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Abstract— In this paper we consider one of the classical finite 
state machine (FSM) model modifications - FSM with time-outs 
(or timed FSM). In this model in addition to the ordinary 
transitions under inputs there are transitions under time-outs 
when no input is applying. The behavior of many modern 
systems includes time-outs, for example, mobile phones, etc. In 
the past few years some work have been carried out on studying 
different relations between timed FSMs. Non-separability 
relation is very attractive for non-deterministic classical FSMs 
and FSMs with time-outs course for this relation we don’t need 
«all weather conditions» while testing. In this paper we present 
and compare two approaches for building a separating sequence 
for two separable FSMs with time-outs. One of them is using a 
conversion to classical FSMs, while another one is dealing 
directly with timed FSMs. 
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I.  INTRODUCTION  

      Most of the modern discrete systems, such as digital 
circuits, telecommunication protocols, logical games, etc., can 
be described as Finite State Machines (FSM).  The entry of 
FSM receives one of the enabled inputs and returns an output. 
On condition it is necessary to take into account time aspects 
of discrete system, time function is interposed[1-4]. FSMs 
with introduced time function are called FSMs with time-outs 
or timed FSM (TFSM). Provided that input is being handled 
uniquely, TFSM is named deterministic, otherwise – non-
deterministic. To distinguish correct and invalid TFSMs 
distinguishing sequences are generated. They claim exhaustive 
search of all TFSM’s reactions to the input sequence, i.e. it is 
necessary to input every sequence from test suite enough times 
to observe all outputs of the system. Practical implementation 
of this assumption is almost impossible, and it’s mostly used 
to check non-separability relation[5,6]. FSMs are separable[5], 
if there is an input sequence (called separating sequence), such 
that the sets of output sequences to this sequence doesn’t 
intersect. In this paper two different approaches for building 
separating sequence for FSMs with time-outs are suggested. 

II. PRELIMINARIES 

      Formally, Finite State Machine (FSM) is a quintuple 
S = 〈S, I, O, s0, λS〉, where S is a finite nonempty set of states 
with initial state s0, I and O – finite non-intersecting sets of 
inputs and outputs, λS ⊆ S × I × S × O  – transition relation. If 
for each pair (s, i) ∈ S×I there is at least one pair (o, s′) ∈  
O×S such that (s, i, o, s′) ∈  λS, FSM is called comlete. FSM 
with time-outs is a sextuple S = 〈S, I, O, s0, λS, ∆S〉, where S 
is a finite nonempty set of states with initial state s0, I and O – 
finite non-intersecting sets of inputs and outputs, 
λS ⊆ S × I × S × O  – transition relation and 
∆S: S → S × ( N ∪{ ∞}) – time-outs function, that defines 
time-out for every state. The time reset operation resets the 
value of the TFSM’s clock to zero at the execution of the 
transition. If TFSM, being in certain state s1, doesn’t receive 
input for a certain time t such that (s1, t, s2) ∈ ∆S, it transfers to 
the state s2. FSM is called observable, if for each triple (s, i, 
o) ∈ S×I×O there is not more, than one state s’ such that (s, i, 
o, s’) ∈ λS. FSM could be considered as FSM with time-outs 
where for each state s ∈ S ∆S(s) = (s, ∞). Timed input  is a 
pair <i, t> ∈  I × Z.  

Similar to [3], in order to extend transition relation to 

timed inputs we add a function timeS: S × 0
+Z → S that 

allows to determine TFSM’s state when the clock value is 
equal to t based on the current state. Let’s consider the 
sequence of time-outs ∆S(s) = (s1, T1), ∆S(s1) = (s2, T2),  …, 
∆S(sp-1) = (sp, Tp) such that T1 + T2 + … + Tp-1 ≤ t, but T1 + T2 + 
… + Tp > t. In this case timeS(s, t) = sp-1. If ∆S(s) = (s, ∞), then 
timeS(s, t) = s for each t. For each timed input 〈i, t〉 we add  a 
transition (s, 〈i, t〉, s', o) to λS, if and only if 
(timeS(s, t), i, s', o) ∈ λS. 

Sequence of timed inputs is called timed input sequence. 
Pair α/β, where α = <i 1, t1>,…, <ik, tk> , β = o1,…,ok is called 
timed input/output (I/O) sequence (or timed trace), if λs 
defines a sequence of transitions (s0, <i1,t1>, o1, sr1 ), (sr1, 
<i2,t2>, o2, sr2)…, (sr(k-1), <ik,tk> ok, srk).  

