Model Based Conformance Testing for Extensible
Internet Protocols

Nikolay Pakulin
ISP RAS
npak @ispras.ru

Abstract—Many contemporary Internet protocols are extensi-
ble. Extensions may introduce new functionality, alter the format
of protocol messages, affect basic functionality or even modify
the protocol modus operandi. Model based testing of extensible
protocols faces a number of problems, the most challenging one
is that extensions altering basic functionality require changes
in the protocol model. It is highly desirable to have a flexible
protocol’s model which would let test developers to extend the
model without rewriting existing parts of the model. The article
presents the method for model based conformance testing for
extensible Internet protocols which satisfies this requirement.
Each extension is specified in a separate unit, the method presents
facility to combine those units into entire model for testing
the protocol’s implementations. The method uses Java language
to formalize the requirements. As an example of the method
application article presents test suite development for a number
of SMTP extensions.

Index Terms—model based testing, conformance testing, ex-
tensible protocols.

I. INTRODUCTION

A lot of protocols for different applications are functioning
in the contemporary Internet. Many protocols were developed
more than a decade ago. Often while developing a protocol
specification it is not easy to foresee all variants of protocol’s
usage in the future. Protocol application reveals new tasks,
makes new demands for the utilizing protocol. The simplest
way to update the protocol for new tasks is to develop and
publish a new version of the protocol’s standard. However
for popular protocols this solution may results in necessity
of frequent publications of standards’ revisions. The high
frequency of protocol updates requires much effort for redac-
tion and agreement of the standard’s text; it is fraught with
injection of indeliberate mistakes and may violate the protocol
stability. Also it may hamper the developers of protocols
implementations.

To solve the problem of frequent renewal of the protocol
specifications nowadays protocol designers follow the pattern
that one might call as “extensible protocol”. The pattern
implies that new protocol features emerging after publication
of the protocol standard are specified in separate documents
as “extensions”. That is, the description structure of extensible
protocols consists of the following parts:

« the basic protocol functionality which must be supported
by all implementations is specified in a fixed number of

Anastasia Tugaenko
ISP RAS
tugaeko @ispras.ru

RFC! documents, and

« new functions (extensions) are specified in separate RFC
documents. For consistent work of extensions with the
basic standards developers publish the special RFCs
describing general extensions methods.

The history of SMTP protocol [1], [2], [3] illustrates this
pattern. Since its inception in 1982 the SMTP protocol went
very well with its tasks on sending messages between hosts
in computer networks. But the protocol restrictions became
apparent in 1990-ies. Then SMTP developers decided to
improve some SMTP protocol functions instead of replacing
the standard with a new one. It was considered to keep the
basic SMTP specifications “as is” and specify new functions
in new RFCs. To accomplish this goal in 1995 the RFC 1869
“SMTP Service Extensions” [4] was published. The document
specified the method for extending SMTP capabilities.

The SMTP extension mechanism proved to be successful,
and the SMTP community agreed to integrate it into the main
SMTP specification. In 2001 the revision RFC 2821 [2] was
published, it includes the specification of basic functionality
and also the specification of extensions mechanisms. Since
then all new features, even the fundamental ones — security and
authentication, are published in separate documents, leaving
SMTP specification intact. The SMTP specification in effect,
RFC 5321 [3], contains editorial and clarification changes to
RFC 2821 and maintains the extensible architecture of the
protocol.

In general protocol extensions may be classified as follows:

o extensions specifying new functionality (e.g., new com-
mands, new types of messages and responses);

« extensions altering the format of protocol messages;

o extensions altering the basic protocol functionality or
operations of other extensions;

o extensions altering modus operandi of the protocol.

The classification of the extensions provided above shows,
that extensions shouldn’t be considered as independent — they
may affect each other or the basic protocol. This observation
leads to a conclusion that a model of an extensible protocol
is not a plain composition of the basic protocol model and
models of extensions. Modeling of extensible protocols re-
quires a specialized composition that takes into consideration

IRFC - Request for Comments — the normative document for the Internet
standards



dependencies between extensions.

Another important aspect of protocol extensibility is op-
tional support of extensions in various implementations. Im-
plementors are not obliged to support all published extensions;
as a result, implementations of the same protocol might
provide different sets of protocol extensions. This observation
and the fact that extensions may change the basic protocol’s
functionality hampers testing of extensible protocols. To test
extensible protocols test developer must know the exact set of
extensions supported by Implementation Under Test (IUT, also
we will call it “target implementation™) and take into account
the profile of those extensions to assign the right verdict
concerning IUT conformance to the protocol specification.

