
Separating Non-Determinisic Finite State Machines
with Time-Outs

Rustam Galimullin, Natalia Shabaldina
Radiophysics department
Tomsk State University

Tomsk, Russia
nihilkhaos@gmail.com, NataliaMailBox@mail.ru

Abstract— In this paper we consider one of the classical finite
state machine (FSM) model modifications - FSM with time-outs
(or timed FSM). In this model in addition to the ordinary
transitions under inputs there are transitions under time-outs
when no input is applying. The behavior of many modern
systems includes time-outs, for example, mobile phones, etc. In
the past few years some work have been carried out on studying
different relations between timed FSMs. Non-separability
relation is very attractive for non-deterministic classical FSMs
and FSMs with time-outs course for this relation we don’t need
«all weather conditions» while testing. In this paper we present
and compare two approaches for building a separating sequence
for two separable FSMs with time-outs. One of them is using a
conversion to classical FSMs, while another one is dealing
directly with timed FSMs.

Keywords - finite state mashines with time-outs, non-
deterministic finite state machines, non-separability relation, timed
input sequence, separating sequence

I. INTRODUCTION

 Most of the modern discrete systems, such as digital
circuits, telecommunication protocols, logical games, etc., can
be described as Finite State Machines (FSM). The entry of
FSM receives one of the enabled inputs and returns an output.
On condition it is necessary to take into account time aspects
of discrete system, time function is interposed[1-4]. FSMs
with introduced time function are called FSMs with time-outs
or timed FSM (TFSM). Provided that input is being handled
uniquely, TFSM is named deterministic, otherwise – non-
deterministic. To distinguish correct and invalid TFSMs
distinguishing sequences are generated. They claim exhaustive
search of all TFSM’s reactions to the input sequence, i.e. it is
necessary to input every sequence from test suite enough times
to observe all outputs of the system. Practical implementation
of this assumption is almost impossible, and it’s mostly used
to check non-separability relation[5,6]. FSMs are separable[5],
if there is an input sequence (called separating sequence), such
that the sets of output sequences to this sequence doesn’t
intersect. In this paper two different approaches for building
separating sequence for FSMs with time-outs are suggested.

II. PRELIMINARIES

 Formally, Finite State Machine (FSM) is a quintuple
S = 〈S, I, O, s0, λS〉, where S is a finite nonempty set of states
with initial state s0, I and O – finite non-intersecting sets of
inputs and outputs, λS ⊆ S × I × S × O – transition relation. If
for each pair (s, i) ∈ S×I there is at least one pair (o, s′) ∈
O×S such that (s, i, o, s′) ∈ λS, FSM is called comlete. FSM
with time-outs is a sextuple S = 〈S, I, O, s0, λS, ∆S〉, where S
is a finite nonempty set of states with initial state s0, I and O –
finite non-intersecting sets of inputs and outputs,
λS ⊆ S × I × S × O – transition relation and
∆S: S → S × (N ∪{ ∞}) – time-outs function, that defines
time-out for every state. The time reset operation resets the
value of the TFSM’s clock to zero at the execution of the
transition. If TFSM, being in certain state s1, doesn’t receive
input for a certain time t such that (s1, t, s2) ∈ ∆S, it transfers to
the state s2. FSM is called observable, if for each triple (s, i,
o) ∈ S×I×O there is not more, than one state s’ such that (s, i,
o, s’) ∈ λS. FSM could be considered as FSM with time-outs
where for each state s ∈ S ∆S(s) = (s, ∞). Timed input is a
pair <i, t> ∈ I × Z.

Similar to [3], in order to extend transition relation to

timed inputs we add a function timeS: S × 0
+Z → S that

allows to determine TFSM’s state when the clock value is
equal to t based on the current state. Let’s consider the
sequence of time-outs ∆S(s) = (s1, T1), ∆S(s1) = (s2, T2), …,
∆S(sp-1) = (sp, Tp) such that T1 + T2 + … + Tp-1 ≤ t, but T1 + T2 +
… + Tp > t. In this case timeS(s, t) = sp-1. If ∆S(s) = (s, ∞), then
timeS(s, t) = s for each t. For each timed input 〈i, t〉 we add a
transition (s, 〈i, t〉, s', o) to λS, if and only if
(timeS(s, t), i, s', o) ∈ λS.

Sequence of timed inputs is called timed input sequence.
Pair α/β, where α = <i 1, t1>,…, <ik, tk> , β = o1,…,ok is called
timed input/output (I/O) sequence (or timed trace), if λs
defines a sequence of transitions (s0, <i1,t1>, o1, sr1), (sr1,
<i2,t2>, o2, sr2)…, (sr(k-1), <ik,tk> ok, srk).

