
To The Parallel Composition of Timed Finite State
Machines

Olga Kondratyeva, Maxim Gromov
Radiophysics Faculty

Tomsk State University
Tomsk, Russia

kondratyeva.olga.vic@gmail.com, gromov@sibmail.com

Abstract—This paper deals with the problem of the parallel
composition construction for two Timed Finite State Machines
(TFSMs). As a key to the solution of this problem we use parallel
composition of common Finite State Machines (FSMs). We
transform given TFSMs to FSMs and prove theorem, that
obtained FSMs correctly describe behaviour of the given TFSMs.
Then we build parallel composition of these FSMs, which being
transformed back to TFSM, gives desired parallel composition of
the given TFSMs

Keywords-Finite State Machine; Timed Finite State Machine;
parallel composition

I. INTRODUCTION
The Timed Finite State Machine (TFSM) is a model based

on well-known Finite State Machine (FSM), which allows
explicit description of a time aspects of system behaviour. For
example, reaction of a system can be different depending on
the time moment an input action is applied to it. In the last few
years the interest to the various problems of TFSM has
increased. The main lines of researches covered by the post
papers are the analysis problems: relations between
TFSMs [1, 2] and test generation methods against those
relations [3, 4].

In our paper we consider a problem of synthesis, namely
the problem of parallel composition construction of two
TFSMs. This procedure gives an instrument to build complex
systems from simple ones, each described by a TFSM. Also,
the approach we used in this paper to describe a parallel
composition construction procedure opens the way for solving
various problems of TFSMs.

II. PRELIMINARIES
In this section we give some notions and definitions, which

we shall use all over the paper.

A. Language
An alphabet is a finite non-empty set of symbols and as

usual, given an alphabet X, we denote X* the set of all finite
sequences (words) of symbols from X including the empty
word . The number of symbols in a sequence we shall call
length of this sequence; by definition, length of the empty
word is zero. A subset L X* is a language over alphabet X.

Let language L be defined over alphabet Y and X be a
non-empty subset of Y. The X-restriction LX of the language
L is derived by deleting from each sequence of L each symbol
of the set Y\X. When the language L is defined over alphabet
X, and Y is some alphabet that is disjoint with X, consider the
mapping φ: X 2(XY)* such, that φ(x) = {x : , Y*}.
This mapping can be extended over sequences from X* as
follows. Let be a sequence from X* and x be a symbol from
X, then φ() = Y* and φ(x) = φ(x)φ(), where the sign “”
stands for concatenation of sequences. We shall call the
language LY = {φ() : L} the Y-expansion of language L.

B. Finite automata
There exists a special set of languages which can be

described by the use of finite automata; those are regular
languages, which are closed under union, concatenation,
complementation, intersection and also under restriction and
expansion.

A finite automaton (FA) is a 5-tuple S = S, A, s0, δS, Q,
where S is a non-empty finite set of states with the
designated initial state s0, A is a finite alphabet of actions,
δS S A S is a transition relation, and Q S is a set of
final (accepting) states. If (s1, a, s2) δS, then we say, that
automaton S in the state s1 takes action a, and changes its
state to the state s2; the state s2 is called an a-successor of
the state s1 and we denote by sucS(s1, a) the set of all
a-successors of the state s1. Function sucS can be extended
over sequences from A* as follows:

sucS(s1, a) = {sucS(s2, a) : s2 sucS(s1,)}.

By the definition sucS(s1,) = s1.

Finite automaton S is called deterministic if for each pair
(s1, a) S A there is at most one state s2 S such that
(s1, a, s2) δS, i.e. |sucS(s1, a)| 1, otherwise, the finite
automaton is non-deterministic.

Finite automaton S is called complete if for each pair
(s1, a) S A there is at least one state s2 S such that (s1, a,
s2) δS, i.e. |sucS(s1, a)| 1, otherwise, the finite automaton
is partial.

Let us consider a word A*. Automaton S recognizes
or accepts if there exists an accepting state q Q such that
q is a -successor of the initial state, i.e. q sucS(s0,). The

This paper is partially supported by Russian Foundation for Basic
Research (Grant 10-08-92003-ННС_а)

set LS of all sequences, which are accepted by S, is the
language accepted by the automaton or simply the language
of the automaton S. The language of a finite automaton is a
regular language [5].

C. Finite State Machines
To describe behaviour of a system, which transforms

sequences over one (input) alphabet into sequences over
another (output) alphabet, special kind of automata, called
Finite State Machine, is usually used [6].

