
// An aspect consisting of a named pointcut 

// and an advice. 

aspect Logging { 

  // A named pointcut that matches a join 

  // points set of method calls. 

  pointcut move(): 

    call(void FigureElement.setXY(int,int)) || 

    call(void Point.setX(int))              || 

    call(void Point.setY(int)); 

  // An advice performing some actions before 

  // execution of a matched by the given named 

  // pointcut program point. 

  before(): move() { 

    System.out.println("about to move"); 

  } 
} 
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Abstract—The given paper introduces an approach for aspect-

oriented programming implementation developing intended for 

the C programming language. Key features of C and a common 

C program build process are considered and it’s shown how they 

influence on a supposed C AOP implementation. The last is 
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I.  INTRODUCTION 

Aspect-Oriented Programming (AOP) is a rather fresh 
programming paradigm that is intended to increase program 
modularity by means of cross-cutting concerns separation. 
Generally speaking cross-cutting concerns mean functionality 
or features that cannot be easily decomposed from so-called 
core concerns. The last in depend on a programming paradigm 
used is implemented as corresponding functions, classes and 
modules while cross-cutting concerns scatter through them and 
tangle a program source code. The typical example of cross-
cutting concerns is logging. Also some more complex fields 
like errors handling, some sort of testing, security, and database 
operations can be treated as cross-cutting concerns. AOP 
provides programmers with opportunity to extract cross-cutting 
concerns into separate modules called aspects. To understand 
better let us consider other major AOP conceptions since 
they’ll be widely used at the rest of the given paper. 

The basic AOP conception is a join point. In general join 
points are those elements of the programming language 
semantics which the aspects coordinate with [1]. The given 
paper takes a join point to be a program construction connected 
with its context. The typical example of a join point is a 
function/method call because of such a construction can be 
found almost in any programming language. But generally 
speaking join points depend on and even in some degree are 
determined by a programming language used. A pointcut is a 
set of join points satisfying a given condition. For instance, all 
memory allocating function (like malloc, calloc and so on) 
calls may be treated as a pointcut. Next AOP conception is an 
advice. An advice consists of a pointcut and a body. The last 

represents some actions to be executed in matching between a 
join point corresponding to a given pointcut and a program 
construction related with some context. Moreover an advice 
contains information on whether these actions should be 
executed before, instead of (around) or after a matched 
program point execution. Usually an advice body is written in a 
given programming language although some special AOP 
constructions (e.g. a matched entity name) may be also 
available. An aspect already mentioned above is a separate 
module that consists of a number of advices implementing 
some part of cross-cutting concerns. More exactly an aspect 
also can contain some other constructions, e.g. named pointcuts 
that is pointcuts associated with identifiers for following usage. 
At last, the process of aspects with main program integration is 
referred to as weaving. Weaving can be done at any stage of a 
program processing (at compile time, at post compile time, up 
to run time) that is exhibited by different approaches. 

An AOP implementation depends on a programming 
language used as was said. Generally an AOP implementation 
represents a programming language superset required to write 
aspects and some tool(s) to weave aspects with programs. Let 
us consider the most advance and popular AOP implementation 
AspectJ [2] intended for the Java programming language. Note 
that even though the goal of this paper is the C programming 
language, nevertheless AspectJ is well suited because of C and 
Java programming languages have many similar constructions 
and almost all AOP implementations are more or less based on 
AspectJ ideas. 

Figure 1.  Example of an AspectJ aspect for a graphical system logging 



In using an AspectJ extension for Java a logging 
functionality for a graphical system can be extracted into an 
aspect showed in Fig. 1 [3]. In whole this means that before 
execution of each called method from the specified ones the 
given log message will be printed to a screen. The AspectJ 
weaver deals with Java program bytecode and after its work 
such the object code is obtained. This weaver is implemented 
as a part of a special compiler. The given example shows that 
an AOP implementation really strongly depends on a 
programming language and a program build process. Indeed 
there are more than 20 different AOP implementations just for 
the Java programming language. So the main goal, to separate 
cross-cutting concerns from the core ones for a given 
programming language, can be reached in the different ways. 