As a consequence, model based testing (MBT) of extensible
protocols faces a number of problems. First of all, the protocol
model must be coherent with the IUT, i.e. the model must
reflect the extensions, provided by the IUT, and leave all
other extensions beyond the scope. Furthermore, the model
must take into account that extensions may alter basic protocol
functionality. Obviously, it is unwise to develop independent
models for each thinkable set of protocol extensions. A more
realistic scenario is to construct models of the protocol and its
extensions separately and to combine them into the model of
IUT depending on the actual extensions profile of that IUT. To
implement this scenario the test development method should
provide facilities for modular specification development, and
facilities to combine the specification modules either statically
or dynamically to match the list of supported extensions of
arbitrary IUT. Despite the challenge with modular specification
of extensible protocol it is highly desirable to have modular
test specification, when test actions for extensions are specified
in separate units and the actual test is composed from test
specifications of extensions provided in IUT.

The article presents the method for model based confor-
mance testing for extensible Internet protocols. Within the
proposed method basic protocol functions and extensions are
modeled as state machines with common state. Each state
machine is specified in a separate unit, the whole model
of IUT is composed from basic protocol specification and
extensions before test execution starts. Authors has developed
a composition facility that makes possible modular specifica-
tion of extensions that introduce new functions, alter protocol
specification and, to some extent, extensions that modify
protocol message format. The proposed method does not allow
specification of extensions that change modus operandi of a
protocol (such as PIPELINING extension of SMTP [5]). The
method supports modular development of test actions. Test is
treated as a finite state machine and the method implies specifi-
cation of test transitions for extensions separately. The method
provides a facility that combines test specifications of different
extensions into a single test state machine dynamically before
test execution.

The paper is structures as follows. Section II presents
existing approaches to model-based conformance testing and
discusses their applicability to testing of extensible protocols.
Section III describes our previous work on model based testing

of electronic mail protocols. Section IV presents a new model
based method for testing protocols with extensions. Section V
consists of two parts, the first part describes SMTP protocol
and a few extensions, and the second part presents an example
of new method application — the development of a test suite
prototype for SMTP protocol with extensions. Section VI
discusses the applicability of a presented method. Section VII
presents results of the work and describes directions for future
work. And Section VIII is a conclusion.

II. RELATED WORKS

Internet protocols contain multitude of states, those states
may be divided into groups with similar behavior inside
each group. Manual test suite development for such kind
of protocols seems very laborious and redundant because of
similar checks in similar states. Tools for automated testing
which allow re-use of a protocol model for verdict assignment
become more frequent in use for developing test suites for
Internet protocols.

In general, it is convenient to use tools possessing the
following properties for testing Internet protocols:

o formal relation between requirements and tests;

o automated verdict assignment about the correctness of
IUT behavior.

o automated tests generation depending on IUT responses;

Testing of protocol’s extensions brings in supplementary
requirements:

o the ability to easily change a protocol’s model. Some
extensions add new commands, new response codes, new
states thereby changing the protocol’s model. To develop
test suites for protocols extensions test developer must
have an opportunity to choose the right model: either
basic or modified by a number of supported extensions;

« the ability to develop specifications and tests as separate
units, one unit per extension, basic specification should
be specified in separate units. This requirement is dictated
by the fact that extensions are optional and not all
implementations must support all extensions.

The majority of listed above requirements are satisfied by
application of the model based approach and tools.

We don’t consider the JUnit [7] and TTCN-3 [8] as they are
not model based, the test suites written with these tools contain
a lot of redundant code, test sequences must be constructed
manually and all the verifications also must be specified
manually. The whole process of test suite development for
extensible protocols with these tools is very laborious because
of a greater part of the basic test suite (test suite for testing
the basic protocol’s functionality) must be changed.

The UPPAAL [9] is a popular tool suite for model checking
of real-time systems. It provides checking of models with
hundreds of states, has some facilities to detect deadlocks.
But testing of Internet protocols deals with black-box state
machines, so test developers need a tool for automated test
suites generator, and the UPPAAL doesn’t provide such gen-
erator.



