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Abstract—This paper deals with the problem of the parallel 
composition construction for two Timed Finite State Machines 
(TFSMs). As a key to the solution of this problem we use parallel 
composition of common Finite State Machines (FSMs). We 
transform given TFSMs to FSMs and prove theorem, that 
obtained FSMs correctly describe behaviour of the given TFSMs. 
Then we build parallel composition of these FSMs, which being 
transformed back to TFSM, gives desired parallel composition of 
the given TFSMs 
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I.  INTRODUCTION 
The Timed Finite State Machine (TFSM) is a model based 

on well-known Finite State Machine (FSM), which allows 
explicit description of a time aspects of system behaviour. For 
example, reaction of a system can be different depending on 
the time moment an input action is applied to it. In the last few 
years the interest to the various problems of TFSM has 
increased. The main lines of researches covered by the post 
papers are the analysis problems: relations between 
TFSMs [1, 2] and test generation methods against those 
relations [3, 4]. 

In our paper we consider a problem of synthesis, namely 
the problem of parallel composition construction of two 
TFSMs. This procedure gives an instrument to build complex 
systems from simple ones, each described by a TFSM. Also, 
the approach we used in this paper to describe a parallel 
composition construction procedure opens the way for solving 
various problems of TFSMs. 

II. PRELIMINARIES 
In this section we give some notions and definitions, which 

we shall use all over the paper. 

A. Language 
An alphabet is a finite non-empty set of symbols and as 

usual, given an alphabet X, we denote X* the set of all finite 
sequences (words) of symbols from X including the empty 
word . The number of symbols in a sequence we shall call 
length of this sequence; by definition, length of the empty 
word is zero. A subset L  X* is a language over alphabet X. 

Let language L be defined over alphabet Y and X be a 
non-empty subset of Y. The X-restriction LX of the language 
L is derived by deleting from each sequence of L each symbol 
of the set Y\X. When the language L is defined over alphabet 
X, and Y is some alphabet that is disjoint with X, consider the 
mapping φ: X  2(XY)* such, that φ(x) = {x : ,   Y*}. 
This mapping can be extended over sequences from X* as 
follows. Let  be a sequence from X* and x be a symbol from 
X, then φ() = Y* and φ(x) = φ(x)φ(), where the sign “” 
stands for concatenation of sequences. We shall call the 
language LY = {φ() :   L} the Y-expansion of language L. 

B. Finite automata 
There exists a special set of languages which can be 

described by the use of finite automata; those are regular 
languages, which are closed under union, concatenation, 
complementation, intersection and also under restriction and 
expansion.  

A finite automaton (FA) is a 5-tuple S = S, A, s0, δS, Q, 
where S is a non-empty finite set of states with the 
designated initial state s0, A is a finite alphabet of actions, 
δS  S  A  S is a transition relation, and Q  S is a set of 
final (accepting) states. If (s1, a, s2)  δS, then we say, that 
automaton S in the state s1 takes action a, and changes its 
state to the state s2; the state s2 is called an a-successor of 
the state s1 and we denote by sucS(s1, a) the set of all 
a-successors of the state s1. Function sucS can be extended 
over sequences from A* as follows: 

sucS(s1, a) = {sucS(s2, a) : s2  sucS(s1, )}. 

By the definition sucS(s1, ) = s1. 

Finite automaton S is called deterministic if for each pair 
(s1, a)  S  A there is at most one state s2  S such that 
(s1, a, s2)  δS, i.e. |sucS(s1, a)|  1, otherwise, the finite 
automaton is non-deterministic.  

Finite automaton S is called complete if for each pair 
(s1, a)  S  A there is at least one state s2  S such that (s1, a, 
s2)  δS, i.e. |sucS(s1, a)|  1, otherwise, the finite automaton 
is partial.  

