called 
design stimuli, DS) and to the functional model via input 
interface models set by the generator. 

The functional model produces model reactions (MR) and 
places them into one of the output interface models according 
to rules included into the functional model.  

The output interface models contain reaction queues 
keeping MR and primary arbiters selecting MR subset at the 
current simulation cycle. The arbiters work according to a 
strategy selected by the test developer. The MR subset is sent 

into reaction detectors to help recognizing DUV’s reactions 
(DR). 

The reaction matchers fetch the MR sub-subset from the 
output interfaces models and then start expecting the 
corresponding reactions from the DUV. The restrictions are 
made by the second arbiters and customized by test developer. 
There are certain time restrictions for the waiting. If they are 
violated, the test system shows the timeout error and stops 
working.  

When the DR are found, they are put into one of the output 
interface adapters (corresponding MR, if it is found, helps to 
select which one). If some of DR does not have the 
corresponding MR, the test system shows an unexpected 
reaction error and stops working.  

The output interfaces adapters send the checked reactions 
(CR) into the reaction matcher to find the corresponding MR 
satisfied the restrictions made by secondary arbiters. After all, 
post-condition checkers check equivalence between 
corresponding MR and CR. If the MR and CR are equal, the 
test process goes on. If there is a problem with messages, the 
test system shows a given error and stops working. 

Test successfully finishes when the stimuli generators 
makes everything it was asked to do by the test developer (like 
visiting all reachable states of the FSM, etc.). 

IV. ARCHTECTURE OF MERGED TEST SYSTEM 

The proposed TLM-based approach to develop single test 
system can be used while the task is to make test system for a 
total DUV on the base of test systems for the components of 
the DUV. To reuse test systems for components is convenient 
when parts of test systems can be connected to each other be 
means of the interfaces they have. Therefore, the selected 
TLM-based way of interface development has a certain 
advantage: it allows reusing components of test systems as they 
are, not taking only parts from components or using copy-paste 
method. To develop complex test system is possible by means 
of the following steps. 

When there are several test systems to connect some of 
them will miss their connection with DUV. We propose to 
create common test system and inject all small reaction 
checkers from earlier developed test systems connected to each 
other (see Figure 4). Therefore, input and output interfaces 
adapters and reaction detectors should be modified to connect 
with other reaction checkers. Fortunately, their separation from 
the reference model allows us to do without huge reference 
model modifications. 

 When merging the reaction checkers, we create the 
common test system and place sub reaction checkers into it. 
The common test system possesses its own stimuli generator, 
reaction checker and coverage tracker. While developing all 
these parts, to reuse some parts of test systems previously 
developed would be great achievement. 

. 



 

 

 
Figure 4.  Architecture of multi-module test system 

The stimuli generator can inherit scenario functions from 
sub generators but only if the part of message prepare and call 
of original reaction checkers were split from each other to 
different functions. In this case, the reaction checker used can 
be easily changed to a common by means of overloading the 
appropriate functions. 

The coverage tracker is a common component for all test 
systems. To use it, a coverage structure should be described 
and registered in a tracker. The registration is identical in cases 
of single or multi-module test systems. To refresh the coverage 
information, some functions from functional models are 
usually used. Since the models have been inserted into the 
common test system, the reuse of the coverage becomes free of 
charge. The common test system just calls all of them at every 
cycle to make them collect data. It should be noticed, that 
coverage structures from single test systems in some cases do 
not provide important information for the case of combined 
DUV and in this case either cross-coverage is created or new 
coverage structures for the whole DUV are developed. 

The combined reaction checkers is one of the most difficult 
parts of combined test systems. The common reaction checker 
looks like the single reaction checker but it should use included 
reaction checkers functionality. Only the common reaction 
checker is allowed to change values of DUV’s wires while sub 
reaction checkers’ input and output interfaces adapters are 
switched off. To switch them off is possible by means of 
overloading to make them send model message not in the 
absent DUV but to the other reaction checkers (see Figure 5). 