Tools NModel [10] and SpecExplorer [11] may be suc-
cessfully used for developing test suites for simple small-
scale protocols but they require development of considerable
supplementary libraries to test large-scale protocols and ex-
tensions. Toolkit Conformiq Qtronic [12] doesn;t provide tests
generation, as a result it generates TTCN-3 scripts.

III. PREVIOUS WORK

In works [13], [14] the method for automated testing of
e-mail protocols was presented. That method uses Java spec-
ification extension JavaTESK [15]. We used that method to
develop test suites for basic functionality of implementations
of mail protocols SMTP, POP3 and IMAP4 [14]. Developed
test suites were applied to implementations and detected a
number of noncompliances in well-known open-source mail
servers.

But that method isn’t suited for conformance testing of
extensible protocols since it does not support modular models
and tests and implied adaptation of the protocol model and
test for each extension.

IV. METHOD FOR EXTENSIBLE PROTOCOLS TESTING

This section presents a method for model-based confor-
mance testing of extensible Internet protocols’ implementa-
tions. The primary target of the method is to provide test
developers facilities for modular modeling and test specifi-
cation. As stated in the introduction, protocol extensions are
not independent. On the contrary, protocol extensions may
affect each other; furthermore, extensions may even alter the
basic functionality of the protocol. These observations lead to
a conclusion, that a model of an extensible protocol can not
be presented as a plain composition of separate models.

The method consists of two parts:

1) All the extensions are specified in separate units, in
general one unit represents one extension. The structure
of the model state is specified in the separate classes
and all test units use this global shared state. Every unit
may change the current state according to extension’s
specification. Basic functionality is also specified in
one or several units (e.g. connect and disconnect may
be specified in one unit and transaction commands —
in the different unit). To model implementations with
extensions the structure of general shared state may
be changed by the following actions: addition of new
symbols of the states introduced by the extensions; spec-
ifying new actions; specifying or changing precondition
for actions from different states.

2) All test state machines for extensions are specified
separately in different units. Whole test is constructed
as a composition of test state machines for extensions
supported by TUT. Note that this is not a true “compo-
sition” because of general test utilizes the shared state.
Abstract test description for each extension is specified
in a separate unit.

Application of this method defines the following actions
to test extensible protocols. For adding new extension test

developers add specification and test units into the project. If
an extension adds new command then this command should be
added to the commands (actions) register. Also the availability
of this command in the set of states should be added to the
states register. If extension changes the basic functionality then
test developers should rebind old aspect with new specification
unit. The comprehensive test is constructed as a composition
of units specifying the extensions supported by the IUT.

The proposed method contains the following main aspects:

o simplification of the development and maintenance of
model and tests for protocol’s implementations. Specifi-
cations and tests for the protocol’s extensions are defined
in separated modules. This allows easily changing the
protocol models for new protocol’s extensions;

« construction of specification for IUT in accordance with
set of extensions supported by target implementation;

o construction of general test as a composition of test
modules for extensions supported by the target imple-
mentation.

The method utilizes the library for model based automated
testing [16]. The protocol’s model presented as a finite state
machine. The implementation’s requirements presented in
contract specification notation: for each operation pre and
postconditions are defined, precondition restricts the opera-
tion’s availability in different states, postcondition specifies
the required behavior. Also the library grants the following
useful tools:

o test sequence iterator. The test sequence generates au-
tomatically from test model and contract specifications.
Test model is presented as a finite state machine, each
impact to the IUT contains precondition which specifies
the acceptability of this impact in the current state;

o automated coverage calculation. States and transitions
may be labeled with marks and branches, in this case
they will be represented in the test report. Such labels
allow defining the formal relation between requirements
and tests;

« automated verdict assignment concerning the implemen-
tation under test behavior.

The presented method contains the following steps:

1) Creation of requirements catalogue for basic specifica-
tion of the protocol. This catalogue contains only re-
quirements from basic protocol specification and doesn’t
include the requirements from extensions’.

2) Creation of requirements catalogues for protocol ex-
tensions. These catalogues contain requirements from
extensions specifications.

3) Designing of the extensible model for the basic specifi-
cation. The extensibility of the model will be necessarily
in the next steps;

4) Designing of units for extensions’ specification. Gener-
ally, one unit represents one extension. These units may
be easily included into protocol’s model developed in
the previous step;

5) Designing of formal specification for basic protocol and



extensions. The basic functionality specification is de-
veloped as self-sufficient. The extensions’ specifications
are developed as separate units which may be added into
the basic specification.