As usual, the TFSM S is connected if for each state s
there exists a timed trace that can take the machine from the
initial state to state s.

State s' is called 〈i, t〉 -successor of state s, if there
exists o∈O such that (s, 〈i, t〉, s', o) ∈ λS. The set of all
〈i, t〉-successors of state s will be denoted by sucS(s, 〈i, t〉), in
case of t = 0 we denote it as sucS(s, i).

 An example of TFSM that describes mp3-player behavior
is given below:

 Figure 1. The TFSM that describes mp3-player

behavior

 The machine consists of the following states:
 Play – the music is playing, player isn’t in energy-saving
mode (display’s on);
 Play\Energy Saving – the music is playing, but player is in
energy-saving mode (display’s off);
 Pause – the music is stopped, display’s on;
 Hold – the music isn’t playing, player’s off (hold mode).
 Inputs and outputs:
 i1 – player’s controller is used;
 i2 – play/pause button;
 i3 – hold button;
 o1 – display’s on;
 o2 – display’s off.
Let us observe TFSM’s behavior on timed input sequence α =
<i1,5><i2,3><i1,4>. In that case the output sequence is β = o2
o1 o2.
A TFSM S = <S, I, O, s0, λS> is a submachine of TFSM P =
<P, I, O, p0, λP > if S ⊆ P, s0 = p0 and each timed transition (s,
<i, t>, o, s′) of S is a timed transition of P.

III. INTERSECTION OF TWO TIMED FSMS

 Intersection S ∩ P of two TFSMs S = 〈S, I, O, s0, λS, ∆S〉
and P = 〈P, I, O, p0, λP, ∆P〉 is the most connected sub-TFSM
of Q = (Q, I, O, q0, λQ, ∆Q), where Q = S × K × P × K, K =
{0 , ..., k} , k = min(max ∆S(s)↓N , max ∆P(p)↓N), initial state —
quadruple (s0, 0, p0, 0). Transition relation λQ and time-outs
function ∆Q are defined according to the following rules[3]:

1. Transition relation λQ contains quadruple [(s, k1, p,
k2), i, o, (s', 0, p', 0)], if and only if
(s, i , s', o) ∈ λS and (p, i , p ', o) ∈ λP.

2. Time funct ion is def ined as ∆Q((s, k1, p, k2)) =
[(s′, k'1, p′, k'2), k], k = min(∆S(s)↓N - k1, ∆P(p)↓N - k2).
State (s′, k1′, p′, k2′) = (∆S(s)↓S, 0, ∆P(p)↓P, 0), if
∆S(s)↓N = ∞ or ∆P(p)↓N = ∞ or (∆S(s)↓N -
 k1) = (∆P(p)↓N - k2). If (∆S(s)↓N - k1), (∆P(p)↓N -
 k2) ∈ Z+ and (∆S(s)↓N - k1) < (∆P(p)↓N - k2), then state
(s′, k1′, p′, k2′) = (∆S(s)↓S, 0, p, k2 + k). If (∆S(s)↓N -
 k1), (∆P(p)↓N - k2) ∈ Z+ and (∆S(s)↓N - k1) > (∆P(p)↓N -
 k2), then state (s′, k1′, p′, k2′) = (s, k1 + k, ∆P(p)↓P, 0).

 Algorithm 1: Constructing an intersection of two
TFSMs
Input: TFSMs S = 〈S, I, O, s0, λS, ∆S〉 and
P = 〈P, I, O, p0, λP, ∆P〉
Output: TFSM Q = (Q, I, O, q0, λQ, ∆Q), Q = S ∩ P
Step 1: add initial state q0 = (s0, 0, p0, 0) into Q.
Step 2: while set of states of TFSM Q has non-considered
states, consider next in turn non-considered state q, step 3.
Otherwise, End.
Step 3: for each input i find state q'=(s', 0, p', 0) that is i-
successor of state q. If the set Q doesn’t include q' – add q'
into the set Q, add transition [(s, k1, p, k2), i, o, (s', 0, p', 0)]
into λQ if (s, i , s', o) ∈ λS and (p, i , p ', o) ∈ λP.
Step 4: if there is a finite delay for state q = (s, k1, p, k2),
then:
k:= min(∆S (s) ↓ N – k1, ∆P (p) ↓ N – k2)
If (∆S(s)↓(N ∪ {∞}) = ∞ or ∆P(p)↓(N ∪ {∞}) = ∞ or (∆S(s)↓ N -
 k1) = (∆P(p)↓N - k2)), then q'= (∆S (s), 0, ∆P (p), 0);
Else

if (∆S(s)↓ N - k1) < (∆P(p)↓ N - k2),
then q' := (∆S(s)↓S, 0, p, k2 + k);

 if (∆S(s)↓ N - k1) > (∆P(p)↓ N - k2),
then q' := (s, k1 + k, ∆P(p)↓P, 0);

Extend function ∆Q: ∆Q(q) = (q', k);
If the set Q doesn’t include q', then add q' into Q. Step 2.
The intersection of two TFSMs S and P (Figures 2,3) is
presented in Figure 4.

