
 
 

 
 

Abstract—The component-based approach to software 
engineering, its current implementations and their limitations 
are discussed. A new extended architecture for such systems is 
presented. Its main architectural concepts and principles are 
considered. 
 

Index Terms—Runtime environment, software architecture, 
software engineering, software reusability 
 

I. INTRODUCTION 

OFTWARE ENGINEERS have always pinned their hopes on 
the idea of reusable code [8]. In their urge towards 

eliminating code duplication, simplifying code maintenance, 
making it less error-prone and streamlining the development 
process programmers have gone a long way from a 
completely unstructured code through procedures and 
program libraries to object-oriented technologies and 
application frameworks. Taking the code reuse idea one step 
further, the component-based software engineering [9], [14] 
is a very promising approach to software development. 

The term “component instance” usually refers to a 
program entity holding data and offering some functionality 
that are hidden by a well-defined interface (cf. [10], [11]). 
The concept of interface, however, varies from one 
technology to another: a number of “properties” (attributes, 
member variables etc.) [13], a number of member 
functions/methods (as in most object-oriented programming 
languages) or even an entity whose nature may be left out of 
scope of the component technology itself [1]. The process of 
combining components into a working system is considered 
to be relatively simple (e.g. [2]). Nevertheless, this process 
is implemented differently in various technologies. 

In order to propose an optimal way for organizing 
component interaction, that would introduce a good balance 
between flexibility and ease of use, let us concisely consider 
main aspects of component-based models and technologies 
and their limitations (detailed comparative analysis is 
beyond the scope of this work, see in [12] and [14]). 

 

II. LIMITATIONS OF COMPONENT-BASED TECHNOLOGIES 

Despite the many advantages of the component approach 
its currently existing implementations have a number of 
substantial limitations. The most difficult goal to achieve 
here is probably to find a way of designing components that 
will provide the necessary functionality without exceeding 
it. The necessary functionality is determined by 
requirements, and these are bound to change with the lapse 
of time. There’re three options to consider. First of all, it is 
possible to introduce software with somewhat wider 
capabilities, so that it would still be adequate when 
requirements change. This approach, however, demands 
remarkable architectural design skills and foresight and has 
the risk of bloating the program under development making 
it unsuitable for system with limited memory resources. 
Second of all, one can adapt the software with the course of 
time. This would result in the most appropriate as well as 
the most expensive software. The third option is to 
introduce a component framework that would allow in-place 
modification of component’s functionality without stepping 
over the bounds of the component model. 

Let as consider an example. ZigBee specification [15] 
offers a suite of high level communication protocols for 
low-rate, low-cost, low-power-consumption wireless 
personal-area networks. It is implemented, for instance, by 
communicational parts of microelectromechanical systems 
in wireless sensor networks. At the same time, the 
specification is subject to frequent changes. This makes 
manufacturers renew and release sensor firmware, which is a 
difficult process due to the lack of high-level development 
tools for such systems. 

ZigBee specification introduces network and application 
layers (in addition to the PHY and MAC layers defined by 
the IEEE standard 802.15.4 [5]) to the protocol stack. The 
topmost application layer (which is subject to frequent 
changes) is comprised of a number of components: ZigBee 
device objects, their management procedures, application 
objects. Requirements to these components are not changed 
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at the same time (application objects, for example, are 
provided by the manufacturer and thus aren’t managed by 
the ZigBee alliance). Nevertheless, every new release of the 
specification implies a new release of the whole firmware. It 
would be more cost-efficient to modify only those 
components specification for that have changed and make 
the system reconfigure to make use of their instances 
without rewriting a binary firmware image to devices’ 
memory. 

To add, remove or modify certain functionality of a 
component’s instance means to introduce a new component, 
because it is the component that defines functionality of its 
instances. That is, we’re essentially dealing with the task of 
defining a new type of data. This can be done either by 
deducing new type from existing one or creating it from 
scratch using a number of predefined low-level components. 
We believe it’s this operation that must be available at 
runtime in order to ensure software flexibility. 

