

Abstract—The component-based approach to software
engineering, its current implementations and their limitations
are discussed. A new extended architecture for such systems is
presented. Its main architectural concepts and principles are
considered.

Index Terms—Runtime environment, software architecture,
software engineering, software reusability

I. INTRODUCTION

OFTWARE ENGINEERS have always pinned their hopes on
the idea of reusable code [8]. In their urge towards

eliminating code duplication, simplifying code maintenance,
making it less error-prone and streamlining the development
process programmers have gone a long way from a
completely unstructured code through procedures and
program libraries to object-oriented technologies and
application frameworks. Taking the code reuse idea one step
further, the component-based software engineering [9], [14]
is a very promising approach to software development.

The term “component instance” usually refers to a
program entity holding data and offering some functionality
that are hidden by a well-defined interface (cf. [10], [11]).
The concept of interface, however, varies from one
technology to another: a number of “properties” (attributes,
member variables etc.) [13], a number of member
functions/methods (as in most object-oriented programming
languages) or even an entity whose nature may be left out of
scope of the component technology itself [1]. The process of
combining components into a working system is considered
to be relatively simple (e.g. [2]). Nevertheless, this process
is implemented differently in various technologies.

In order to propose an optimal way for organizing
component interaction, that would introduce a good balance
between flexibility and ease of use, let us concisely consider
main aspects of component-based models and technologies
and their limitations (detailed comparative analysis is
beyond the scope of this work, see in [12] and [14]).

II. LIMITATIONS OF COMPONENT-BASED TECHNOLOGIES

Despite the many advantages of the component approach
its currently existing implementations have a number of
substantial limitations. The most difficult goal to achieve
here is probably to find a way of designing components that
will provide the necessary functionality without exceeding
it. The necessary functionality is determined by
requirements, and these are bound to change with the lapse
of time. There’re three options to consider. First of all, it is
possible to introduce software with somewhat wider
capabilities, so that it would still be adequate when
requirements change. This approach, however, demands
remarkable architectural design skills and foresight and has
the risk of bloating the program under development making
it unsuitable for system with limited memory resources.
Second of all, one can adapt the software with the course of
time. This would result in the most appropriate as well as
the most expensive software. The third option is to
introduce a component framework that would allow in-place
modification of component’s functionality without stepping
over the bounds of the component model.

Let as consider an example. ZigBee specification [15]
offers a suite of high level communication protocols for
low-rate, low-cost, low-power-consumption wireless
personal-area networks. It is implemented, for instance, by
communicational parts of microelectromechanical systems
in wireless sensor networks. At the same time, the
specification is subject to frequent changes. This makes
manufacturers renew and release sensor firmware, which is a
difficult process due to the lack of high-level development
tools for such systems.

ZigBee specification introduces network and application
layers (in addition to the PHY and MAC layers defined by
the IEEE standard 802.15.4 [5]) to the protocol stack. The
topmost application layer (which is subject to frequent
changes) is comprised of a number of components: ZigBee
device objects, their management procedures, application
objects. Requirements to these components are not changed

Component-Based Software Engineering and
Runtime Type Definition

A. R. Shakurov
Business Informatics Department,

Higher School of Economics,
Moscow, Russia

amir-shak@yandex.ru

S

at the same time (application objects, for example, are
provided by the manufacturer and thus aren’t managed by
the ZigBee alliance). Nevertheless, every new release of the
specification implies a new release of the whole firmware. It
would be more cost-efficient to modify only those
components specification for that have changed and make
the system reconfigure to make use of their instances
without rewriting a binary firmware image to devices’
memory.

To add, remove or modify certain functionality of a
component’s instance means to introduce a new component,
because it is the component that defines functionality of its
instances. That is, we’re essentially dealing with the task of
defining a new type of data. This can be done either by
deducing new type from existing one or creating it from
scratch using a number of predefined low-level components.
We believe it’s this operation that must be available at
runtime in order to ensure software flexibility.