Figure 2. TFSM S

Figure 3. TFSM P

Figure 4. TFSM S ∩ P

IV. SEPARATING SEQUENCE FOR TWO TFSMS

We suggest algorithm for constructing a separating sequence
for two TFSMs.
Algorithm 2: Constructing a separating sequence of two
TFSMs
Input: Complete observable TFSMs S = 〈S, I, O, s0, λS, ∆S〉
and P = 〈P, I, O, p0, λP, ∆P〉
Output: separating sequence for S and P (if exists)
Step 1: construct the intersection of S and P with the help of
Algorithm 1. If TFSM S ∩ P is complete, S and P couldn’t be
separated. End.
Step 2: Derive a truncated successor tree of S ∩ P. The
root of the tree is the pair 〈q0, 0〉, other nodes – sets of the
pairs 〈q, t〉, where q is the state of S ∩ P.
k: = 0;
Edge: = ∅;
Qk0: = {〈q0, 0〉};
Qk: = {Qk0}.
Until
 (Rule 1: for the set Qk j ∈ Qk, j ≥ 0, there is an input i-sep
such that each state q, 〈q, t〉 ∈ Qk j , has no i-sep-successors in
TFSM S∩P

 or
 Rule 2: for each set Qk j ∈ Qk there exists

Qam ∈ Qa, a < k, such that Qk j ⊇ Qam)
Do:
For each input i construct the set of successors M: =

Υ
kjQq

QQ iqsuc
∈

↓ × }0{),(, add M to Qk+ 1 and add triple

(Qkj, i, M) to the set Edge.

If there exists q, 〈q, t〉 ∈ Qk j , such that
(∆Q(q))↓(N ∪ {∞}) = ∞, define minimum time-out T and set

of successors R for the set Qk j = {〈q1, t1〉,
〈q2, t2〉,…,〈qr, tr〉}as follows:

}{min:
1

uu
ru

tTT −=
≤≤

, Tu = (∆Q(qu))↓(N ∪ {∞}) ;

R := { 〈q1', t1'〉, 〈q2', t2'〉,…,〈qr', tr '〉}, qu' = timeQ(qu,
tu + T) and either tu' = 0 if (Tu = ∞ or Tu = tu + T), or tu'
= tu + T if Tu > tu + T.
Add R to Qk+1 and add triple (Qkj, T, R) to the set Edge.

Step 3: If the tree was terminated according to the Rule 1,

then construct the sequence of edges (Q0 0, g1,
11 jQ),

(
11 jQ , g2,

22 jQ), …, (
1

)1(
−

−
kjkQ , gk,

kjkQ) such that

(
1

)1(
−

−
ljlQ , gl,

ljlQ) ∈ Edge for each l ∈ {1, …, k} and gl ∈

{ I ∪ N }.
Collect the separating sequence α = <i1, t1> … <im, tm>:
j := 0;
Tj := 0;
r := 0;
While (j ≤ k) execute:
 If gj ∈ I,
 Then ir := gj , tr := Tj , r := r+1, Tj := 0;
 Else Tj := Tj + gj ;
 j := j+1;
 m := r;
 ir := i-sep , tr := Tj .
If all branches of the tree were terminated according to
the Rule 2, then TFSMs S and P are unseparable.
End.
The truncated tree for TFSMs S and P is presented in Figure 5:

Figure 5. Truncated successor tree of S ∩ P

So, the separating sequence is α = <i1, 0><i2, 2>.

Algorithm 2 is the modification of the algorithm from [6],
of deriving a separating sequence for two untimed FSMs. The
modifications are associated with time-outs, because the only
way to reach some states is to wait for a while. Thus in
Algorithm 2 each node of the tree is not the set of states of the
intersection, but the set of pairs <state, time>. For the set in
the node we determine the minimal delay and the set of
successors under this delay is derived in the same way as
when deriving the intersection. We need the edges labeled by
delay because for the timed FSMs the separating sequence is
timed input sequence, so we need to wait some time before
applying another input.

Rule 2 is inherited from [6] and in this case we can’t
separate given timed FSMs.