This problem can be tackled in a number of bypass ways 
such as source code, bytecode or binary code 
generation/transformation, runtime compiler calls or taking 
advantage of programming language’s ability to modify its 
low-level runtime data structures (Java Reflection being a 
graphic example). These, however, aren’t always an option. 
Reflection mechanisms are primarily meant to be used to 
build IDEs, source code analysis tools and GUI designer 
applications. Using them indiscriminately to build any 
garden-variety software lays exceedingly high claim to 
developer and is therefore error-prone. Furthermore, many 
programming languages don’t support reflection at all. And 
embedded systems often lack compilers and code 
modification frameworks. Therefore an alternative system 
capable of building new types from user-configured 
instances without stepping over the bounds of its model is 
needed. 

To conclude the section, let us look at another simple 
example. We’re designing a GUI application and we want to 
change a button’s label (the button has already its 
functionality attached to the application). The change is 
supposed to be permanent: the button won’t be renamed at 
runtime. Although obvious, the necessary procedure is 
implemented in various frameworks with a distressing flaw: 
the variable property is left variable for the lifetime of the 
component’s instance regardless of developer’s intentions. 
In other words, the fact that the button’s text isn’t meant to 
be mutable at runtime (should this be the designer’s 
intention) cannot be expressed by a developer. 

The designtime work with an instance of a component 
and the runtime work with it are basically two different 
contexts of its use. However, these cannot be fully separated 
by existing frameworks (see [13] e.g.), because one has to 
start (execute) a component (i.e. instantiate it) in order to 
either configure it or take advantage of its functionality. 
This is the source of the troubles one encounters when 

adjusting a component’s instance. 
To summarize, a new component system capable of 

introducing new data types by either modifying existing 
ones or creating them from scratch using a number of 
predefined low-level components is needed in order to 
create flexible (adaptable to changing requirements and 
contexts of use) software for systems with limited resources. 

 

III.  CORE PRINCIPLES 

To achieve the goal of designing such a system, we have 
analyzed advantages and limitations of existing object-
oriented programming languages and component 
technologies. This has allowed us to infer the core principles 
of the suggested component model described in the next 
section. 

The model is based on a general object-oriented idea, and 
is extended by other technologies’ traits when necessary 
since the need to define data types at runtime makes 
designtime and runtime essentially indistinguishable. 
Omitting a detailed consideration of specific technologies 
here (see [12] and [14] for such review), we are going to 
summarize the core principles that underlie the model in 
question. 

The two primary characteristics of any development and 
execution environment are the principles and mechanisms of 
data organization and control flow management. Looking 
for those characteristics in the object-oriented paradigm, one 
will find the hierarchical data organization principle and 
the concept of method as the means of control flow 
management. And while the first characteristic gives us a 
well-balanced solution for managing ever growing 
complexity of software systems, we find the second one to 
be too complex and cumbersome. We believe that the very 
concept of object method (see [3] e.g.) isn’t suitable for 
adopting it in a component model, because of its 
overwhelming versatility: a method can have variable 
number of parameters and (in certain languages) return 
values, or it can have none of those; arguments can be 
passed by either value or reference; methods can be 
overloaded and overridden (in which case a complicated set 
of resolution rules takes the stage). The list can be 
continued. The concept of method, therefore, doesn’t 
provide intended ease of use (though it does handle software 
complexity well). 

In contrast, the concept of property  introduced in some 
frameworks (C#, JavaBeans) is more suitable to our needs. 
The property-based interaction model is simple and formal 
because of the limited number of aspects describing the 
“property” concept: its type and applicable operations 
(usually reading and writing). However, to become a perfect 
rival (to efficiently implement callback routine, for 
example) the concept needs to be extended with the binding 
operation (described in following section). 



 
 

To summarize, we have adopted the principle of 
hierarchical data organization and the property concept as 
the means of organizing execution flow to create a 
component model with a runtime data type definition 
capability. We will now proceed to describe the model. 