This problem can be tackled in a number of bypass ways
such as source code, bytecode or binary code
generation/transformation, runtime compiler calls or taking
advantage of programming language’s ability to modify its
low-level runtime data structures (Java Reflection being a
graphic example). These, however, aren’t always an option.
Reflection mechanisms are primarily meant to be used to
build IDEs, source code analysis tools and GUI designer
applications. Using them indiscriminately to build any
garden-variety software lays exceedingly high claim to
developer and is therefore error-prone. Furthermore, many
programming languages don’t support reflection at all. And
embedded systems often lack compilers and code
modification frameworks. Therefore an alternative system
capable of building new types from user-configured
instances without stepping over the bounds of its model is
needed.

To conclude the section, let us look at another simple
example. We’re designing a GUI application and we want to
change a button’s label (the button has already its
functionality attached to the application). The change is
supposed to be permanent: the button won’t be renamed at
runtime. Although obvious, the necessary procedure is
implemented in various frameworks with a distressing flaw:
the variable property is left variable for the lifetime of the
component’s instance regardless of developer’s intentions.
In other words, the fact that the button’s text isn’t meant to
be mutable at runtime (should this be the designer’s
intention) cannot be expressed by a developer.

The designtime work with an instance of a component
and the runtime work with it are basically two different
contexts of its use. However, these cannot be fully separated
by existing frameworks (see [13] e.g.), because one has to
start (execute) a component (i.e. instantiate it) in order to
either configure it or take advantage of its functionality.
This is the source of the troubles one encounters when

adjusting a component’s instance.
To summarize, a new component system capable of

introducing new data types by either modifying existing
ones or creating them from scratch using a number of
predefined low-level components is needed in order to
create flexible (adaptable to changing requirements and
contexts of use) software for systems with limited resources.

III. CORE PRINCIPLES

To achieve the goal of designing such a system, we have
analyzed advantages and limitations of existing object-
oriented programming languages and component
technologies. This has allowed us to infer the core principles
of the suggested component model described in the next
section.

The model is based on a general object-oriented idea, and
is extended by other technologies’ traits when necessary
since the need to define data types at runtime makes
designtime and runtime essentially indistinguishable.
Omitting a detailed consideration of specific technologies
here (see [12] and [14] for such review), we are going to
summarize the core principles that underlie the model in
question.

The two primary characteristics of any development and
execution environment are the principles and mechanisms of
data organization and control flow management. Looking
for those characteristics in the object-oriented paradigm, one
will find the hierarchical data organization principle and
the concept of method as the means of control flow
management. And while the first characteristic gives us a
well-balanced solution for managing ever growing
complexity of software systems, we find the second one to
be too complex and cumbersome. We believe that the very
concept of object method (see [3] e.g.) isn’t suitable for
adopting it in a component model, because of its
overwhelming versatility: a method can have variable
number of parameters and (in certain languages) return
values, or it can have none of those; arguments can be
passed by either value or reference; methods can be
overloaded and overridden (in which case a complicated set
of resolution rules takes the stage). The list can be
continued. The concept of method, therefore, doesn’t
provide intended ease of use (though it does handle software
complexity well).

In contrast, the concept of property introduced in some
frameworks (C#, JavaBeans) is more suitable to our needs.
The property-based interaction model is simple and formal
because of the limited number of aspects describing the
“property” concept: its type and applicable operations
(usually reading and writing). However, to become a perfect
rival (to efficiently implement callback routine, for
example) the concept needs to be extended with the binding
operation (described in following section).

To summarize, we have adopted the principle of
hierarchical data organization and the property concept as
the means of organizing execution flow to create a
component model with a runtime data type definition
capability. We will now proceed to describe the model.

IV. THE MODEL

The model we’re going to discuss has its prototype
implemented in the Java programming language. Therefore
let us start with describing the model from the user’s point
of view.

While working with the application, a user interacts with
three categories of objects, viz. components, components’
instances and containers (which are used as both runtime
and new type definition environments).

A. Components and instances

An instance of a component is an aggregate of data and
behavior hidden behind an interface, the latter being the
only way to interact with this kind of entity. We shall refer
to the hidden part of an instance as its implementation, as
opposed to the interface.

Like objects in object-oriented paradigm have classes,
instances have components that describe the way these kinds
of instances are created and function. Every instance has a
single component associated with it and this association is
immutable during the lifetime of an instance. Every
component can be instantiated without providing any
additional information. This means that primitive types of
data (numerical, boolean, string etc.) aren’t actually
components. These are usually called value-types and to
instantiate them one has to provide at least a value of the
instance to create.