The rest of the paper is structured as follows. Section II 
considers features of the C programming language and a 
typical build process of programs written in the given 
language. On the basis of these features and demands of the 
Linux driver verification project (it’s considered there) 
requirements to an AOP implementation for the C 
programming language are collected. Section III describes 
related work and shows how different approaches meet the 
requirements pointed out in Section II. A suggested approach 
of an AOP implementation for the C programming language is 
introduced in Section IV. Section V estimates an application of 
the suggested approach. Section VI summarizes the work done 
and considers future work directions. 

II. REQUIREMENTS TO AN AOP IMPLEMENTATION FOR THE 

C PROGRAMMING LANGUAGE 

Let us consider a typical workflow in building of a common 
C program and estimate how AOP conceptions may be related 
with different C constructions. It’s worth while noticing that 
during the given consideration we won’t restrict a C AOP 
implementation to represent just AOP constructions similar to 
the AspectJ ones as it’s done by the most of AOP 
implementations. On the contrary we will try to describe an 
AOP implementation specific for the C programming language. 
Generally speaking it’s assumed that such the implementation 
won’t have any fundamental limitations for C cross-cutting 
concerns separation.  

Fig. 2 illustrates 3 stages of a common C program build 
process, preprocessing, compilation and linking. Note that 
rectangles having dash line borders represent third-party 
components used by a program considered.  

A. Preprocessing 

At the first stage a preprocessor in depend on passed 
preprocessor options includes necessary header files (both 
program’s h1.h, h2.h, h3.h, … and libraries’ lib1.h, lib2.h, 
lib3.h, …) into a program source code files a1.c, a2.c, a3.c, … 
and expand macros there. More exactly it’s the two main 
actions performed by a preprocessor but the rest ones aren’t 
touched in the given paper. Both header files including and 
macro expansion may be related with AOP conceptions in the 
following way. Each file included to a given program source 
code file and even that source code file itself can be treated as a 
corresponding join point. Therefore the including process can 

be modified by adding needed instructions before, after or 
instead of a given file. For instance, this helps to add some 
auxiliary preprocessor directives, function prototypes and so 
on. Macro expansion also can be altered in the similar way. So 
instead of (or before, or after) a substituted code we may put 
our own code that may deal with macro arguments as well as 
perform some required actions. Preprocessing is the essential C 
feature because of there is just few programming languages 
through all that supports it.  

 

Figure 2.  Common C program build process 

B. Compilation 

Then at the second stage a compiler parses a preprocessed 
program source code files a1.i, a2.i, a3.i, … and produces 
corresponding object files a1.o, a2.o, a3.o, … Compilation 
may be affected by some build options. Traditionally AOP 
conceptions are developed for constructions of the given stage. 
For instance, AOP conceptions are related with 
function/method definitions and calls, type/class declarations 
and variable and field manipulations. Here is indeed the large 
area for AOP to be involved. As for the given work it’s 
suggested that there should be implemented at least support for 
such join points as a function definition and call, a type 
declaration, a local and global variable, field and function 
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parameter set and get. The most of current AOP 
implementations support just the given or even a smaller set of 
join points (see Section III). Moreover C is a programming 
language having pointers and a lot of operations with them. 
The most popular operations like a pointer dereference and 
vice versa a taking of a variable/field/parameter address and a 
taking of an array element should be supported as 
corresponding join points. Also it’s required that for each 
mentioned join point some actions written as advice bodies can 
be performed before, instead of and after a corresponding 
program construction execution. Of course it isn’t a complete 
list of different program join points, e.g. loop and specific 
condition statements as well as a lot of different expressions 
weren’t described. But indeed they also may be taken into 
account sooner or later. 