Let us consider a word   A*. Automaton S recognizes 
or accepts  if there exists an accepting state q  Q such that 
q is a -successor of the initial state, i.e. q  sucS(s0, ). The 
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set LS of all sequences, which are accepted by S, is the 
language accepted by the automaton or simply the language 
of the automaton S. The language of a finite automaton is a 
regular language [5]. 

C. Finite State Machines 
To describe behaviour of a system, which transforms 

sequences over one (input) alphabet into sequences over 
another (output) alphabet, special kind of automata, called 
Finite State Machine, is usually used [6]. 

A finite state machine (FSM) is a 5-tuple 
S = S, I, O, s0, S, where S is a non-empty finite set of 
states with initial state s0, I and O are disjoint finite input 
and output alphabets, S  S  I   O  S is the transition 
relation. If (s1, i, o, s2)  S, then we say, that the FSM S in 
the state s1 gets the input action i, produces the output action 
o and changes its state to s2; the state s2 is called an 
i/o-successor of the state s1. The set of all i/o-successors of 
the state s1 is denoted sucS(s1, i, o), while 

sucS(s1, i) = {s2  S:  o  O such that s2  sucS(s1, i, o)} 

is the set of all i-successors of the state s1. 

Functions sucS(s1, i, o) and sucS(s1, i) can be extended to 
the sequences   I* and   O*, where lengths of  and  
are equal, as follows: 

sucS(s1, i, o) = {sucS(s2, i, o): s2  sucS(s1, , )} 

and 

sucS(s1, i) = {sucS(s2, i): q  sucS(s1, )}. 

By the definition sucS(s1, ) = sucS(s1, , ) = s1. 

FSM S is deterministic if for each pair (s1, i)  S  I there 
is at most one pair (o, s2)  S  O such that (s1, i, o, s2)  S, 
i.e. |sucS(s1, i)|  1, otherwise, FSM S is non-deterministic. 

FSM S is complete if for each pair (s1, i)  S  I there is at 
least one pair (o, s2)  S  O such that (s1, i, o, s2)  S, i.e. 
|sucS(s1, i)|  1, otherwise, FSM S is partial. 

FSM S is observable if for each triple 
(s1, i, o)  S  I  O there is at most one state s2  S such that 
(s1, i, o, s2)  S, i.e. |sucS(s1, i, o)|  1, otherwise, FSM S is 
non-observable. 

A sequence  = (i1, o1)(i2, o2)…(in, on)  (I  O)* is 
called a trace of given FSM S if the set of /-successors, 
where  = i1i2…in and  = o1o2…on, of the initial state of S is 
non-empty, i.e. sucS(s0, , ) ≠ . The set of all traces of the 
FSM is the language LS of the FSM S. Further, talking about 
traces of an FSM, we assume that a sequence  and the 
corresponding pair / are equivalent notions. 

Given FSM S = S, I, O, s0, S, the automaton Aut(S) is a 
5-tuple S  (S  I), I  O, s0, S, S, where for each 
transition (s1, i, o, s2) in S there are two transitions 
(s1, i, (s1, i)), and ((s1, i), o, s2) in S. Since the language LS

aut 
of the automaton Aut(S) is the language of the FSM [7] it 

holds that LS
aut  (IO)*, where IO is concatenation of 

alphabets I and O. 

D. Timed Finite State Machines 
A timed finite state machine (TFSM) is a 6-tuple 

S = S, I, O, s0, S, ΔS, where the 5-tuple S, I, O, s0, S is 
an FSM and ΔS: S  S  (  {}) is a time-out function. 
If ΔS(s1) = (s2, n), then the TFSM S in the state s1 will wait 
an input action for n time units (ticks), and if none arrives it 
will move to the state s2 (possibly the same as s1), without 
producing any output. If ΔS(s1) = (s2, ), then we require 
s2 = s1 and the TFSM can stay in the state s1 infinitely long, 
waiting for an input. Definitions of a deterministic, 
complete and observable TFSM are based on the 
corresponding definitions for underlying FSM.   