As usual, the TFSM S is  connected if for each state s 
there exists a timed trace that can take the machine from the 
initial state to state s. 



State s' is called 〈i, t〉 -successor of state s, if there 
exists o∈O such that (s, 〈i, t〉, s', o) ∈ λS. The set of all 
〈i, t〉-successors of state s will be denoted by sucS(s, 〈i, t〉), in 
case of t = 0  we denote it as sucS(s, i). 

 An example of TFSM that describes mp3-player behavior 
is given below: 

 
                   Figure 1. The TFSM that describes mp3-player 

behavior 
 

      The machine consists of the following states: 
      Play – the music is playing, player isn’t in energy-saving 
mode (display’s on); 
      Play\Energy Saving – the music is playing, but player is in 
energy-saving mode (display’s off); 
     Pause – the music is stopped, display’s on; 
     Hold – the music isn’t playing, player’s off (hold mode).  
     Inputs and outputs: 
     i1 – player’s controller is used; 
     i2 – play/pause button; 
     i3 – hold button; 
     o1 – display’s on; 
     o2 – display’s off. 
Let us observe TFSM’s behavior on timed input sequence α = 
<i1,5><i2,3><i1,4>. In that case the output sequence is β = o2 
o1 o2. 
A TFSM S = <S, I, O, s0, λS> is a submachine of TFSM P = 
<P, I, O, p0, λP > if S ⊆ P, s0 = p0 and each timed transition (s, 
<i, t>, o, s′) of S is a timed transition of P. 

III.  INTERSECTION OF TWO TIMED FSMS 

      Intersection S ∩ P of two TFSMs S = 〈S, I, O, s0, λS, ∆S〉 
and P = 〈P, I, O, p0, λP, ∆P〉 is the most connected sub-TFSM 
of Q = (Q, I, O, q0, λQ, ∆Q),  where Q = S × K × P × K, K = 
{0 , ..., k} , k = min(max ∆S(s)↓N , max ∆P(p)↓N ), initial state — 
quadruple (s0, 0, p0, 0). Transition relation λQ and time-outs 
function ∆Q are defined according to the following rules[3]: 

1. Transition relation λQ contains quadruple [(s, k1, p, 
k2), i, o, (s', 0, p', 0)], if and only if                                    
(s, i ,  s', o)  ∈  λS and (p, i ,  p ', o)  ∈ λP.  

2. Time funct ion is def ined as ∆Q((s, k1, p, k2)) = 
[(s′, k'1, p′, k'2), k], k = min(∆S(s)↓N - k1, ∆P(p)↓N - k2). 
State (s′, k1′, p′, k2′) = (∆S(s)↓S, 0, ∆P(p)↓P, 0), if 
∆S(s)↓N = ∞ or ∆P(p)↓N = ∞ or (∆S(s)↓N -
 k1) = (∆P(p)↓N - k2). If (∆S(s)↓N - k1), (∆P(p)↓N -
 k2) ∈ Z+ and (∆S(s)↓N - k1) < (∆P(p)↓N - k2), then state 
(s′, k1′, p′, k2′) = (∆S(s)↓S, 0, p, k2 + k). If (∆S(s)↓N -
 k1), (∆P(p)↓N - k2) ∈ Z+ and (∆S(s)↓N - k1) > (∆P(p)↓N -
 k2), then state (s′, k1′, p′, k2′) = (s, k1 + k, ∆P(p)↓P, 0). 

      Algorithm 1: Constructing an intersection of two 
TFSMs 
Input: TFSMs S = 〈S, I, O, s0, λS, ∆S〉 and 
P = 〈P, I, O, p0, λP, ∆P〉 
Output:  TFSM Q = (Q, I, O, q0, λQ, ∆Q),  Q = S ∩ P 
Step 1: add initial state q0 = (s0, 0, p0, 0) into Q. 
Step 2: while set of states of TFSM Q has non-considered 
states, consider next in turn non-considered state q, step 3. 
Otherwise, End. 
Step 3: for each input i find state q'=(s', 0, p', 0) that is i-
successor of state q. If the set Q doesn’t include q' – add q' 
into the set Q, add transition [(s, k1, p, k2), i, o, (s', 0, p', 0)] 
into λQ if  (s, i ,  s', o)  ∈ λS and (p,  i ,  p ', o)  ∈ λP. 
Step 4: if there is a finite delay for state q = (s, k1, p, k2), 
then: 
k:= min(∆S (s) ↓ N  – k1,      ∆P (p) ↓ N  – k2) 
If ( ∆S(s)↓( N ∪ {∞})  = ∞ or ∆P(p)↓( N ∪ {∞})  = ∞ or (∆S(s)↓ N  -
 k1) = (∆P(p)↓N  - k2) ), then q'= (∆S (s), 0,  ∆P (p), 0);                           
Else  

if (∆S(s)↓ N  - k1) < (∆P(p)↓ N  - k2),  
then q' :=  (∆S(s)↓S, 0, p, k2 + k); 

 if (∆S(s)↓ N  - k1) > (∆P(p)↓ N  - k2),  
then q' := (s, k1 + k, ∆P(p)↓P, 0);   