Both the first and the second stages weaving should 
produce a correct source code or/and a corresponding compiler 
internal representation. For example, advice bodies should be 
substituted and be compliable as well as a given program 
source code. Also for these stages a considered construction 
scope (either some file or some function) plays a significant 
role because of some action like a function call may be 
performed either in one file or in another one, in one function 
or in another one. It is important to notice that among advice 
body instructions there may be some specific AOP instructions. 
In the given paper they are referred to as body patterns. For 
instance, there may be such body patterns as: 

• a matched construction name and type (for a function 
call and definition, for a variable declaration, etc.); 

• matched construction argument names and types (for a 
function call and definition); 

• a matched construction size (for entities having an 
array type or strings); 

• and even a matched construction itself (e.g. to have 
ability to call a matched function from inside a 
corresponding advice body). 

C. Linking 

Linking performed at the third stage by a linker with 
corresponding build options assembles given program object 
files a1.o, a2.o, a3.o, … together with libraries object files 
lib1.o, lib2.o, lib3.o, …. After all an executable file or a library 
a1.out is obtained. It’s worth while mentioning that C program 
object files to be linked shouldn’t contain the same defined 
symbols such as function definitions having the same names. 
So if some shared functions and global variables are required to 
separate cross-cutting concerns they should be contained just in 
one object file. For instance, this may help to use different 
counters or flags, i.e. to save a shared context or state, and to 
efficiently execute the same code by means of special auxiliary 
functions (one can see an example in Section V). Interaction of 
AOP directly with object files and a running program is beyond 
of the given paper.  

So the common C program build process, the most of key C 
constructions and their influence on an AOP implementation 
were considered. But the goal of the given paper isn’t to 

introduce some AOP implementation for the C programming 
language but is to suppose the one that can be used for real 
programs. To the author’s knowledge unfortunately the most of 
C AOP implementations are used just for artificial simple 
examples and isn’t widely used in practice (there is some 
discussion about the given issue in Section III). So the AOP 
implementation concerned at this paper was strongly affected 
by the Linux driver verification (LDV) project [4][5]. The goal 
of that project is to provide an industrial quality toolset that 
allows to use different static code analysis tools to verify 
whether drivers satisfy correctness rules or not. The appropriate 
way to formalize these correctness rules in the manner being 
independent on a static verifier used and than to instrument a 
driver source code to be checked is to use AOP. Therefore this 
constrains some extra circumstances on a C AOP 
implementation: 

• Support of the C programming language with all GNU 
extensions as an input language (it’s a standard 
language for drivers writing) as well as all support of 
standard and GNU build options. 

• Offering of a well set of AOP constructions 
corresponding to the C programming language. This is 
required since correctness rules refer to different C 
constructions used in different contexts. But 
nevertheless aspects development should be rather 
easy. 

• An output should be also a correct program in C 
equivalent to the original one except it may be 
extended with corresponding cross-cutting concerns. 
This is required by the following application of static 
code analysis tools. 

• An AOP implementation should be quite easy 
maintained and extended with new features. This 
comes because of new correctness rules are constantly 
appearing, so an extra AOP constructions support is 
required. 

Note that nevertheless the most of these requirements are 
suitable for any program written in the C programming 
language (may be with allowance that this is done on the Linux 
platform). So a supposed C AOP implementation appears to be 
used both in the LDV project and in developing of a rather 
random C program. Moreover the requirement for an output to 
be a C program is useful for an AOP implementation 
debugging, because of by means of this output one can easily 
observe how a given AOP implementation behaves. 

III. RELATED WORK 

AOP for the C programming language that is the goal of the 
given paper is considerably less developed in comparison with 
the one for Java. At present the most interesting C AOP 
implementation is ACC (AspeCt-oriented C) [6]. Fig. 3 shows 
that its superset for C likes the one for Java made in AspectJ 
[7]. That aspect means that after function foo2 is called its 
result will be printed to a screen. ACC weaving differs from 
the one of AspectJ. For a given preprocessed C file ACC 
produces a corresponding C file extended with cross-cutting 
concerns. Despite of ACC supports a rather large set of AOP 



static void instrument_malloc_calls() { 

  /* Construct a pointcut that matches calls 

to: void *malloc(unsigned int). */ 

  struct aop_pointcut *pc = 

aop_match_function_call(); 

  aop_filter_call_pc_by_name(pc, "malloc"); 

  aop_filter_call_pc_by_param_type(pc, 0, 

aop_t_all_unsigned()); 

  aop_filter_call_pc_by_return_type(pc, 

aop_t_all_pointer()); 