 

IV. THE MODEL 

The model we’re going to discuss has its prototype 
implemented in the Java programming language. Therefore 
let us start with describing the model from the user’s point 
of view. 

While working with the application, a user interacts with 
three categories of objects, viz. components, components’ 
instances and containers (which are used as both runtime 
and new type definition environments). 

A. Components and instances 

An instance of a component is an aggregate of data and 
behavior hidden behind an interface, the latter being the 
only way to interact with this kind of entity. We shall refer 
to the hidden part of an instance as its implementation, as 
opposed to the interface. 

Like objects in object-oriented paradigm have classes, 
instances have components that describe the way these kinds 
of instances are created and function. Every instance has a 
single component associated with it and this association is 
immutable during the lifetime of an instance. Every 
component can be instantiated without providing any 
additional information. This means that primitive types of 
data (numerical, boolean, string etc.) aren’t actually 
components. These are usually called value-types and to 
instantiate them one has to provide at least a value of the 
instance to create. 

In addition to contextless instantiation, components allow 
instantiation in a certain context (e.g. as part of a composite 
instance, see below). 

 
Interface 

Let us focus on an interface of a component’s instance. It 
is comprised of a number of properties each of which is 
characterized by: 

• name (used to identify a property), 

• value type, 

• access permissions; any property may be accessible 
for reading, writing and binding. 

Read/write operations need no explanation. Binding S 
property of a particular instance to D property of another 
instance ensures that whenever the value of S is changed the 
new value will be written to B. The binding operation, as it 
was mentioned earlier, is needed to efficiently implement 
callback routine and is similar to that of the Java Beans 
model, except that there’s only one event type (property 

value change event) whereas in Java Beans a property can 
have multiple event types associated with it. 

 

B. Container 

A container is an execution environment that allows the 
following operations to be performed in its context (“within 
it”): 

• instantiate any components, 

• change values of properties of instances created at 
the previous step, 

• bind instances’ properties to each other. 

Apart from that, a container can be used to create new 
components. Its contents are considered to be a prototype of 
an implementation part of a future component. To create a 
new component, one has to complete this information with 
interface specification and connect these two parts together. 
Above that, a user is able to edit metadata of instances 
constituting future implementation. All this can be achieved 
with the following operations: 

• restricting access to instances’ properties, 

• adding properties (with specified metadata: name, 
access permissions etc) to the interface part of the 
component, 

• adding sharing connections between a property of 
an instance that is a part of the implementation and 
a property of the interface. 

The “sharing connection” between two instances’ 
properties makes those instances share memory cell 
(therefore changing the value of one property is immediately 
reflected on the value of the other property). This behavior 
requires a custom memory model, which we’ll focus on 
later. 

Once the user has provided all the necessary data to a 
container, he can create a new component that will 
correspond to the prototype currently in the container in the 
sense that all of its future instances shall have the same 
structure. 

While a user is working with a container, the latter 
gathers all the necessary information about future 
component. It is to be noted that some of this information 
can be deduced from the runtime structure of instances the 
user have created. For example, bindings between instances’ 
properties are analyzed only when a new type is being 
created. Other pieces of information, however, can’t be 
stored within the runtime structure. For example, restricting 
access to a property of an instance won’t actually modify 
that instance because that implies changing metadata (i.e. 
data type) of an existing instance and there’s no sense in 
doing that. In other words, not every user action can be 
directly reflected on the runtime structure of instances, and 
it’s container who makes the process of editing both data 
and metadata transparent to a user. 



 
 

It wouldn’t be possible to define new types at runtime, 
however, if it wasn’t for a specially designed internal 
structure of components, which will be discussed in the 
following section. 

 

C. Internal structure 

Let us focus on the internal architecture of the prototype 
application we’ve developed that provides the previously 
described functionality. As it was mentioned above, the 
application is implemented Java, but it can be easily 
rewritten in any other strongly-typed object-oriented 
programming language. 