A special timed or clock variable can be associated with 
a TFSM; this variable counts time ticks passed from the 
moment when the last transition has been executed and is 
reset to 0 after each transition (input-output or time-out). In 
this paper, for the sake of simplicity, we assume that the 
output is produced immediately after a machine gets an 
input, i.e., we do not consider delays when executing 
transitions. 

A pair (i, t)  I  (  {0}) is a timed input meaning that 
the input i is submitted to the TFSM t ticks later than the 
previous output has been produced. A sequence of inputs is 
a timed input sequence. 

We also define a special function timeS [1] as follows:  

1. timeS(s, t) = s for all t {0} if ΔS(s) = (s, ). 

2. timeS(s1, t) = s1 for all t < T and ΔS(s1) = (s2, T). 

3. timeS(s1, t) = s2 for t = T and ΔS(s1) = (s2, T). 

4. for t > T and ΔS(s1) = (s2, T) define recursively 
timeS(s1, t) = timeS(s2, t – T), i.e. there is a sequence s1, s2,… 
sk such that for each j = 1…k – 1 it holds ΔS(sj) = (sj + 1, Tj) 
and T1 + T2 + … + Tk-1 ≤ t < T1 + T2 + … + Tk-1 + Tk, then 
timeS(s1, t) = sk. 

The function sucS is defined similar to that defined for 
an FSM and is extended to timed inputs as follows: 
sucS(s, (i, t), o) = sucS(timeS(s, t), i, o). 

A sequence  

 = (i1, t1, o1)(i2, t2, o2)…(in, tn, on)  [I  ({0})  O]* 

is called a functional trace of a TFSM S, if the following 
holds sucS(s0, , )  , where  = (i1, t1)(i2, t2)…(in, tn) and 
 = o1o2…on. The set LS of all functional traces of the TFSM 
S is the f-language of the TFSM S. Here we again assume, 
that the pair / and the sequence  are the equivalent 
notions, when speaking about f-language of a TFSM. 

E. Equivalence of automata, FSMs and TFSMs 
Two finite automata S and P with languages LS and LP 

are said to be equivalent if LS = LP. 



Two FSMs S and P with languages LS and LP are said to 
be equivalent if LS = LP. 

Two TFSMs S and P with f-languages LS and LP are said 
to be equivalent if LS = LP. 

III. PARALLEL COMPOSITION 
In this paper we propose definition of parallel composition 

for two TFSMs. This definition relies on the definition of FSM 
parallel composition and the latter is defined in terms of 
parallel composition of corresponding automata. For that 
reason we also describe the conversion procedure [8] of a 
TFSM into an FSM, which then is used for the parallel 
composition construction. We also prove, that built FSM 
correctly reflects the language of a given TFSM. 

A. Parallel composition of languages 
Given pairwise disjoint alphabets X, Y, Z, languages L1 

over X  Y and L2 over Y  Z, the parallel composition of 
languages L1 and L2 is the language 

L = [(L1)Z  (L2)X] XZ, 

defined over X  Z and denoted L1 XZ L2 or just L1  L2 
when the union X  Z is clear from context. 

B. Parallel composition of automata 
Given two finite automata S = S, I  U, s0, δS, QS and 

P = P, U  O, p0, δP, QP, the automaton 
C = С, I  O, c0, δC, QC is a parallel composition of 
automata S and P, denoted C = S  P, iff LC = LS  LP. To 
obtain composition of automata define expansion and 
restriction over automata as follows. 

Given disjoint alphabets I and O and an automaton 
S = S, I, s0, δS, QS. O-expansion of S is an automaton 
SO = S, I  O, s0, δS  µS, QS, where µS  S × O × S 
contains all triples (s, o, s), such that o  O and s  S, i.e. to 
expand an automaton we add loops marked with all symbols 
of alphabet O for each state. 