  /* Visit every statement in the pointcut. */ 

  aop_join_on(pc, malloc_callback, NULL); 

} 

state { int zero_cnt = 0; } 

put.entry { 

  if ($1 == 0) { 

    if (zero_cnt == 4) 

      abort "Queue has 4 zeroes!"; 

    else 
      zero_cnt = zero_cnt + 1; 

  } 
} 
get.exit { 

  if ($return == 0) 

    zero_cnt = zero_cnt - 1; 
} 

// An advice printing a message after a 

// given function call is performed. 

after (int res): call(int foo2(int)) && 

result(res) { 

  printf(“ after call foo2, return %d\n”, res); 
} 

constructions it cannot deal with preprocessor ones since it 
takes already preprocessed source code. Also it is intended just 
for one file processing and there isn’t ability to specify some 
shared variables and auxiliary functions. ACC has its own 
closed C parser that fails to process some GNU extensions. 
Maintenance of ACC by its developers isn’t active and due to 
its core component is closed it isn’t so easy to deal with it. 

Figure 3.  Example of an ACC aspect 

InterAspect is a more recent AOP implementation intended 
for the C programming language [8]. It was developed almost 
at that time when the given work was done. This tool is 
interesting because of it’s based on GCC plugins [9], so it is 
most likely to support all GNU extensions. Unfortunately the 
InterAspect tool after all produces an object code (in fact this is 
done by GCC itself) like AspectJ so it cannot be directly used 
for static verification. At present the given tool supports rather 
limited number of AOP constructions and preprocessor 
constructions aren’t supported as well as state variables and 
auxiliary functions. Instead of a C superset it provides a special 
C AOP library allowing to write aspects like an usual C 
program. But as one can see in Fig. 4 it seems to be even a 
more complex task to write such an aspect. In fact there only a 
joint point for malloc function call is defined. The tool was 
actively developed recently. However its development was 
stopped at the end of 2010. Nevertheless its progress should be 
tracked and correlated with the suggested approach. 

Figure 4.  Example of a part of an InterAspect aspect 

Another good approach is SLIC (Specification Language 
for Interface Checking (of C)) [10]. To the author’s knowledge 
it’s the only C AOP implementation that is widely used in 
practice. However it has just one field of application, it’s used 
during a process of static verification of Microsoft Windows 
operation system drivers. SLIC allows to use state variables 
and has a simple syntax for aspect writing. A SLIC 
specification is indeed some kind of an aspect. The example of 
a SLIC specification is demonstrated in Fig. 5. This artificial 
specification states that it is an error to have more than four 
zeroes in a queue. A SLIC preprocessor weaves driver source 

code with a specification and after all produces equivalent C 
program to be checked by means of a static verifier. A 
shortcoming of the given approach is that there just few join 
points are implemented (in fact just a function call and 
definition). Also the given project is completely closed. 

Figure 5.  Example of a SLIC specification 

A lot of other AOP implementations for C like C4, 
Aspicere2, Xweaver project, WeaveC and so on posses a less 
number of useful features than the ones described above, so 
they aren’t considered in this paper. Also AOP tools dealing 
with C++ even though they may be adapted in some way for 
the C programming language aren’t introduced because of 
usually they produce output in C++ while C is required by 
static code analysis tools. 