A finite state machine (FSM) is a 5-tuple
S = S, I, O, s0, S, where S is a non-empty finite set of
states with initial state s0, I and O are disjoint finite input
and output alphabets, S S I O S is the transition
relation. If (s1, i, o, s2) S, then we say, that the FSM S in
the state s1 gets the input action i, produces the output action
o and changes its state to s2; the state s2 is called an
i/o-successor of the state s1. The set of all i/o-successors of
the state s1 is denoted sucS(s1, i, o), while

sucS(s1, i) = {s2 S: o O such that s2 sucS(s1, i, o)}

is the set of all i-successors of the state s1.

Functions sucS(s1, i, o) and sucS(s1, i) can be extended to
the sequences I* and O*, where lengths of and
are equal, as follows:

sucS(s1, i, o) = {sucS(s2, i, o): s2 sucS(s1, ,)}

and

sucS(s1, i) = {sucS(s2, i): q sucS(s1,)}.

By the definition sucS(s1,) = sucS(s1, ,) = s1.

FSM S is deterministic if for each pair (s1, i) S I there
is at most one pair (o, s2) S O such that (s1, i, o, s2) S,
i.e. |sucS(s1, i)| 1, otherwise, FSM S is non-deterministic.

FSM S is complete if for each pair (s1, i) S I there is at
least one pair (o, s2) S O such that (s1, i, o, s2) S, i.e.
|sucS(s1, i)| 1, otherwise, FSM S is partial.

FSM S is observable if for each triple
(s1, i, o) S I O there is at most one state s2 S such that
(s1, i, o, s2) S, i.e. |sucS(s1, i, o)| 1, otherwise, FSM S is
non-observable.

A sequence = (i1, o1)(i2, o2)…(in, on) (I O)* is
called a trace of given FSM S if the set of /-successors,
where = i1i2…in and = o1o2…on, of the initial state of S is
non-empty, i.e. sucS(s0, ,) ≠ . The set of all traces of the
FSM is the language LS of the FSM S. Further, talking about
traces of an FSM, we assume that a sequence and the
corresponding pair / are equivalent notions.

Given FSM S = S, I, O, s0, S, the automaton Aut(S) is a
5-tuple S (S I), I O, s0, S, S, where for each
transition (s1, i, o, s2) in S there are two transitions
(s1, i, (s1, i)), and ((s1, i), o, s2) in S. Since the language LS

aut
of the automaton Aut(S) is the language of the FSM [7] it

holds that LS
aut (IO)*, where IO is concatenation of

alphabets I and O.

D. Timed Finite State Machines
A timed finite state machine (TFSM) is a 6-tuple

S = S, I, O, s0, S, ΔS, where the 5-tuple S, I, O, s0, S is
an FSM and ΔS: S S ({}) is a time-out function.
If ΔS(s1) = (s2, n), then the TFSM S in the state s1 will wait
an input action for n time units (ticks), and if none arrives it
will move to the state s2 (possibly the same as s1), without
producing any output. If ΔS(s1) = (s2,), then we require
s2 = s1 and the TFSM can stay in the state s1 infinitely long,
waiting for an input. Definitions of a deterministic,
complete and observable TFSM are based on the
corresponding definitions for underlying FSM.

A special timed or clock variable can be associated with
a TFSM; this variable counts time ticks passed from the
moment when the last transition has been executed and is
reset to 0 after each transition (input-output or time-out). In
this paper, for the sake of simplicity, we assume that the
output is produced immediately after a machine gets an
input, i.e., we do not consider delays when executing
transitions.

A pair (i, t) I ({0}) is a timed input meaning that
the input i is submitted to the TFSM t ticks later than the
previous output has been produced. A sequence of inputs is
a timed input sequence.

We also define a special function timeS [1] as follows:

1. timeS(s, t) = s for all t {0} if ΔS(s) = (s,).

2. timeS(s1, t) = s1 for all t < T and ΔS(s1) = (s2, T).

3. timeS(s1, t) = s2 for t = T and ΔS(s1) = (s2, T).

4. for t > T and ΔS(s1) = (s2, T) define recursively
timeS(s1, t) = timeS(s2, t – T), i.e. there is a sequence s1, s2,…
sk such that for each j = 1…k – 1 it holds ΔS(sj) = (sj + 1, Tj)
and T1 + T2 + … + Tk-1 ≤ t < T1 + T2 + … + Tk-1 + Tk, then
timeS(s1, t) = sk.