Given disjoint alphabets I and O and an automaton 
S = S, IO, s0, δS, QS. I-restriction of S is an automaton 
SI = S, I{}, s0, µS, QS, where for each transition 
(s1, a, s2)  δS we add transition (s1, a, s2) into µS in case 
a  I, while we add transition (s1, , s2) into µS in case 
a  O, i.e. to restrict an automaton we replace all symbols 
of alphabet O by special symbol . An automaton without 
-moves can be derived by the determinization procedure [9]. 

Now, the procedure of parallel composition construction of 
two given automata S and P can be described by the formula: 

C = [S O  PI] IO. 

C. Parallel composition of FSMs 
Following [7], we define the parallel composition of two 

FSMs (Fig. 1) based on their corresponding automata. 
However, the language of the parallel composition of two 
automata is not necessary an FSM language. For this reason, 

the obtained language should be intersected with the language 
(IO)*, where I and O are external input and output alphabets of 
composition, to ensure that each input is followed by some 
output. 

Given FSMs S = S, I1  V, U  O1, s0, λS and 
P = P, I2  U, V  O2, p0, λP, the parallel composition 
C = S  P is derived in the following way. We first derive 
corresponding automata Aut(S) and Aut(P) and the parallel 
composition Aut(S)  Aut(P). The obtained automaton then 
is intersected with the automaton that accepts the language 
(IO)* and is transformed to the FSM C coupling inputs with 
the following outputs. FSM C = С, I, O, c0, λC is the 
parallel composition of S and P, where I = I1  I2 and 
O = O1  O2. 

 
Figure 1 – Parallel composition of FSMs S and P. 

It is proven [7], that parallel composition describes 
following interaction of composed FSMs S and P (Figure 1). 
The system starts it work, when both S and P are in their 
initial states, i.e. composition C = S  P is in its initial state. 
External environment applies input action either on channel I1 
or I2, but only one at a time, and then waits for an external 
output reaction of the system through the one of the output 
channels O1 or O2. The component FSM, which just have got 
an input action, processes this input and produces either an 
external output (and so external environment can apply its 
next input action), or an internal output action that is internal 
input action for another component FSM. In the latter case, the 
second component FSM processes a submitted internal input 
and produces either an external output or an internal output 
applied to the first component FSM. The dialog between 
component FSMs continues until one of them produces an 
external output. When an external output is produced the 
system is ready to accept the next external input. Here we 
notice that there can be an external input initiating an infinite 
dialog between component FSMs. Such infinite cycles of 
internal actions are called livelocks. However, in practical 
situations, except of some special cases, input sequences 
inducing livelocks are usually forbidden. 

D. Correspondence between Timed Finite State Machine and 
Finite State Machine 
Before we propose how to construct the parallel 

composition of timed finite state machines, we introduce the 
transformation procedure of a TFSM into an FSM and back, 
and then prove, that obtained FSM correctly describes 
f-language of the TFSM. 
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Given TFSM S = S, I, O, s0, λS, ΔS, we can build an 
FSM with similar set of functional traces by adding 
designated input 1  I and output N  O [8]. Corresponding 
FSM AS = S  St, I {1}, O {N}, s0, λS

  can be built by 
adding T – 1 copies for each state s  S with defined a finite 
time-out T > 1. There is a chain of transitions between these 
copies marked with special input-output symbol 1/N. All 
other transitions are preserved for each copy. Formally, 
constructing of AS can be done by the use of the following 
rules: 

1. St contains all such states s, t, t = 1, ..., T – 1 where 
s  S and ΔS(s) = (s', T), 1 < T < . 

2. For each s  S and s, t  St and for each i/o, i  I, 
o  O, there are transitions (s, i, s', o), (s, t, i, s', o)  λS

  
iff there is a transition (s, i, s', o)  λS. 

3. For each s  S such that ΔS(s) = (s, ) there is a 
transition (s, 1, s, N)   λS

 . 

4. For each s  S such that ΔS(s) = (s', T), T = 1, there is 
a transition (s, 1, s', N)  λS

 . 