6) Formalization of requirements. At this step the require-
ments of basic specification and the requirements of
extensions are formalized as pre and postconditions.

7) Developing of test scenarios for basic functionality.

8) Developing of units with test scenarios for protocol
extensions.

9) Constructing of the comprehensive test for the target im-

plementation. This test includes the scenarios for basic

functionality and the scenarios for extensions supported
by implementation under test.

Execution of test suites and analyzing the results. Test

suite improvement when necessary.

10)

Not all steps in the method are mandatory. Also note that
this method may be used not only for extensible protocols and
for extensions, it may be easily utilized for testing other kinds
of Internet protocols. If in the last step not all requirements
are covered by the constructed test than steps 6-10 may be
repeated as many times as needed.

V. METHOD CASE STUDY

This section presents the method case study on testing
the extensible Simple Mail Transfer Protocol (SMTP). First
subsection contains the description of SMTP protocol and its’
extensions; second subsection presents the description of test
suite development.

A. SMTP Protocol Extensions

Protocol SMTP is a text based protocol of the upper layer
of the TCP/IP stack. The protocol consists of two parties: a
client and a server. After establishing a connection the client
issues commands to the server and the server executes them
and returns responses to the client. The response depends on
success of the command execution.

Simple mail transfer protocol is used to send messages. This
protocol has a following feature: each physical server could
operate as both SMTP server and SMTP client. Being a server
it accepts incoming emails and then became a client to forward
these received messages to the next hops. To forward messages
between various domains SMTP uses its own overlay network
over TCP/IP. When an SMTP implementation being a server
identifies itself as the final destination of the message it
stops forwarding the message and places it into internal
implementation-specific storage. To retrieve emails from the
storage end-users utilize other protocols: POP3 (Post-Office
Protocol, version 3 [17]) or IMAP4 (Internet Mail Access
Protocol version 4 [18]).

SMTP protocol is extensible. To identify what extensions
are supported by a server implementation a client should issue
the EHLO command. To this command the server replies with
multiline response, lines provides information about supported
extensions. Response lines include extension-specific keyword
and also may contain any supplementary information.

The basic protocol model consists of the following states:
DISCONNECTED, CONNECTED, AFTER_HELLO (after is-
suing EHLO or HELO commands), AFTER_MAIL_FROM
(after issuing MAIL command), AFTER _RCPT_TO (af-
ter issuing RCPT command), AFTER_DATA (after issuing
DATA command), AFTER_DOT (after issuing the sequence
(CRLF).(CRLF) in the AFTER_DATA state). With respect
to specification states AFTER_EHLO and AFTER_DOT are
the same, we divide them in model to test implementations to
conform to this requirement.

Lets consider a few examples of SMTP extensions and
categorize them according to extensions classification pro-
posed in Introduction I. The DSN extension described in RFC
3461 [19] specifies the Delivery Status Notifications (DSN).
For example, the client may specify that DSN should be
generated under certain conditions (e.g. when the mail has
reached the recipient) and sent to the initial client. To use
this option initial client should add new parameters in the
transaction commands. This extension is of type 1 — bringing
in new functionality.

The AUTH extension specified in RFC 4954 [20] adding
new state to the protocol model. If an implementation supports
this extension then the basic set of commands would not be
enough to send a message: server may require client’s authen-
tication. This extension also introduces new command AUTH,
new parameters for MAIL command and new response codes.
For example, a server may response to the transaction com-
mands with new code 530. In this case such response means
that authentication is required. The STARTTLS extension
described in RFC 3207 [21] specifies the TLS usage which
helps SMTP agents to protect all or few interactions from
interceptions and attacks. This extension also adds new state
into the protocol model, specifies new command STARTTLS
and new response codes. If a server supports this extension
the transaction commands are not allowed before the command
STARTTLS. These extensions are of type 3 — altering the basic
protocol’s functionality.

The PIPELINING extension specified in RFC 2920 [5]
provides a facility to group several commands to send them
in one transfer operation. If a server supports this extension it
may response to the group of commands as a whole instead
of sending responses to separate commands. This extension
changes the protocol’s structure and is of type 4 — altering the
protocol’s modus operandi.

Protocol SMTP has a long history. Nowadays the basic
specification [3] includes the mechanisms of extensions and
provides different optional parameters in basic commands.
So protocol SMTP has no extensions of type 2 (extensions
altering the format of protocol’s messages), all extensions
which provides new parameters are fitted into the extensible
messages format.