The function sucS is defined similar to that defined for
an FSM and is extended to timed inputs as follows:
sucS(s, (i, t), o) = sucS(timeS(s, t), i, o).

A sequence

 = (i1, t1, o1)(i2, t2, o2)…(in, tn, on) [I ({0}) O]*

is called a functional trace of a TFSM S, if the following
holds sucS(s0, ,) , where = (i1, t1)(i2, t2)…(in, tn) and
 = o1o2…on. The set LS of all functional traces of the TFSM
S is the f-language of the TFSM S. Here we again assume,
that the pair / and the sequence are the equivalent
notions, when speaking about f-language of a TFSM.

E. Equivalence of automata, FSMs and TFSMs
Two finite automata S and P with languages LS and LP

are said to be equivalent if LS = LP.

Two FSMs S and P with languages LS and LP are said to
be equivalent if LS = LP.

Two TFSMs S and P with f-languages LS and LP are said
to be equivalent if LS = LP.

III. PARALLEL COMPOSITION
In this paper we propose definition of parallel composition

for two TFSMs. This definition relies on the definition of FSM
parallel composition and the latter is defined in terms of
parallel composition of corresponding automata. For that
reason we also describe the conversion procedure [8] of a
TFSM into an FSM, which then is used for the parallel
composition construction. We also prove, that built FSM
correctly reflects the language of a given TFSM.

A. Parallel composition of languages
Given pairwise disjoint alphabets X, Y, Z, languages L1

over X Y and L2 over Y Z, the parallel composition of
languages L1 and L2 is the language

L = [(L1)Z (L2)X] XZ,

defined over X Z and denoted L1 XZ L2 or just L1 L2
when the union X Z is clear from context.

B. Parallel composition of automata
Given two finite automata S = S, I U, s0, δS, QS and

P = P, U O, p0, δP, QP, the automaton
C = С, I O, c0, δC, QC is a parallel composition of
automata S and P, denoted C = S P, iff LC = LS LP. To
obtain composition of automata define expansion and
restriction over automata as follows.

Given disjoint alphabets I and O and an automaton
S = S, I, s0, δS, QS. O-expansion of S is an automaton
SO = S, I O, s0, δS µS, QS, where µS S × O × S
contains all triples (s, o, s), such that o O and s S, i.e. to
expand an automaton we add loops marked with all symbols
of alphabet O for each state.

Given disjoint alphabets I and O and an automaton
S = S, IO, s0, δS, QS. I-restriction of S is an automaton
SI = S, I{}, s0, µS, QS, where for each transition
(s1, a, s2) δS we add transition (s1, a, s2) into µS in case
a I, while we add transition (s1, , s2) into µS in case
a O, i.e. to restrict an automaton we replace all symbols
of alphabet O by special symbol . An automaton without
-moves can be derived by the determinization procedure [9].

Now, the procedure of parallel composition construction of
two given automata S and P can be described by the formula:

C = [S O PI] IO.

C. Parallel composition of FSMs
Following [7], we define the parallel composition of two

FSMs (Fig. 1) based on their corresponding automata.
However, the language of the parallel composition of two
automata is not necessary an FSM language. For this reason,

the obtained language should be intersected with the language
(IO)*, where I and O are external input and output alphabets of
composition, to ensure that each input is followed by some
output.

Given FSMs S = S, I1 V, U O1, s0, λS and
P = P, I2 U, V O2, p0, λP, the parallel composition
C = S P is derived in the following way. We first derive
corresponding automata Aut(S) and Aut(P) and the parallel
composition Aut(S) Aut(P). The obtained automaton then
is intersected with the automaton that accepts the language
(IO)* and is transformed to the FSM C coupling inputs with
the following outputs. FSM C = С, I, O, c0, λC is the
parallel composition of S and P, where I = I1 I2 and
O = O1 O2.

Figure 1 – Parallel composition of FSMs S and P.