5. For each s  S such that ΔS(s) = (s', T), 1 < T < , 
there are transitions (s, 1, s, 1, N)  λS

 ; for each j = 1, …, 
T – 2 there are transitions (s, j, 1, s, j + 1, N)  λS

  and 
(s, T – 1, 1, s', N)  λS

 .  

We use SA to denote S  St, IA to denote I {1} and OA to 
denote O {N}. 

By construction, when a given TFSM S has n states, a 
corresponding FSM AS has ( )

s S
n s


  states, where n(s) = 1 for 

ΔS(s) = (s, ) and n(s) = T for ΔS(s) = (s', T). 

Consider an example in Figure 2. State q of TFSM has 
timeout 2 and therefore, we add one copy of q, 1 (denoted 
“q1”) which is 1/N-successor of the state q while its 
1/N-successor is s. The sets of successors of q and q, 1 for 
all other I/O pairs coincide. 

 

Figure 2 – TFSM S (top figure) and corresponding FSM 
AS (bottom figure) 

An FSM AS = SA, IA, OA, s0, λS
  such that there are no 

transitions marked with 1/o or i/N where o  N and i  1 can 
be transformed to TFSM S = S, I, O, s0, λS, ΔS using the 
following rules: 

1. ΔS(s) = (s, ) iff (s, 1, s, N)  λR
 . 

2. Define ΔS(s) = (sT, T) for all such s that there is a 
chain of transitions 

1/ 1/ 1/ 1/
1 1...N N N N

T Ts s s s    , s, sT  SA, 
T  1 and for each i/o  I  O and 1  j  T – 1 it holds that 

Ssuc (sj, i, o) = Ssuc (s, i, o), but for some i/o  I  O it 
holds that Ssuc (s, i, o)  Ssuc (sT, i, o). 

3. For each s  SA, i  I and o  O, if (s, i, s', o) λS
  

then (s, i, s', o)  λR. 

Notice that transformation from a given TFSM to an 
FSM according to the above rules is unique whereas the 
back transformation from an FSM to a TFSM could be made 
in different ways; however all such TFSMs are pairwise 
equivalent, i.e. their f-languages are the same (see the 
Corollary 2 to Proposition 1).  

The following statements establish the relationship 
between a TFSM and the corresponding FSM built by the 
above rules. 

Proposition 1. FSM AS has a trace 
1

1/  ... 1/
t

N N  i1/o1 … 

1/  ... 1/
mt

N N  im/om iff TFSM S has a functional trace 

i1, t1/o1… im, tm/om. 

Proof. According to the rules of constructing AS, for each 
two states s1 and s1, j and each i  I and o  O, the set of 
i/o-successors of s1, j coincides with the set of 
i/o-successors of state s1 in S. Thus if there exists such s2 
that (s1, i, s2, o)  λS, then there is a transition /

1 2
i os s  in 

both machines S and AS and there is a transition 
/

1 2, i os j s  in AS. Therefore, it is enough to show that AS 
is moving from state s1 to some state q  S  St under the 
sequence 1/  ... 1/

t
N N  with t > 0, and the set of i/o-successors of 

q in AS coincides with the set of i/o-successors of the state 
timeS(s1, t) in S. 

If ΔS(s1) = (s1, ), then timeS(s1, t) = s1 holds for each 
value of t; therefore, there is a transition (s1, 1, s1, N)  λS

  
and AS remains at state s1 under the sequence1/  ... 1/

t
N N . 