IV. OVERVIEW OF SUGGESTED C AOP IMPLEMENTATION 

ARCHITECTURE 

A suggested approach tends to implement all the 
requirements described in Section II in the most complete way. 
So after thorough investigation it was decided to base it on the 
LLVM compiler infrastructure [11]. In turn this infrastructure 
is built on top of GCC, it has so-called LLVM GCC Front End 
binding GCC with LLVM tools. So the LLVM compiler 
infrastructure inherits a GCC parsing of both C constructions 
and GNU extensions and supports all GCC build options 
almost as InterAspect described above. The suggested C AOP 
implementation is built on top of a GCC parser itself. Because 
of GCC includes preprocessing the given C AOP 
implementation can deal with both preprocessing and 
compilation join points. Next the LLVM tools include its own 
linker and a C backend tool. The first allows to link several 
object files of the whole program together, so some set of 
source code files can be woven instead of an alone file. The C 
backend tool is used to produce a C source code file to be 
verified by a static code analysis tool. To write aspect files it 
was decided to use a superset of C like AspectJ, ACC and 
SLIC do. Section V contains an example of such an aspect that 
is used in practice. Below the overall architecture of the 
suggested C AOP implementation is considered in more 
details. It’s shown how program source code files, libraries’ 
header files and aspect file are used and modified to weave 
cross-cutting concerns with a program. 

Different constructions matching and weaving are 
performed through 4 stages by means of LDV GCC Front End 
invocation on each stage. Then linking and a C source code file 
generation are done. First of all it’s necessary to mention that 



there are usually 2 aspect files. The first is intended for 
weaving with all program source code files. The second aspect 
file is required to define auxiliary function definitions and 
global variable declarations shared between all other source 
code files. The second aspect file is applied just to one program 
source code file of those forming a final executable file or a 
library. To make the further description more general * is used 
instead of corresponding names. For instance a first aspect file 
is denoted as *.aspect, and a second as *.aspect.common.  

A. Aspect preprocessing 

At the first stage comments of both C and C++ styles are 
eliminated from both aspect files. So *.aspect.nc and 
*.aspect.common.nc (where nc means “no comment”) are 
obtained. Then at every stage such the modified aspect files are 
parsed by means of a special parser (that is later referred to as 
aspect parser) implemented as a patch for LLVM GCC Front 
End. In an aspect file parsing lexical, syntax and semantic 
correctness is checked. Advice bodies are looked through just 
to determine body patterns. In case of some error an exact 
place and an error type are reported. If a given aspect file is 
correct it’s translated into own internal representation used 
during matching and weaving later. 

At the first stage required modifications are done for a 
program source code file processed, *.c. Either before or after 
or instead of it some additional source code is inserted. This is 
done to process further these modifications as soon as possible, 
i.e. even by means of a preprocessor because of they may 
contain some preprocessor directives. By analogy with a 
preprocessor a file obtained after this stage is called *.c.p (p 
means “preprocessed”) and the given stage is named aspect 
preprocessing. At the moment there isn’t weaving for included 
files but it can be implemented in the similar way. 

B. Macro weaving  

At the second stage during the standard preprocessing of a 
*.c.p file performed by LLVM GCC Front End using 
corresponding build options (e.g. to find all included files) 
macro matching and weaving are performed. So this stage is 
referred to as macro weaving. When a corresponding to a given 
pointcut macro directive is matched a macro body is extended 
in a way required by an advice. After all there is a *.c.p.mw 
(mw means “macro woven”) file that is the both aspect 
preprocessed and preprocessed one. 

C. Advice weaving  

The third and the fourth stages correspond to the 
compilation phase. Here is important to notice that we don’t 
restrict an advice body source code with C constructions usage 
and we don’t parse it by ourselves. Instead, advice bodies are 
substituted to a given source code file as unique auxiliary 
function bodies on advice pointcut matching. And then the 
LLVM GCC Front End powerful parser processes them. So at 
the third stage auxiliary functions required to implement advice 
body actions are created in depend on join points matching and 
advice requirements. Also to perform parsing of type 
declaration extensions as well as to allow using of given 
extensions in auxiliary functions type declarations weaving is 
done at the third stage. At this stage the LLVM GCC Front End 

C parser deals with a preprocessed file *.c.p.mw and produces 
step by step its intermediate representation in the form of the 
GCC internal representation, called later as a parsing tree. Also 
parsed entities (in fact, type declarations and function bodies) 
are looked through to find matches with pointcuts defined in a 
given aspect file. It’s kept where matched entities are placed (to 
insert either auxiliary function prototypes or to extend 
corresponding type declarations later), what exact types and 
names are matched to replace body patterns used in 
corresponding advice bodies. After all required type 
declaration extensions as well as auxiliary function definitions 
with substituted body patterns and their prototypes are directly 
inserted into corresponding places of an initial source code file 
*.c.p.mw and a *.c.p.mw.aw (aw means “advice woven”) file is 
obtained. The stage is called advice weaving.  