In addition to contextless instantiation, components allow
instantiation in a certain context (e.g. as part of a composite
instance, see below).

Interface

Let us focus on an interface of a component’s instance. It
is comprised of a number of properties each of which is
characterized by:

• name (used to identify a property),

• value type,

• access permissions; any property may be accessible
for reading, writing and binding.

Read/write operations need no explanation. Binding S
property of a particular instance to D property of another
instance ensures that whenever the value of S is changed the
new value will be written to B. The binding operation, as it
was mentioned earlier, is needed to efficiently implement
callback routine and is similar to that of the Java Beans
model, except that there’s only one event type (property

value change event) whereas in Java Beans a property can
have multiple event types associated with it.

B. Container

A container is an execution environment that allows the
following operations to be performed in its context (“within
it”):

• instantiate any components,

• change values of properties of instances created at
the previous step,

• bind instances’ properties to each other.

Apart from that, a container can be used to create new
components. Its contents are considered to be a prototype of
an implementation part of a future component. To create a
new component, one has to complete this information with
interface specification and connect these two parts together.
Above that, a user is able to edit metadata of instances
constituting future implementation. All this can be achieved
with the following operations:

• restricting access to instances’ properties,

• adding properties (with specified metadata: name,
access permissions etc) to the interface part of the
component,

• adding sharing connections between a property of
an instance that is a part of the implementation and
a property of the interface.

The “sharing connection” between two instances’
properties makes those instances share memory cell
(therefore changing the value of one property is immediately
reflected on the value of the other property). This behavior
requires a custom memory model, which we’ll focus on
later.

Once the user has provided all the necessary data to a
container, he can create a new component that will
correspond to the prototype currently in the container in the
sense that all of its future instances shall have the same
structure.

While a user is working with a container, the latter
gathers all the necessary information about future
component. It is to be noted that some of this information
can be deduced from the runtime structure of instances the
user have created. For example, bindings between instances’
properties are analyzed only when a new type is being
created. Other pieces of information, however, can’t be
stored within the runtime structure. For example, restricting
access to a property of an instance won’t actually modify
that instance because that implies changing metadata (i.e.
data type) of an existing instance and there’s no sense in
doing that. In other words, not every user action can be
directly reflected on the runtime structure of instances, and
it’s container who makes the process of editing both data
and metadata transparent to a user.

It wouldn’t be possible to define new types at runtime,
however, if it wasn’t for a specially designed internal
structure of components, which will be discussed in the
following section.

C. Internal structure

Let us focus on the internal architecture of the prototype
application we’ve developed that provides the previously
described functionality. As it was mentioned above, the
application is implemented Java, but it can be easily
rewritten in any other strongly-typed object-oriented
programming language.

All the instances in the system implement common
Instance interface that provides methods to access
instance’s type and properties. Similarly, all the types
implement the Type interface that provides methods to
instantiate the type and also extends the Instance interface.
Therefore, any type (and any component which is a kind of
type) is an instance whose data are metadata describing its
future instances. There is also a TypeType type, which is a
type of any type (including itself).

Let us consider the following scenario. A user defines a
new component with no bindable properties. Than the whole
event–listener infrastructure (that supports bindings’
functionality) becomes redundant and should not be
included in corresponding instances. This kind of deep
context adjustment is crucial when dealing with runtime
type definition and we pay great attention to it.

To implement the smart adjustment described, we’ve
introduced indirect access to instances’ properties. They’re
accessed via special PropertyGetter, PropertySetter and
PropertyBinder objects. If there’re no bindable properties
in a component then its instances end up having their
PropertyBinder object uninitialized. And if there’s at least
one bindable property, then the binder object will be created
(but it still won’t be granting access to unbindable
properties, of course).

Memory model

As it was mentioned above, the custom memory model is
required in order to consistently handle binding and sharing
connections between properties.

The memory model introduces traditional kinds of
“memory cells” (viz. constants and variables) that store
instances as their values. The value can be read and (in case
of a variable) written. The memory cell can also have no
value (it is said to be null in this case). Finally, memory
cells are strongly typed, which means that every cell knows
its type and an attempt to store an instance of mismatching
type in it produces an error.