To facilitate the connection between reaction checkers we 
propose to use channels. Channel is a way to connect an output 
interface model and an input interface model together. To do it 
the message from the input interface should be translated into a 
form applicable to the output interface to put into it. The 
channel can also broadcast message into several input 
interfaces. Usage of channels is given in Figure 6. 

 

 
Figure 5.  Architecture of multi-module reaction checkers 

 

Figure 6.  Architecture of multi-module reaction checkers 

The overloaded input interfaces models usually contain 
precondition checkers so that they check protocols of the 
communications between sub modules. It can help to reveal 
problems, which can be found if the reference model takes 
input stimuli only from stimuli generator: the input variables 
values have wide variance and this variance usually 
corresponds to the real work situation for the DUV’s parts. 

The most distinctive feature of the approach, as it has been 
said before, is that it uses C++ and can use some parts of 
system simulators usually written in C++. Moreover, the 
reference models due to their architecture can be reused in 
development of Verilog-models. In this case, input and output 
interface adapters do not work as usual: input interface adapters 
should take the messages from the DUV, process them in 
functional model and send the messages to the DUV by means 
output interface adapters (see Figure 7). 
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Common test system controls the reaction checkers built in 
DUV. The checkers help Verilog-model developer in 
accelerated development of the model as code in C++ with the 
same functionality as in Verilog is usually written quicker. 

Summing up, the approach allows developing test systems, 
which can be reused as parts of common test system. These test 
systems check not only the output data of DUV but input data 
from, say, stimuli generator (by means of precondition 
checkers). When the test systems are connected to each other 
not to DUV, they can check the behavior of their neighbors, i.e. 
they check the interconnection protocol of DUV’s components. 
The test system supports special means to make the 
interconnection such as interfaces and channels. After all, to 
reduce the time spent to make the first version of DUV for 
system-level verification, the test systems can be inserted into 
the Verilog code of DUV while the last is still under designing. 
The approach is supported by a library developed in C++, so 
that test systems being developed according to the approach, 
are also based on C++. It gives wide range of opportunities to 
use all means of C++ to facilitate the development of the test 
systems. It should be noticed, that C++ is usually used in 
system level simulators of DUV, so that parts of the simulators 
can be easily reused as reference models in the test systems and 
vice versa. At last, the library is compatible with UniTESK 
approach, which means the opportunity to develop high-quality 
tests based on FSM-traversing even for the system-level case 
and to spread test systems among clusters of computers. 

V. CASE STUDY 

The approach to develop single test systems has shown its 
effectiveness in several projects [4]. The most interesting cases 
are generalized in Table 1. 

TABLE I.  APPLICATIONS OF THE SUGGESTED APPROACH 

Design under 

verification 

Depth of 

verification 

Source code, 

KLOC 

Labor costs, 

man-months 

Translation lookaside 

buffer (TLB) 
Up to cycle-accurate 2.5 2.5 

Non-blocking L2 cache Up to detailed-timed 3 6 

Northbridge data switch Up to cycle-accurate  3 3 

Memory access unit 

(MAU) 
Up to cycle-accurate 1 1 

 

The labor costs in Table 1 include verification plan writing, 
test system development, as well as verification process and 
debug of the developed test system. In case of non-blocking L2 
cache the costs also include test system maintaining due to 
permanent modifications in the DUT. Table 1 shows that time 
spent to the verification can be roughly estimated to be one 
man-month per one KLOC. The L2 cache case is an exception 
from this rule, but it required additional supporting as it has 
been already said. 

A comparison between our results and the second approach 
(OVM) could be worth knowing. Very little estimations of the 
OVM application efforts prevented us from doing it. We 
suggested those spent to the development of test systems with 
close functionality to be similar to the proposed methodology. 
It is because OVM also utilizes object-oriented language and 
the set of test system components looks like proposed. 
Nevertheless, there is a certain difference between approach 
given in this article and OVM: our approach provides 
additional means of FSM-based stimuli flow creation. 
Actually, this question has not been thoroughly analyzed by us. 
It is a point of the following research. 