D. Compilation  

After that at the fourth final stage the inserted source code 
is checked for correctness and translated into a parsing tree as 
well as an initial source code. Also at the third stage matching 
and weaving are performed in parsing. Here function 
definitions and function body expressions are modified directly 
at the level of the parsing tree and some relations with auxiliary 
functions are established if it’s necessary. After the parsing is 
completed LLVM GCC Front End behaves in its standard 
mode and obtains an object file as well as a compiler does.  

All four stages described above are summarized in Table 1. 
The table shows how input data is modified and used and what 
output is obtained in depend on a given stage. 

TABLE I.  DATAFLOW OF MATCHING AND WEAVING STAGES 

Stage *.aspect *.c Build options 

Aspect 

preprocessing 

Comments 

elimination 

(*.aspect.nc) 

and parsing 

Include join point 

weaving (*.c.p) 

Aren’t used 

Macro 

weaving 

Parsing Macro weaving and 

preprocessing 

(*.c.p.mw) 

Preprocessor 

options are 

used 

Advice 

weaving 

Parsing Auxiliary functions and 

declarations direct 

including (*.c.p.mw.aw) 

Compiler 

options are 

used 

Compilation Parsing Function definitions and 

bodies weaving, 

compilation 

Compiler 

options are 

used 

E. Linking and C source code file generation  

Further required object files are linked together by means 
of the LLVM linker tool. As it was already mentioned for a 
resultant file just one object file woven with both aspect files is 
taken. For an assembled object file the LLVM C backend tool 
produces a C source code file that can be processed by a static 
verifier. Although the last action is optional. For example, 
instead of this there is ability to produce an executable file for a 
given program that is intended for some architecture supported 
by the LLVM compiler infrastructure. 

V. APPLICATION OF SUGGESTED C AOP IMPLEMENTATION 

The suggested AOP implementation for the C programming 
language is already included into a LDV project toolset. It’s 



model0032a-blast.aspect 
before: file ("$this") { 

#include <linux/kernel.h> 

#include <linux/mutex.h> 

extern void ldv_mutex_lock(struct mutex *lock); 

} 

around: define(mutex_lock(lock)) { 

ldv_mutex_lock(lock) 

} 

before: call(extern void mutex_lock(struct 

mutex *)) { 

ldv_mutex_lock($arg1); 

} 

 

model0032a-blast.aspect.common 
after: file ("$this") { 

#include <linux/kernel.h> 

#include <linux/mutex.h> 

#include "engine-blast.h" 

int ldv_mutex = 1; 

void ldv_mutex_lock(struct mutex *lock) { 

  ldv_assert(ldv_mutex == 1); 

  ldv_mutex = 2; 

} 

void mutex_unlock(struct mutex *lock) { 

  ldv_assert(ldv_mutex == 2); 

  ldv_mutex = 1; 

} 

void ldv_check_final_state(void) { 

  ldv_assert(ldv_mutex == 1); 

} 

} 

 

used to formalize few correctness rules and in driver source 
code instrumentation intended for a further verification by 
means of static code analysis tools. 

Fig. 6 shows an example of aspect files used in verification 
of the “Locking a mutex twice or unlocking without prior 
locking” correctness rule. Note that these aspect files are 
simplified in comparison with the actually used ones since 
some extra lock functions aren’t presented. Syntax is most 
likely to be rather intuitively clear. It’s worth while noticing 
that there are 2 join points as for macro mutex_lock and for 
function mutex_lock. This is required because of Linux kernel 
can define either a macro or a function in depend on its 
configuration. Function mutex_unlock is always declared as 
extern, so it doesn’t require instrumentation since it can be 
explicitly defined. Global variable ldv_mutex is an example of 
shared state variables while ldv_mutex_lock is an auxiliary 
shared function. Function ldv_check_final_state is executed at 
the end of checking to ensure that nothing is locked then. 