B. Test Suite Development for SMTP Protocol Implementa-
tions with Extensions

The authors have developed a prototype of test suite for
SMTP protocol using the presented method. For basic specifi-



cation we used the requirements catalogue from the previous
works [14]. Also we made new requirements catalogues for
two extensions: the AUTH extension [20] and the DSN [19]
extension which cover two types of extensions (new function-
ality and altering basic functionality). For these extensions we
develop new separate units with specifications (one unit for
one extension) and new separate units with tests (one unit for
one extension as well) .

The structure of the protocol model is organized as follows.
We have a set of states and a set of actions. We define two
maps from states to actions (we name them allowed and
denied) which define policy which commands are allowed
or denied in particular states. If an extension adds a new
command we add this command to the actions set and define
allowed/denied policy for this action. If an extension adds
a new state we add this state to the states set and extend
allowed/denied policy of the protocol commands for this state.
Note, the pair state-action may be undefined in both allowed
and denied maps. In this case we can provide two types
of testing: the conformance testing, in which we consider
undefined pair as denied; and the robustness testing when
undefined pair is considered as allowed. In the latter case we
try to send the command from pair in the state from this pair
and looks whether the target implementation is down.

For testing the AUTH extension we defined a new state
AFTER_AUTH and updated the allowed/denied policies for
transaction commands (MAIL FROM, RCPT TO and DATA).
If the implementation supports the AUTH extension the trans-
action commands may be issued only in authorized states. Also
we added new command AUTH and the parameter AUTH for
MAIL FROM command — the AUTH extension provides two
authentications mechanisms. Then we updated maps allowed
and denied to contain the information about allowed and
denied transitions.

For testing the DSN extension we used methods for MAIL
and RCPT commands with optional parameters. Since this
extension adds only new parameters we didn’t change the
protocol model.

We defined a configuration file with a list of extensions
supported by IUT. Then we used tool [16] to construct the
whole model of IUT (from units specified above) and generate
a test suite. Generated test allow detecting the following types
of noncompliances:

o missing required commands;

« protocol rules violation, such as accepting commands in

illegal states;

o wrong reply codes to the protocol commands.

VI. DISCUSSION

Presented method is applicable for synchronous message
based protocols. In such protocols clients send commands to
the servers and servers executes them and returns the responses
to each command. Responses contain the code which defines
the success of the command execution.

Protocol model consists of few parts: basic part which
represents the model of the basic protocol’s specification and

supplementary parts for protocol’s extensions. Novelty of this
method is the ability to easy altering the protocol’s model and
adding new tests.

The method was assayed by the development of test
suites for SMTP protocol implementations with extensions.
The SMTP extensions may add or alter the protocol’s basic
functionality, bring in new states, new commands and new
response codes. The prototype of test suite for testing SMTP
implementations with extensions shows the applicability of the
method for testing extensible Internet protocols.

VII. RESULTS AND FUTURE WORK

The particular method for testing extensible Internet proto-
cols is presented. The development is in progress, currently
we have a method for testing a few types of extensible proto-
cols. Protocol’s extensions which we can test with developed
method possess the following characteristics: they may add
new commands, new responses, new model states but they
must not alter the protocol’s structure (modus operandi) and
also they must not bring in new encodings of symbols of
sending messages.

Using this method we have developed the prototype of
test suite for testing SMTP implementations with a number
of extensions. The current version of method isn’t applica-
ble for all types of extensions. For example, the extension
PIPELINING [5] for protocol SMTP changes the structure
of the protocol. If this extension is supported implementation
from message-based became stream-based and requires other
testing methods.

Most Internet protocols possess a command for identify-
ing the list of supported extensions. The current version of
presented method utilizes a configuration file to construct
the modified model of IUT. In future versions we plan to
add a feature of dynamic composing of the model and test
state machine depending on implementation responses to the
capabilities command.

After the tests has been executed test developers got a
test trace. This trace contains the log of test execution, so
it contains important information on what is wrong with
implementation under test. Separately of this method we have
a report generator, generated reports presents the test trace
demonstrably but not obviously. Currently test developers
should manually find the places in the test which shows
the noncompliances with the specification. To operate with
obtained information more easily we plan to improve the
report generator.

VIII. CONCLUSION

The paper presents a method for automated model-based
conformance testing of implementations of extensible Internet
protocols. The modeling approach uses state machines to
express functional specifications as a formal definition of
textual requirements elicited from normative sources. Test is
a traversal of some simplified (compared to the model) state
machine; the sequence of test stimulus is generated depending
on IUT responses.