Extend function  ∆Q: ∆Q(q) = (q', k); 
If the set Q doesn’t include q', then add q' into Q. Step 2. 
The intersection of two TFSMs S and P (Figures 2,3) is 
presented in Figure 4. 

 
Figure 2. TFSM S 

 
Figure 3. TFSM P 



 
Figure 4. TFSM S ∩ P 

 

IV.  SEPARATING SEQUENCE FOR TWO TFSMS 

We suggest algorithm for constructing a separating sequence 
for two TFSMs. 
Algorithm 2: Constructing a separating sequence of two 
TFSMs 
Input: Complete observable TFSMs S = 〈S, I, O, s0, λS, ∆S〉 
and P = 〈P, I, O, p0, λP, ∆P〉 
Output: separating sequence for S and P (if exists)  
Step 1: construct the intersection of S and P with the help of 
Algorithm 1. If TFSM S ∩ P is complete, S and P couldn’t be 
separated. End. 
Step 2: Derive a truncated successor tree of S ∩ P. The 
root of the tree is the pair 〈q0, 0〉, other nodes – sets of the 
pairs 〈q, t〉, where q is the state of S ∩ P.  
k: = 0; 
Edge: = ∅; 
Qk0: = {〈q0, 0〉}; 
Qk: = {Qk0}.  
Until  
     (Rule 1: for the set Qk j  ∈ Qk, j ≥ 0, there is an input i-sep 
such that each state q, 〈q, t〉 ∈ Qk j ,  has no i-sep-successors in 
TFSM S∩P 

 or 
      Rule 2: for each set Qk j  ∈ Qk there exists 

Qam ∈ Qa, a < k, such that Qk j  ⊇ Qam) 
Do: 
For each input i construct the set of successors M: = 

Υ
kjQq

QQ iqsuc
∈

↓ × }0{),( , add M to Qk+ 1 and add triple 

(Qkj, i, M) to the set Edge.  

If there exists q, 〈q, t〉 ∈ Qk j ,  such that 
(∆Q(q))↓( N ∪ {∞})  = ∞, define minimum time-out T and set 

of successors R for the set  Qk j  = {〈q1, t1〉, 
〈q2, t2〉,…,〈qr, tr〉}as follows:  

}{min:
1

uu
ru

tTT −=
≤≤

, Tu = (∆Q(qu))↓( N ∪ {∞}) ;  

R := { 〈q1', t1'〉, 〈q2', t2'〉,…,〈qr', tr '〉}, qu' = timeQ(qu, 
tu + T) and either tu' = 0 if (Tu = ∞ or Tu = tu + T), or tu' 
= tu + T if Tu > tu + T.  
Add R to Qk+1 and add triple (Qkj, T, R) to the set Edge. 
       
Step 3: If the tree was terminated according to the Rule 1, 

then construct the sequence of edges (Q0 0, g1, 
11 jQ ), 

(
11 jQ , g2, 

22 jQ ), …, (
1

)1(
−

−
kjkQ , gk, 

kjkQ ) such that 

(
1

)1(
−

−
ljlQ , gl, 

ljlQ ) ∈ Edge for each l ∈ {1, …, k} and gl ∈ 

{ I ∪ N }.  
Collect the separating sequence α = <i1, t1> … <im, tm>: 
j := 0; 
Tj := 0; 
r := 0;  
While (j ≤ k) execute:  
      If gj ∈ I,  
      Then ir := gj , tr := Tj , r := r+1, Tj := 0;  
      Else Tj := Tj + gj ; 
               j := j+1; 
              m := r;  
              ir := i-sep , tr := Tj . 
If all branches of the tree were terminated according to 
the Rule 2, then TFSMs S and P are unseparable. 
End. 
The truncated tree for TFSMs S and P is presented in Figure 5: 

 

Figure 5. Truncated successor tree of S ∩ P 

So, the separating sequence is α = <i1, 0><i2, 2>. 