It is proven [7], that parallel composition describes
following interaction of composed FSMs S and P (Figure 1).
The system starts it work, when both S and P are in their
initial states, i.e. composition C = S P is in its initial state.
External environment applies input action either on channel I1
or I2, but only one at a time, and then waits for an external
output reaction of the system through the one of the output
channels O1 or O2. The component FSM, which just have got
an input action, processes this input and produces either an
external output (and so external environment can apply its
next input action), or an internal output action that is internal
input action for another component FSM. In the latter case, the
second component FSM processes a submitted internal input
and produces either an external output or an internal output
applied to the first component FSM. The dialog between
component FSMs continues until one of them produces an
external output. When an external output is produced the
system is ready to accept the next external input. Here we
notice that there can be an external input initiating an infinite
dialog between component FSMs. Such infinite cycles of
internal actions are called livelocks. However, in practical
situations, except of some special cases, input sequences
inducing livelocks are usually forbidden.

D. Correspondence between Timed Finite State Machine and
Finite State Machine
Before we propose how to construct the parallel

composition of timed finite state machines, we introduce the
transformation procedure of a TFSM into an FSM and back,
and then prove, that obtained FSM correctly describes
f-language of the TFSM.

I1

P

S

I2 O2

O1

С

U V

Given TFSM S = S, I, O, s0, λS, ΔS, we can build an
FSM with similar set of functional traces by adding
designated input 1 I and output N O [8]. Corresponding
FSM AS = S St, I {1}, O {N}, s0, λS

 can be built by
adding T – 1 copies for each state s S with defined a finite
time-out T > 1. There is a chain of transitions between these
copies marked with special input-output symbol 1/N. All
other transitions are preserved for each copy. Formally,
constructing of AS can be done by the use of the following
rules:

1. St contains all such states s, t, t = 1, ..., T – 1 where
s S and ΔS(s) = (s', T), 1 < T < .

2. For each s S and s, t St and for each i/o, i I,
o O, there are transitions (s, i, s', o), (s, t, i, s', o) λS

iff there is a transition (s, i, s', o) λS.

3. For each s S such that ΔS(s) = (s,) there is a
transition (s, 1, s, N) λS

 .

4. For each s S such that ΔS(s) = (s', T), T = 1, there is
a transition (s, 1, s', N) λS

 .

5. For each s S such that ΔS(s) = (s', T), 1 < T < ,
there are transitions (s, 1, s, 1, N) λS

 ; for each j = 1, …,
T – 2 there are transitions (s, j, 1, s, j + 1, N) λS

 and
(s, T – 1, 1, s', N) λS

 .

We use SA to denote S St, IA to denote I {1} and OA to
denote O {N}.

By construction, when a given TFSM S has n states, a
corresponding FSM AS has ()

s S
n s

 states, where n(s) = 1 for

ΔS(s) = (s,) and n(s) = T for ΔS(s) = (s', T).

Consider an example in Figure 2. State q of TFSM has
timeout 2 and therefore, we add one copy of q, 1 (denoted
“q1”) which is 1/N-successor of the state q while its
1/N-successor is s. The sets of successors of q and q, 1 for
all other I/O pairs coincide.

Figure 2 – TFSM S (top figure) and corresponding FSM
AS (bottom figure)

An FSM AS = SA, IA, OA, s0, λS
 such that there are no

transitions marked with 1/o or i/N where o N and i 1 can
be transformed to TFSM S = S, I, O, s0, λS, ΔS using the
following rules:

1. ΔS(s) = (s,) iff (s, 1, s, N) λR
 .

2. Define ΔS(s) = (sT, T) for all such s that there is a
chain of transitions

1/ 1/ 1/ 1/
1 1...N N N N

T Ts s s s , s, sT SA,
T 1 and for each i/o I O and 1 j T – 1 it holds that

Ssuc (sj, i, o) = Ssuc (s, i, o), but for some i/o I O it
holds that Ssuc (s, i, o) Ssuc (sT, i, o).

3. For each s SA, i I and o O, if (s, i, s', o) λS

then (s, i, s', o) λR.

Notice that transformation from a given TFSM to an
FSM according to the above rules is unique whereas the
back transformation from an FSM to a TFSM could be made
in different ways; however all such TFSMs are pairwise
equivalent, i.e. their f-languages are the same (see the
Corollary 2 to Proposition 1).

The following statements establish the relationship
between a TFSM and the corresponding FSM built by the
above rules.

Proposition 1. FSM AS has a trace
1

1/ ... 1/
t

N N i1/o1 …

1/ ... 1/
mt

N N im/om iff TFSM S has a functional trace

i1, t1/o1… im, tm/om.