The proposed way of merging is a new revealed ability of 
the basic approach. Only some experiments were conducted to 
estimate the possibility of merging. First, the test system for a 
simple FIFO module was developed. It took about two men-
days including efforts spent for documenting of the project. 
Then this FIFO module was multiplied to become three FIFO-
modules into one envelop.  Two of them were input buffers and 
the third one was output buffer. We placed between them an 
arbiter to select which one of the input buffers sends data to the 
output one. It always selected the first FIFO if it contained any 
data. To test this combination we combined three test systems 
for original FIFO-module and added functionality of the arbiter 
in a very simple way: functional model always reads data from 
the first FIFO if it contained any data and in other case read the 
second FIFO. Stimuli generator used original scenario 
functions like “pop” and “push” but with a little modification 
as now two FIFO played role of the input and the last one did 
of the output. The interface adapters of sub test systems were 
overloaded. Formerly, to make pop and push operations only 
two interfaces had been used: one input and out output. In case 
of input FIFOs, input interfaces were not changed (the 
functionality of setting values to the DUV’s wires from sub 
reaction checkers had been removed before). Output interfaces 
were overloaded to send messages into output FIFO’s input 
interfaces. Initially, the registration of adapters of interfaces 
had looked like: 

CPPTESK_SET_OUTPUT_ADAPTER(iface3,  

 FIFOMediator::deserialize_iface3); 

where deserializer is a function which translates DUV’s 
wires signals into message. As the output interface iface3 was 
not already output one, we overloaded this adapter: 



 

 

CPPTESK_SET_INNER_IFACE_ADAPTER(FIFOMediator,  

fifo0, fifo0.iface3, MM::deserialize_inner_iface0); 

New deserializer calls the output FIFO fifo2: 

CPPTESK_DEFINE_PROCESS( 

        MM::deserialize_inner_iface0) 

{ 

  … 

  if(!fifo2.is_full()) { 

    … 

    fifo2.start(&FIFO::push_msg, 

                   fifo2.iface1, data); 

  } 

} 

 

The output interface model of output FIFO just gave the 
messages into common reaction checker’s output interface 
model. To create the common test system we spent about half a 
day accounting the time to research of merging possibility. The 
time could have been spent for developing of complex test 
system from scratch is expected to be about 2 days, but it is not 
the most important. The time to connect sub test systems 
slightly correlates with complexity of DUV’s sub part. Mostly, 
it depends on amount of input and output interfaces and efforts 
to connect them together. We have an estimate that to connect 
exactly one input interface to one output is possible in about 
one hour. This time will be spent to develop channel between 
them that will translate messages between channels. The 
average DUV’s part, by our estimates, consists of about ten 
input and ten output interfaces, so that to connect two average 
DUV’s parts is possible in one-two men-days, according to the 
productivity of the verification engineer. 

VI. CONCLUSIONS 

This approach gives us a useful way to develop test systems 
for separated parts of DUVs and then to merge the test systems 
with high level of reuse. The main advantages of the approach 
are the check of interconnection behavior with no additional 
code and special means to facilitate reuse. The architecture is 

supported by a library developed in C++ that allows using the 
great opportunities of the language while developing test 
systems. The fact that usually system level simulators are based 
on C++ points to the ability of reusing parts of system-level 
reference models and reference models of the developed test 
systems and vice versa. There are two bonuses: the test systems 
can control communications between functional models inside 
the DUV as its parts, especially when the DUV is still under 
construction, and that the library supporting the approach 
supports UniTESK technology which allows developing high-
quality tests based on FSM-traversing and spreading test 
systems among clusters of computers. 
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