Consider now ΔS(s1) = (sT, T). If t < T, then 
timeS(s1, t) = s1 and the sequence 1/  ... 1/

t
N N  moves AS from 

s q 

a/x, 1 

2 

 b/x 

s q 

a/x, 1/N 
b/x 

 

1/N 
 

 b/x 
1/N 

q1 



s1 to s1, t. The set of i/o-successors of s1, t in AS coincides 
with the set of i/o-successors of s1 in S. If t  T, then 
timeS(s1, t) = timeS(timeS(s1, T), t – T) = timeS(sT, t – T). By 
construction, the sequence 1/  ... 1/

T
N N  moves AS from s1 to 

sT, and the sequence 1/  ... 1/
t T

N N


  is applied to AS at state sT, 

i.e., this case is inductively reduced to the previous case 
t < T.� 

Corollary 1. TFSMs S and P are equivalent iff 
corresponding FSMs AS and AP are equivalent. 

Corollary 2. If TFSMs S and P both are built by the 
above procedure from an FSMs AS, then S and P are 
equivalent. 

Proposition 2. TFSM S is deterministic (complete or 
observable) iff the corresponding FSM AS is deterministic 
(complete or observable). 

Proof. The property to be deterministic, observable and 
complete is specified by the cardinality of sets of i/o- and 
i-successors. FSM AS has one and only one transition with 
pair 1/N at each state, that is why properties of FSM AS to be 
deterministic, observable and complete depend on 
transitions with other I/O pairs. 

By construction it holds that 

Ssuc (s, t, i, o) = Ssuc (s, i, o) = sucS(s, i, o) for each state 
s, ΔS(s) = (s', T), and for any value of t < T. Hence 
| Ssuc (s, t, i, o)| = | Ssuc (s, i, o)| = |sucS(s, i, o)| and 
| Ssuc (s, t, i)| = | Ssuc (s, i)| = |sucS(s, i)|. � 

E. Parallel composition of TFSMs 
Parallel composition of two TFSMs S and P is a TFSM 

C = S  P obtained from the FSM AS  AP. 

Let us illustrate our approach by constructing the parallel 
composition of TFSMs. 

 
Figure 3 - Parallel composition of TFSMs as a parallel 

composition of corresponding FSMs 

The parallel composition of FSMs that corresponds to 
the parallel composition of TFSMs is shown in Figure 3. In 
this case, port 1 is a common port for both machines as it 
corresponds to a counter of ticks and this accepts the 
designated input 1 that is an input for both component FSMs 
and can be considered as an input that synchronizes time 

behaviour of component FSMs. The designated output N is 
observed, when there are no outputs at ports O1 and O2 (it is 
observed at both of the ports). Each component FSM has its 
own time variable, which increments every moment when 
component gets the designated input 1, and since this signal 
is applied via a common port for both components the 
global time is used, and thus, we can say that it 
synchronizes the behaviour of component FSMs. 

As an example, consider the composition of TFSM S in 
Fig. 2 and P in Fig. 4 where corresponding FSMs are shown 
as bottom figures. Consider symbols a and o to be external 
input and output respectively, x and b are internal symbols. 

 
Figure 4 – TFSM P (top figure) and corresponding FSM 

AP (bottom figure) 

To derive the parallel composition of FSMs, we firstly 
construct the related automata which are shown in Figure 5. 
Double lines denote accepting states. 

 
Figure 5 – Automata Aut(AS) (top figure) and 

Aut(AP) (bottom figure) 
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The second step is to derive the intersection of expended 
automata that is shown in Figure 6.  This intersection should 
be restricted onto external alphabet (I {1}O {N}) and 
this restriction intersected with an automaton that accepts the 
language [(I {1})(O {N})]* and it is shown in Figure 7.  

 
Figure 6 – Intersection of Aut(AS) and Aut(AP) 

 
Figure 7 – an automaton accepting language 

[{a, 1}{o, N}]* 

We then derive a corresponding FSM coupling inputs and 
the following outputs (Figure 8) and transform this FSM to a 
corresponding TFSM (Figure 9) that is the parallel 
composition of TFSMs S and P.  

 
Figure 8 – Composition of S and P (FSM) 

 
The state (q1, h) is copy of the states (q, h) and (q, g1), so 

there is a time-out equals 2 in the states (q, h) and (q, g1). 