Proof. According to the rules of constructing AS, for each
two states s1 and s1, j and each i I and o O, the set of
i/o-successors of s1, j coincides with the set of
i/o-successors of state s1 in S. Thus if there exists such s2
that (s1, i, s2, o) λS, then there is a transition /

1 2
i os s in

both machines S and AS and there is a transition
/

1 2, i os j s in AS. Therefore, it is enough to show that AS
is moving from state s1 to some state q S St under the
sequence 1/ ... 1/

t
N N with t > 0, and the set of i/o-successors of

q in AS coincides with the set of i/o-successors of the state
timeS(s1, t) in S.

If ΔS(s1) = (s1,), then timeS(s1, t) = s1 holds for each
value of t; therefore, there is a transition (s1, 1, s1, N) λS

and AS remains at state s1 under the sequence1/ ... 1/

t
N N .

Consider now ΔS(s1) = (sT, T). If t < T, then
timeS(s1, t) = s1 and the sequence 1/ ... 1/

t
N N moves AS from

s q

a/x, 1

2

 b/x

s q

a/x, 1/N
b/x

1/N

 b/x
1/N

q1

s1 to s1, t. The set of i/o-successors of s1, t in AS coincides
with the set of i/o-successors of s1 in S. If t T, then
timeS(s1, t) = timeS(timeS(s1, T), t – T) = timeS(sT, t – T). By
construction, the sequence 1/ ... 1/

T
N N moves AS from s1 to

sT, and the sequence 1/ ... 1/
t T

N N

 is applied to AS at state sT,

i.e., this case is inductively reduced to the previous case
t < T.�

Corollary 1. TFSMs S and P are equivalent iff
corresponding FSMs AS and AP are equivalent.

Corollary 2. If TFSMs S and P both are built by the
above procedure from an FSMs AS, then S and P are
equivalent.

Proposition 2. TFSM S is deterministic (complete or
observable) iff the corresponding FSM AS is deterministic
(complete or observable).

Proof. The property to be deterministic, observable and
complete is specified by the cardinality of sets of i/o- and
i-successors. FSM AS has one and only one transition with
pair 1/N at each state, that is why properties of FSM AS to be
deterministic, observable and complete depend on
transitions with other I/O pairs.

By construction it holds that

Ssuc (s, t, i, o) = Ssuc (s, i, o) = sucS(s, i, o) for each state
s, ΔS(s) = (s', T), and for any value of t < T. Hence
| Ssuc (s, t, i, o)| = | Ssuc (s, i, o)| = |sucS(s, i, o)| and
| Ssuc (s, t, i)| = | Ssuc (s, i)| = |sucS(s, i)|. �

E. Parallel composition of TFSMs
Parallel composition of two TFSMs S and P is a TFSM

C = S P obtained from the FSM AS AP.

Let us illustrate our approach by constructing the parallel
composition of TFSMs.

Figure 3 - Parallel composition of TFSMs as a parallel

composition of corresponding FSMs

The parallel composition of FSMs that corresponds to
the parallel composition of TFSMs is shown in Figure 3. In
this case, port 1 is a common port for both machines as it
corresponds to a counter of ticks and this accepts the
designated input 1 that is an input for both component FSMs
and can be considered as an input that synchronizes time

behaviour of component FSMs. The designated output N is
observed, when there are no outputs at ports O1 and O2 (it is
observed at both of the ports). Each component FSM has its
own time variable, which increments every moment when
component gets the designated input 1, and since this signal
is applied via a common port for both components the
global time is used, and thus, we can say that it
synchronizes the behaviour of component FSMs.

As an example, consider the composition of TFSM S in
Fig. 2 and P in Fig. 4 where corresponding FSMs are shown
as bottom figures. Consider symbols a and o to be external
input and output respectively, x and b are internal symbols.

Figure 4 – TFSM P (top figure) and corresponding FSM

AP (bottom figure)

To derive the parallel composition of FSMs, we firstly
construct the related automata which are shown in Figure 5.
Double lines denote accepting states.

Figure 5 – Automata Aut(AS) (top figure) and

Aut(AP) (bottom figure)

a

s, 1

q1

s, a s q

 q1, 1 q, 1

x

b
b N

N

N

1

1

1

x

h, x

g1

g h

 g, 1 h, 1

b

x 1 N

o

N

x

1

 g, x

1

g h

x/b, 2

1

x/o

g h

x/b
x/o,
1/N

1/N

 1/N

1/N,
x/b

h1

I1

Q

S

1

I2 O2

O1

С

U V

The second step is to derive the intersection of expended
automata that is shown in Figure 6. This intersection should
be restricted onto external alphabet (I {1}O {N}) and
this restriction intersected with an automaton that accepts the
language [(I {1})(O {N})]* and it is shown in Figure 7.