All the instances in the system implement common 
Instance interface that provides methods to access 
instance’s type and properties. Similarly, all the types 
implement the Type interface that provides methods to 
instantiate the type and also extends the Instance interface. 
Therefore, any type (and any component which is a kind of 
type) is an instance whose data are metadata describing its 
future instances. There is also a TypeType type, which is a 
type of any type (including itself). 

Let us consider the following scenario. A user defines a 
new component with no bindable properties. Than the whole 
event–listener infrastructure (that supports bindings’ 
functionality) becomes redundant and should not be 
included in corresponding instances. This kind of deep 
context adjustment is crucial when dealing with runtime 
type definition and we pay great attention to it. 

To implement the smart adjustment described, we’ve 
introduced indirect access to instances’ properties. They’re 
accessed via special PropertyGetter, PropertySetter and 
PropertyBinder  objects. If there’re no bindable properties 
in a component then its instances end up having their 
PropertyBinder object uninitialized. And if there’s at least 
one bindable property, then the binder object will be created 
(but it still won’t be granting access to unbindable 
properties, of course). 

 
Memory model 

As it was mentioned above, the custom memory model is 
required in order to consistently handle binding and sharing 
connections between properties. 

The memory model introduces traditional kinds of 
“memory cells”  (viz. constants and variables) that store 
instances as their values. The value can be read and (in case 
of a variable) written. The memory cell can also have no 
value (it is said to be null in this case). Finally, memory 
cells are strongly typed, which means that every cell knows 
its type and an attempt to store an instance of mismatching 
type in it produces an error. 

There’s also an unconventional kind of variable – 
listenable variables. As the name suggests, listenable 
variables (in addition to having all the features of regular 
variables) allow special objects (called listeners) to 

subscribe to the variable value change event. 
 

Data types 
We’ve already mentioned that the system supports 

primitive value-types which are a kind of instance types. 
Another kind of instance types is components, but there’re 
two different kinds of them. The first one is compiled 
components. These are components whose implementation 
is not analyzed by the system in any way. This permits the 
system to handle various components implemented using a 
third-party means (e.g.  java bean components). 

The second kind of components is composite 
components. These are components implemented by means 
of the system itself. The implementation part of a composite 
component is a structure of other components. 

Since it is a composite component that is built whenever 
user defines a new type, this kind of components is of 
greatest interest. 

 
Composite components 

We are going to focus on the structure of metadata stored 
in composite components. Since these metadata determine 
the structure of data in corresponding instances, we will 
discuss that structure incidentally. 

Composite type (like any other type) describes interface 
and implementation parts of its instances (Figure 1). These 
parts are interconnected via mechanism described below. 

 
Figure 1. Composite type. 

An interface of an instance is a set of its properties, so the 
metadata stored in the interface part of a component are a 
set of property descriptors (Figure 2) each of which 
specifies: 

• property value type, 
• access permissions, 
• default value (optional). 

 
Figure 2. Interface part of a composite type. 

 

 



 
 

Finally, implementation part of a composite type is 
metadata that describe a structure of instances with 
interconnected properties that will result from instantiation 
the type. These metadata are represented in the following 
way (Figure 3). 

 
Figure 3. Implementation part of a composite type. 

To every connection between two instances that 
constitute an implementation of the future component 
corresponds an object of the EventRoute class that holds 
two objects of the SubcomponentPropertyQualifier class 
(for the beginning and the ending of the connection). These 
objects simply specify a source and a destination of a 
property change event: they hold respective components’ 
IDs and their property names. 

For every instance that is a part of an implementation of 
the future component there’s a descriptor, an object of class 
SubcomponentDescriptor. This object specifies: 

• instance type, 
• for every property of the instance, context 

adjustment of that property to its use as a part of 
another instance’s implementation. This 
adjustment defines modified default value (if 
any) of the property (the DefaultValueModifier 
class) as well as restricts access to it 
(PermissionsModifier). 

A default value of a property can be modified in a number 
of different ways. 