The main idea of the method is modular approach to test
suite development: both functional specifications (models) and
test specifications of basic protocol functionality and each ex-
tension are developed in separate units. Models of extensions
are expressed as state machines over common extensible set;
the method provides facilities to combine such partial models
into a complete state machine, depending on the exact set of
extensions supported by a specific IUT. Test is constructed as
composition of test state machines of the extensions supported
by the specific IUT.

The characteristic feature of the proposed method is the
choice of notations for models and test specification. We use
programming language Java, pure, without any extensions
(such as Java Modeling Language, JML [6]), while model
composition is partially defined in XML. The selection of
Java as the primary notation gives the full power of Java
expressiveness, rich toolkits for model and test development
and, potentially, has more chances to attract attention of
industry since the method does not require experts in formal
description languages.

Using this method the prototype of test suite for testing
SMTP protocols with some extensions was developed. Test
suite covers the following types of protocol’s extensibility:
adding new functionality and altering the basic protocol’s
functionality. The extensions which are altering the protocol’s
modus operandi have not been tested yet. The development
of new method is ongoing project and extending this tool to
test the extensions altering the protocol’s modus operandi is
one of the tasks to decide. Also we plan to improve the report
generator and to extend the method and tool for testing more
types of Internet protocols’ extensions.

ACKNOWLEDGMENT

The authors would like to thank Victor Kuliamin for kindly
provided Java library for automated model based testing.

REFERENCES

[1] IETF RFC 821. Jonathan B. Postel. Simple Mail Transfer Protocol. 1982.

[2] IETF RFC 2821. J. Klensin. Simple Mail Transfer Protocol. 2001.

[3] IETF RFEC 1869. J. Klensin. Simple Mail Transfer Protocol. 2008.

[4] IETF RFC 1869. J. Klensin, N. Freed, M. Rose, E. Stefferud, D. Crocker.
SMTP Service Extensions. 1995.

[5] IETF RFC 2920. N. Freed. SMTP Service Extension for Command
Pipelining. 2000.

[6] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll.
Beyond Assertions: Advanced Specification and Verification with JML
and ESC/Java2. In Formal Methods for Components and Objects (FMCO)
2005, Revised Lectures, pages 342-363. Volume 4111 of Lecture Notes
in Computer Science, Springer Verlag, 2006.

[7] Unit testing framework, http://www.junit.org.

[8] ETSIES 201 873-1 V3.1.1. Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core
Language. Sophia-Antipolis, France: ETSI (2009).

[9] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on
Uppaal 4.0. http://www.uppaal.com/

[10] Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based Software
Testing and Analysis with C#. Cambridge University Press, Cambridge
(2008).

[11] http://research.microsoft.com/pubs/77383/bookChapterOnSE.pdf
http://research.microsoft.com/en-us/projects/specexplorer/

[12] End-to-End Testing Automation in TTCN-3 environment using Con-
formiq Qtronic and Elvior MessageMagic. 2009.

[13] A. Tugaenko, N. Pakulin. Test suite development for conformance
testing of email protocols. // Proceedings of Spring/Summer Young
Researchers’ Colloquium on Software Engineering, pp. 87-91, Nizhniy
Novgorod (2010).

[14] N. Pakulin, A. Tugaenko. Specification Based Conformance Testing for
Email Protocols. // Proceedings of ISoLA 2010, pp.371-382. Heraclion,
Greece, 2010.

[15] JavaTESK: getting started. Moscow, 2008.

[16] V. Kuliamin. Component architecture of model-based testing environ-
ment. Programming and Computer Software, 36(5):289-305, 2010.

[17] IETF RFC 1939. J. Myers, M. Rosem, Post Office Protocol — Version
3. 1996.

[18] IETF RFC 3501. M. Crispin. Internet Message Access Protocol — version
4rev1. 2003.

[19] IETF RFC 3461. K. Moore. Simple Mail Transfer Protocol (SMTP)
Service Extension for Delivery Status Notifications (DSNs). 2003.

[20] IETF REC 4954. R. Siemborski, A. Melnikov. SMTP Service Extension
for Authentication. 2007.

[21] IETF RFC 3207. P. Hoffman. SMTP Service Extension for Secure SMTP
over Transport Layer Security. 2002.