Furthermore, the states (q, h) and (q, g1) are (f-)equivalent 
likewise the states (s, g) and (s, h). That is why we keep only 
two states in TFSM, shown in Figure 9. 

 
Figure 9 – Composition of S and P (TFSM) 

IV. CONCLUSION AND FUTURE WORK 
The propositions 1 and 2 with corollaries give an approach 

for solving different problems of TFSMs: first, the 
corresponding FSMs should be constructed, then appropriate 
methods of FSM theory can be applied to solve the problem of 
interest and, finally, the result should be converted back to a 
TFSM. In this paper we used this approach to define, but more 
importantly, to construct parallel composition of given TFSMs. 
However, there is a weak point in the presented work. We have 
not given a proof of the fact, that such a way to construct 
parallel composition gives a TFSM which describes a system, 
combined from two TFSMs, operating in the slow environment 
setting, as it is done for FSM parallel composition [7]. But 
Propositions 1 and 2 give confidence, that such a proof can be 
obtained. 

Another direction of research with proposed approach, 
which we want to designate, is solving the TFSM equations. 
This line of researches is not covered enough in works on 
timed finite state machines and we believe that known methods 
for solving the FSM equations can be adapted to TFSMs easily 
enough. 

REFERENCES 
[1] М. Громов, Н. Евтушенко, “Синтез различающих экспериментов 

для временных автоматов,” Программирование, № 4, 
Москва: МАИК, 2010, с. 1–11. 

[2] M. Gromov, K. El-Fakih, N. Shabaldina and N. Yevtushenko, 
“Distinguishing non-deterministic timed finite state machines,” in 
FMOODS/FORTE-2009, LNCS, vol. 5522, Berlin: Springer, pp. 137–
151, 2009. 

[3] M. G. Merayo, M. Nunez and I. Rodrigez, “Formal testing from timed 
finite state machines,” in Computer Networks, vol. 52(2), 2008, 
pp. 432–460. 

[4] K. El-Fakih, N. Yevtushenko and H. Fouchal, “Testing finite state 
machines with guaranteed fault coverage,” in TESTCOM/FATES-2009, 
LNCS vol. 5826, Berlin: Springer, pp. 66–80, 2009. 

[5] A. V. Aho and J. D. Ulman, “The theory of parsing, translation and 
compiling: Parsing,” New Jersey:Prentice-Hall, 1002 p., 1973. 

[6] A. Gill, “Introduction to the theory of finite-state machines,” New-
York:McGraw-Hill, 207 p., 1962. 

[7] Спицына Н. В. Синтез тестов для проверки взаимодействия 
дискретных управляющих систем методами теории автоматов: 
Диссертация на соискание ученой степени канд. технических наук. 
– Томск, 2005. – 158 c. 

[8] М. Жигулин, Н. Евтушенко, И. Дмитриев, “Синтез тестов с 
гарантированной полнотой для временных автоматов,” Известия 
Томского политехнического университета, Т. 316, № 5, Томск: 
Издательство ТПУ, с. 104–110, 2010. 

[9] J. Tretmans, “Test geniration with inputs, outputs and repetitive 
quiescence,” Software–Concepts and Tools, vol. 17(3), pp. 103–120, 
1996

 

s, g  q, h  
a/o, 1 

2 

s, g  

q, h  

s, h   q1, h  

 q, g1  

1/N 

1/N 

1/N 

1/N 

a/o 

a/o, 
1/N 

s, g 

(s, a), g  (s, a), (g, 1) 

 q, g1 

 (q, 1), (h, 1) 

 q, (g, x) 

(s, a), h 

q, h 

q, (h, x) 

q1, h 

 (q1, 1), (h, 1) 

s, h 

 (s, 1), (h, 1) 

a 

a 

b 

x 

x 

o 

N 

N 

N 

N 

1 

1 

1 

1 

1 

n m 

a, 1 

o, N 