Since Rule 1 is also inherited from algorithm [6], and
transitions under time-outs are derived according to the rules
that specify the common behavior of timed systems, the
sequence α = <i1, t1> … <im, tm> derived according to
Algorithm 2 will be a separating sequence for two timed
separable FSMs.

It is known [6], that for given two complete separable
untimed FSMs S and P, |S| = n and |P|= m, the length of a
shortest separating sequence of S and P is at most 2mn−1, and
this estimation is reachable. Since untimed FSM is a particular
case of timed FSM the estimation will be the same.

V. CORRELATION BETWEEN FSMS AND TFSMS

 To transform TFSM S = 〈S, I, O, s0, λS, ∆S〉 into FSM AS
with the same behavior [3] we add to TFSM a special input
1 ∉ I and a special output N ∉ O. FSM

AS = 〈S ∪ St, I ∪{1}, O ∪{ N}, s0, λS
∆
〉 is constructed by

adding T – 1 copies of each state s ∈ S with finite time delay
T, T > 1. Formally, AS is constructed in the following way:

1) For each s ∈ S, ∆S(s) = (s', T), 1 < T < ∞, the set St

contains each state 〈s, t〉, t = 1, ..., T – 1.
2) For each s ∈ S, 〈s, t〉 ∈ St and for each pair i/o, i ∈

I, o ∈ O, (〈s, t〉, i, s', o) ∈ λS
∆ , if and only if

(s, i, s', o) ∈ λS.
3) For each s ∈ S such that ∆S(s) = (s, ∞) there is a

transition (s, 1, s, N) in AS.
4) For each s ∈ S such that ∆S(s) = (s', T), T = 1 there

is a transition (s, 1, s’, N) in AS.
5) For each s ∈ S such that ∆S(s) = (s', T), 1 < T < ∞,

there are transitions (s, 1, 〈s, 1〉, N), (〈s, j〉, 1, 〈s, j
+ 1〉, N), j = 1, …, T – 2, and transition (〈s, T –
1〉, 1, s', N) in AS.

Hence, on condition, that timed FSM S includes n states and
maximal delay is Tmax, AS can include up to n⋅Tmax states. Be

more precise, number of states in AS is ()
s S

n s
∈
∑ , n(s) = 1, if

∆S(s) = (s, ∞), and n(s) = T, if ∆S(s) = (s', T).
Thus, in order to derive a separating sequence for two

TFSMs, we transformed TFSMs into FSMs. Intersection of

two FSMs could be constructed with the help of Algorithm 1
without taking into account time-outs. To construct truncated
successor tree we use Algorithm 2 without time-outs [6], and
then collect the sequence (if exists) with the help of step 3
(Algorithm 2). One can assure that the separating sequence for
AS and AP (Figures 6 and 7) will be the same, i.e., α = <i1,
0><i2, 2>.

Figure 6. FSM AS

Figure 7. FSM AP

CONCLUSIONS

 In this paper we suggested two approaches to separate
TFSMs. The idea of the first approach is that we construct an
intersection of two TFSMs and then find separating sequence.
The main advantage of this approach is comparative simplicity
due to small amount of states in intersection. Disadvantage –
weak theoretical basis of complete test suites derivation for
TFSMs. The second approach is based on “TFSM to FSM”
transformation. As a result of this transformation we have
enormous increasing of states in intersection. Thus this way is
hardly applicable to TFSMs with great time delays. But
theoretical basis for complete test suites derivation is much
more stronger for classical FSMs. In the future we’re planning

to compare program implementations of these two approaches
in order to find out the range of applicability of each one.

REFERENCES

[1] R. Alur, C. Courcoubetis, M. Yannakakis. Distinguishing tests for

nondeterministic and probabilistic machines // STOC’95, NewYork:
ACM, 1995. P.363-372.

[2] M. G. Merayo. Formal Testing from Timed Finite State Machines / //
Computer Networks. – 2008. – Vol. 52 №2. – P. 432-460.

[3] M. Zhigulin, S.Maag, A.Cavalli, N.Yevtushenko. FSM-based test
derivation strategies for systems with time-outs // Presented to
QSIC’2011.

[4] M. Gromov, D. Popov, N. Yevtushenko. Deriving test suites for timed
Finite State Machines // Proceedings of IEEE East-West Design & Test
Symposium 08, Kharkov: SPD FL Stepanov V.V., 2008. P.339-343.

[5] Starke, P.: Abstract automata, American Elsevier, 3–419 (1972).

[6] N. Spitsyna, K. El-Fakih, N. Yevtushenko Studying the Separability
Relation between Finite State Machines // Software Testing, Verification
and Reliability. –2007. – Vol. 17(4). – P. 227-241.