• “Void” modification, the value is left intact. 
• Explicitly specified value (the object of the 

DefaultValueModifier class holds this value). 
• Value is another instance that’s present in the 

same context (implementation of the same 
instance). In this case the modifier object holds 
the name of that instance. 

• The property is shared. In this case not the value 
of the property, but the property itself is 
changed: instead of creating a new memory cell 
for storing the value, an existing (provided from 
elsewhere) cell is used by the instance. 

The last option is used to provide an instance (via its 
instantiation context) with references to its parent instance’s 
properties, thus creating sharing connections between these 
properties. These connections glue interface and 
implementation parts of a composite instance together. 

 
Composite component instantiation 

To demonstrate described structure at work, let us go 
through the process of composite type instantiation. The 
following algorithm implements the process. 

1) Memory cells for storing values of properties are 
established (one for every property descriptor). If 
there’s an instantiation context, a reference for an 
existing cell is used. Otherwise a new memory cell is 
created, its kind (constant, variable or listenable 
variable) being determined by respective access 
permissions, and is initialized with either default 
value (if any) or a new instance of the corresponding 
type. 

2) Instances constituting the implementational part of 
the future component are created. This involves 
evaluating their instantiation contexts. Every 
property descriptor is merged with corresponding 
subcomponent property context adjustment object 
giving a new set of adjusted access permissions and 
default value. 

3) Binding connections (i.e. event routes) are 
established. 

4) Proxy objects for accessing new instance’s properties 
are created (property getters, setters and binders). 
These objects receive references to relevant 
properties only (e.g. a setter object only holds 
references to writable properties) and if there aren’t 
any, the object is not created at all. 

After all the steps have taken place, a new object of class 
CompositeInstance is constructed. The constructor is 
provided with the type (an object of the CompositeType 
class) and proxy objects. This results in a new instance of 
the component. 

The described internal structure of composite components 
ensures great flexibility. Since data types are defined by the 
(runtime) structure of regular (java) objects (as opposed to 
compiled binary or bytecode), it gives us an opportunity to 
easily manipulate that structure at runtime thus creating new 
types. 

 

V. RESTRICTIONS AND FUTURE WORK DIRECTIONS 

Let us discuss certain limitations to the described 

 



 
 

solution. First of all, flexibility comes at a price. The ability 
to reconfigure software results in overhead computational 
costs. This means that the proposed model should be 
adopted only when implementing systems that either have 
no severe restrictions on computational resources or do not 
require very high performance. Aforementioned 
microelectromechanical sensors offer a graphics example: 
while having limited memory capacity, they carry no 
considerable performance limitations (they usually stay idle 
for hours between sending a signal and going idle again). 
This is why the availability of remote reconfiguration means 
takes precedence over elevated performance here. 

Second of all, while the property-based interaction is 
simple and quite flexible, it has its limitations, too. For 
example, implementing intricate algorithms this way is 
possible though burdensome, making a traditional 
imperative-scripting style far more suitable choice. In other 
words, the described solution should be adopted when 
there’re a great number of objects (instances) with a 
relatively simple interaction. In addition, it’s possible to 
incorporate complex logic via compiled components, though 
this still requires implementing it in a third-party language. 

The described system being only a prototype, our first 
and foremost goal is to turn it into a complete, feature-reach 
production-quality platform. This requires both evolving the 
component model and improving development tools to 
make use of it. This also implies optimization to guarantee 
acceptable performance. 

As for the practical applications, we’re planning to make 
use of the platform in question to introduce software 
solutions for 2D (GUI development) and 3D (VRML [6], 
[7] implementation) design, reconfigurable wireless sensors 
firmware and possibly for some other purposes. 

VI.  CONCLUSION 

We have described the main ideas and the core principles 
of internal organization of the new component architecture 
with extended capabilities. The ease of manipulating both 
data and metadata structure of software is not to be 
underestimated. We believe that formalized, simple yet 
powerful component model with runtime data type 
definition capability will allow creating most configurable 
software that will be able to evolve and adapt to changing 
requirements easily. 
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