Figure 6 – Intersection of Aut(AS) and Aut(AP)

Figure 7 – an automaton accepting language

[{a, 1}{o, N}]*

We then derive a corresponding FSM coupling inputs and
the following outputs (Figure 8) and transform this FSM to a
corresponding TFSM (Figure 9) that is the parallel
composition of TFSMs S and P.

Figure 8 – Composition of S and P (FSM)

The state (q1, h) is copy of the states (q, h) and (q, g1), so

there is a time-out equals 2 in the states (q, h) and (q, g1).

Furthermore, the states (q, h) and (q, g1) are (f-)equivalent
likewise the states (s, g) and (s, h). That is why we keep only
two states in TFSM, shown in Figure 9.

Figure 9 – Composition of S and P (TFSM)

IV. CONCLUSION AND FUTURE WORK
The propositions 1 and 2 with corollaries give an approach

for solving different problems of TFSMs: first, the
corresponding FSMs should be constructed, then appropriate
methods of FSM theory can be applied to solve the problem of
interest and, finally, the result should be converted back to a
TFSM. In this paper we used this approach to define, but more
importantly, to construct parallel composition of given TFSMs.
However, there is a weak point in the presented work. We have
not given a proof of the fact, that such a way to construct
parallel composition gives a TFSM which describes a system,
combined from two TFSMs, operating in the slow environment
setting, as it is done for FSM parallel composition [7]. But
Propositions 1 and 2 give confidence, that such a proof can be
obtained.

Another direction of research with proposed approach,
which we want to designate, is solving the TFSM equations.
This line of researches is not covered enough in works on
timed finite state machines and we believe that known methods
for solving the FSM equations can be adapted to TFSMs easily
enough.

REFERENCES
[1] М. Громов, Н. Евтушенко, “Синтез различающих экспериментов

для временных автоматов,” Программирование, № 4,
Москва: МАИК, 2010, с. 1–11.

[2] M. Gromov, K. El-Fakih, N. Shabaldina and N. Yevtushenko,
“Distinguishing non-deterministic timed finite state machines,” in
FMOODS/FORTE-2009, LNCS, vol. 5522, Berlin: Springer, pp. 137–
151, 2009.

[3] M. G. Merayo, M. Nunez and I. Rodrigez, “Formal testing from timed
finite state machines,” in Computer Networks, vol. 52(2), 2008,
pp. 432–460.

[4] K. El-Fakih, N. Yevtushenko and H. Fouchal, “Testing finite state
machines with guaranteed fault coverage,” in TESTCOM/FATES-2009,
LNCS vol. 5826, Berlin: Springer, pp. 66–80, 2009.

[5] A. V. Aho and J. D. Ulman, “The theory of parsing, translation and
compiling: Parsing,” New Jersey:Prentice-Hall, 1002 p., 1973.

[6] A. Gill, “Introduction to the theory of finite-state machines,” New-
York:McGraw-Hill, 207 p., 1962.

[7] Спицына Н. В. Синтез тестов для проверки взаимодействия
дискретных управляющих систем методами теории автоматов:
Диссертация на соискание ученой степени канд. технических наук.
– Томск, 2005. – 158 c.

[8] М. Жигулин, Н. Евтушенко, И. Дмитриев, “Синтез тестов с
гарантированной полнотой для временных автоматов,” Известия
Томского политехнического университета, Т. 316, № 5, Томск:
Издательство ТПУ, с. 104–110, 2010.

[9] J. Tretmans, “Test geniration with inputs, outputs and repetitive
quiescence,” Software–Concepts and Tools, vol. 17(3), pp. 103–120,
1996

s, g q, h
a/o, 1

2

s, g

q, h

s, h q1, h

 q, g1

1/N

1/N

1/N

1/N

a/o

a/o,
1/N

s, g

(s, a), g (s, a), (g, 1)

 q, g1

 (q, 1), (h, 1)

 q, (g, x)

(s, a), h

q, h

q, (h, x)

q1, h

 (q1, 1), (h, 1)

s, h

 (s, 1), (h, 1)

a

a

b

x

x

o

N

N

N

N

1

1

1

1

1

n m

a, 1

o, N