There’s also an unconventional kind of variable –
listenable variables. As the name suggests, listenable
variables (in addition to having all the features of regular
variables) allow special objects (called listeners) to

subscribe to the variable value change event.

Data types
We’ve already mentioned that the system supports

primitive value-types which are a kind of instance types.
Another kind of instance types is components, but there’re
two different kinds of them. The first one is compiled
components. These are components whose implementation
is not analyzed by the system in any way. This permits the
system to handle various components implemented using a
third-party means (e.g. java bean components).

The second kind of components is composite
components. These are components implemented by means
of the system itself. The implementation part of a composite
component is a structure of other components.

Since it is a composite component that is built whenever
user defines a new type, this kind of components is of
greatest interest.

Composite components

We are going to focus on the structure of metadata stored
in composite components. Since these metadata determine
the structure of data in corresponding instances, we will
discuss that structure incidentally.

Composite type (like any other type) describes interface
and implementation parts of its instances (Figure 1). These
parts are interconnected via mechanism described below.

Figure 1. Composite type.

An interface of an instance is a set of its properties, so the
metadata stored in the interface part of a component are a
set of property descriptors (Figure 2) each of which
specifies:

• property value type,
• access permissions,
• default value (optional).

Figure 2. Interface part of a composite type.

Finally, implementation part of a composite type is
metadata that describe a structure of instances with
interconnected properties that will result from instantiation
the type. These metadata are represented in the following
way (Figure 3).

Figure 3. Implementation part of a composite type.

To every connection between two instances that
constitute an implementation of the future component
corresponds an object of the EventRoute class that holds
two objects of the SubcomponentPropertyQualifier class
(for the beginning and the ending of the connection). These
objects simply specify a source and a destination of a
property change event: they hold respective components’
IDs and their property names.

For every instance that is a part of an implementation of
the future component there’s a descriptor, an object of class
SubcomponentDescriptor. This object specifies:

• instance type,
• for every property of the instance, context

adjustment of that property to its use as a part of
another instance’s implementation. This
adjustment defines modified default value (if
any) of the property (the DefaultValueModifier
class) as well as restricts access to it
(PermissionsModifier).

A default value of a property can be modified in a number
of different ways.

• “Void” modification, the value is left intact.
• Explicitly specified value (the object of the

DefaultValueModifier class holds this value).
• Value is another instance that’s present in the

same context (implementation of the same
instance). In this case the modifier object holds
the name of that instance.

• The property is shared. In this case not the value
of the property, but the property itself is
changed: instead of creating a new memory cell
for storing the value, an existing (provided from
elsewhere) cell is used by the instance.

The last option is used to provide an instance (via its
instantiation context) with references to its parent instance’s
properties, thus creating sharing connections between these
properties. These connections glue interface and
implementation parts of a composite instance together.

Composite component instantiation

To demonstrate described structure at work, let us go
through the process of composite type instantiation. The
following algorithm implements the process.

1) Memory cells for storing values of properties are
established (one for every property descriptor). If
there’s an instantiation context, a reference for an
existing cell is used. Otherwise a new memory cell is
created, its kind (constant, variable or listenable
variable) being determined by respective access
permissions, and is initialized with either default
value (if any) or a new instance of the corresponding
type.

2) Instances constituting the implementational part of
the future component are created. This involves
evaluating their instantiation contexts. Every
property descriptor is merged with corresponding
subcomponent property context adjustment object
giving a new set of adjusted access permissions and
default value.

3) Binding connections (i.e. event routes) are
established.

4) Proxy objects for accessing new instance’s properties
are created (property getters, setters and binders).
These objects receive references to relevant
properties only (e.g. a setter object only holds
references to writable properties) and if there aren’t
any, the object is not created at all.

After all the steps have taken place, a new object of class
CompositeInstance is constructed. The constructor is
provided with the type (an object of the CompositeType
class) and proxy objects. This results in a new instance of
the component.

The described internal structure of composite components
ensures great flexibility. Since data types are defined by the
(runtime) structure of regular (java) objects (as opposed to
compiled binary or bytecode), it gives us an opportunity to
easily manipulate that structure at runtime thus creating new
types.