Algorithm 2 is the modification of the algorithm from [6], 
of deriving a separating sequence for two untimed FSMs. The 
modifications are associated with time-outs, because the only 
way to reach some states is to wait for a while. Thus in 
Algorithm 2 each node of the tree is not the set of states of the 
intersection, but the set of pairs <state, time>. For the set in 
the node we determine the minimal delay and the set of 
successors under this delay is derived in the same way as 
when deriving the intersection. We need the edges labeled by 
delay because for the timed FSMs the separating sequence is 
timed input sequence, so we need to wait some time before 
applying another input. 

Rule 2 is inherited from [6] and in this case we can’t 
separate given timed FSMs. 

Since Rule 1 is also inherited from algorithm [6], and 
transitions under time-outs are derived according to the rules 
that specify the common behavior of timed systems, the 
sequence  α = <i1, t1> … <im, tm> derived according to 
Algorithm 2 will be a separating sequence for two timed 
separable FSMs. 

It is known [6], that for given two complete separable 
untimed FSMs S and P, |S| = n and |P|= m, the length of a 
shortest separating sequence of S and P is at most 2mn−1, and 
this estimation is reachable. Since untimed FSM is a particular 
case of timed FSM the estimation will be the same. 
    

V. CORRELATION BETWEEN FSMS AND TFSMS 

      To transform TFSM S = 〈S, I, O, s0, λS, ∆S〉 into FSM AS 
with the same behavior [3] we add to TFSM a special input 
1 ∉ I and a special output N ∉ O. FSM 

AS  = 〈S ∪ St, I ∪{1}, O ∪{ N}, s0, λS
∆
〉 is constructed by 

adding T – 1 copies of each state s ∈ S with finite time delay 
T, T > 1. Formally, AS is constructed in the following way: 

1) For each s ∈ S, ∆S(s) = (s', T), 1 < T < ∞, the set St 

contains each state 〈s, t〉, t = 1, ..., T – 1. 
2) For each s ∈ S, 〈s, t〉 ∈ St and for each pair i/o, i ∈ 

I, o ∈ O, (〈s, t〉, i, s', o) ∈ λS
∆ , if and only if 

(s, i, s', o) ∈ λS. 
3) For each s ∈ S such that ∆S(s) = (s, ∞) there is a 

transition (s, 1, s, N) in AS. 
4) For each s ∈ S such that ∆S(s) = (s', T), T = 1 there 

is a transition (s, 1, s’, N)  in AS. 
5) For each s ∈ S such that ∆S(s) = (s', T), 1 < T < ∞, 

there are transitions (s, 1, 〈s, 1〉, N), (〈s,  j〉, 1, 〈s,  j 
+ 1〉, N), j = 1, …, T – 2, and transition (〈s, T – 
1〉, 1, s', N) in AS. 

Hence, on condition, that timed FSM S includes n states and 
maximal delay is Tmax, AS can include up to n⋅Tmax states. Be 

more precise, number of states in AS is ( )
s S

n s
∈
∑ , n(s) = 1, if 

∆S(s) = (s, ∞), and n(s) = T, if ∆S(s) = (s', T).  
Thus, in order to derive a separating sequence for two 

TFSMs, we transformed TFSMs into FSMs. Intersection of 

two FSMs could be constructed with the help of Algorithm 1 
without taking into account time-outs. To construct truncated 
successor tree we use Algorithm 2 without time-outs [6], and 
then collect the sequence (if exists) with the help of step 3 
(Algorithm 2). One can assure that the separating sequence for 
AS and AP (Figures 6 and 7) will be the same, i.e., α = <i1, 
0><i2, 2>. 

 

 
Figure 6. FSM AS 

 
 

Figure 7. FSM AP 
       

CONCLUSIONS 

      In this paper we suggested two approaches to separate 
TFSMs. The idea of the first approach is that we construct an 
intersection of two TFSMs and then find separating sequence. 
The main advantage of this approach is comparative simplicity 
due to small amount of states in intersection. Disadvantage – 
weak theoretical basis of complete test suites derivation for 
TFSMs. The second approach is based on “TFSM to FSM” 
transformation. As a result of this transformation we have 
enormous increasing of states in intersection. Thus this way is 
hardly applicable to TFSMs with great time delays. But 
theoretical basis for complete test suites derivation is much 
more stronger for classical FSMs. In the future we’re planning 



to compare program implementations of these two approaches 
in order to find out the range of applicability of each one.  
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