V. RESTRICTIONS AND FUTURE WORK DIRECTIONS

Let us discuss certain limitations to the described

solution. First of all, flexibility comes at a price. The ability
to reconfigure software results in overhead computational
costs. This means that the proposed model should be
adopted only when implementing systems that either have
no severe restrictions on computational resources or do not
require very high performance. Aforementioned
microelectromechanical sensors offer a graphics example:
while having limited memory capacity, they carry no
considerable performance limitations (they usually stay idle
for hours between sending a signal and going idle again).
This is why the availability of remote reconfiguration means
takes precedence over elevated performance here.

Second of all, while the property-based interaction is
simple and quite flexible, it has its limitations, too. For
example, implementing intricate algorithms this way is
possible though burdensome, making a traditional
imperative-scripting style far more suitable choice. In other
words, the described solution should be adopted when
there’re a great number of objects (instances) with a
relatively simple interaction. In addition, it’s possible to
incorporate complex logic via compiled components, though
this still requires implementing it in a third-party language.

The described system being only a prototype, our first
and foremost goal is to turn it into a complete, feature-reach
production-quality platform. This requires both evolving the
component model and improving development tools to
make use of it. This also implies optimization to guarantee
acceptable performance.

As for the practical applications, we’re planning to make
use of the platform in question to introduce software
solutions for 2D (GUI development) and 3D (VRML [6],
[7] implementation) design, reconfigurable wireless sensors
firmware and possibly for some other purposes.

VI. CONCLUSION

We have described the main ideas and the core principles
of internal organization of the new component architecture
with extended capabilities. The ease of manipulating both
data and metadata structure of software is not to be
underestimated. We believe that formalized, simple yet
powerful component model with runtime data type
definition capability will allow creating most configurable
software that will be able to evolve and adapt to changing
requirements easily.

REFERENCES

[1] Bruneton, E., Coupaye, T., Stefani, J.B., The Fractal Component
Model specification. Version 2.0-3, The ObjectWeb Consortium,
2004.

[2] Costa Seco, J., Silva, R., Piriquito, M., “ComponentJ: A Component-
Based Programming Language with Dynamic Reconfiguration”,
Computer Science and Information System, ComSIS Consortium,
Novi Sad, Serbia, 2008, pp. 63-86.

[3] Gosling, J., Joy, B., Steele, G., The Java™ Language Specification.
3rd ed., Addison Wesley, 2005.

[4] Heineman, G.T., Councill W.T. Component-Based Software
Engineering: Putting the Pieces Together. Addison-Wesley
Professional, 2001.

[5] IEEE Std 802.15.4-2003 – Wireless Medium Access Control (MAC)
and Physical layer (PHY) for Low-Rate Wireless Personal Area
Networks (WPANs).

[6] ISO/IEC 14772-1:1997 — Virtual Reality Modeling Language
(VRML).

[7] ISO/IEC 14772-2:2004 — Virtual Reality Modeling Language
(VRML).

[8] Krueger, C.W., “Software reuse”, ACM Comput. Surv. Vol. 2, ACM,
New York, 1992, pp. 131-183.

[9] McIlroy, M.D., “Mass produced software components”, Naur P.,
Randell B., “Software Engineering, Report on a conference
sponsored by the NATO Science Committee, Garmisch, Germany,
7th to 11th October 1968”, Scientific Affairs Division, NATO,
Brussels, 1969, pp. 138-155.

[10] Object Management Group, The Common Object Request Broker:
Architecture and Specification. Version 3.1. Part 3 - Components,
OMG document formal/2008-01-08, 2008.

[11] Redmond, F.E., DCOM: Microsoft Distributed Component Object
Model, IDG Books Worldwide, Inc., Foster City, 1997.

[12] Stiemerling, O., Component-Based Tailorability, Bonn University,
Bonn, 2000.

[13] Sun Microsystems Inc. The JavaBeans™ API specification. Version
1.01-A, Sun Microsystems Inc., 1997.

[14] Szyperski, C. Component Software: Beyond Object-Oriented
Programming, 2nd ed, Addison-Wesley Professional, Boston, 2002.

[15] ZigBee Alliance, ZigBee Specification, ZigBee Document
053474r17, 2007.