Figure 6.  Example of aspect files of the supposed C AOP implementation 

To estimate quality of the proposed C AOP implementation 
2 experiments were performed. The first one used a specially 
prepared Linux kernel configuration and corresponding kernel 
function implementations (like mutex_unlock showed in Fig. 6) 
while the second one used aspect files like presented in Fig. 6 
and following instrumentation. Later the first experiment is 
called plain and the second one is called aspect. During 
experiments all drivers of Linux kernel 2.6.31.6 [12] that can 
be represented as kernel modules (there are 2160 such the 
drivers) were examined against the correctness rule about 
mutex lock/unlock described above with help of BLAST static 

code analysis tool [13]. The most interesting results 
demonstrating verdict changes between plain and aspect 
approaches are shown in Table II (a first verdict belongs to the 
plain experiment, and the second one belongs to the aspect 
one). Safe verdict means that a given driver satisfied the given 
correctness rule, unsafe is the reverse one, unknown verdict 
means that a static verifier used failed to check a given driver 
(e.g. because of time or memory shortage or due to some 
parsing error). 

TABLE II.  COMPARISON OF THE SUGGESTED C AOP IMPLEMENTATION 

WITH ANOTHER APPROACH 

Safe → 

Unsafe 

Safe → 

Unknown 

Unsafe → 

Unknown 

Unknown 

→ Safe 

Unknown 

→ Unsafe 

4 95 18 82 3 

As one can see from Table II the supposed C AOP 
implementation behaves rather well because of the number of 
“bad” transitions (i.e. from safe/unsafe to unknown) almost 
equals to the number of “good” transitions. There are 95 + 18 = 
113 “bad” transitions and 82 + 3 = 85 “good” ones. Their 
difference is just 28, that is less then 1.3% of the total number 
of kernel modules. 

In fact it requires more memory for a generated file 
verification to be performed in the aspect experiment in 
comparison with the plain one. So, 62 modules were not 
checked because of memory shortage. Also in the aspect 
experiment some produced by LLVM C backend C 
constructions are rather complex for the static verifier used (31 
modules were not checked due to the given reason). Although 
the plain experiment showed that even more drivers confuse a 
BLAST C parser because of complex constructions coming 
from initial driver source code as is. There are 68 such 
modules. The rest transitions from/to unknown verdict are 
concerned with either some bugs in the supposed C AOP 
implementation (20 modules for the aspect experiment) or 
time/memory shortage in the plain experiment (17 modules). 
Unfortunately, all additionally found unsafes (7 modules for 
which safe or unknown verdict was exchanged with unsafe 
one) are false positives because of either generated C file 
shortcomings (like generation of big unsigned integer numbers 
instead of negative ones that is demonstrated later) or 
incomplete correctness rule implementation and some static 
verifier lacks. 

But nevertheless the most significant shortcoming of the 
supposed C AOP implementation consists in a generated code 
itself. Fig. 7 illustrates an example of how a driver source code 
is modified after the given implementation invocation. As it 
was already mentioned sometimes this prevent a static verifier 
from check performing due to complex constructions 
generated. As Fig. 7 shows there is a lot of variables having 
prefix blast_must. This is a special workaround made as a 
corresponding LLVM C backend patch. It is required to 
designate so-called must-aliases, that is the aliases that alias 
only one known memory location (all artificial temporary 
variables are must-aliases). The suggested approach application 
leads to more memory requirement for a testing to be executed. 
Such the generated source code scares users trying to see on it, 
for example, in analyzing unsafes or in debugging the given C 
AOP implementation. In fact the LLVM compiler 



drivers/pci/hotplug/fakephp.c (preprocessed) 

if (strict_strtoul(buf, 0, &val) < 0) 

  return -22; 

if (val) 

  pci_rescan_bus(slot->dev->bus); 

 

fakephp.ko.linked.cbe.c 

blast_must_tmp__85 = *(&llvm_cbe_buf_addr); 

blast_must_tmp__86 = 

strict_strtoul(blast_must_tmp__85, 0u, 

(&llvm_cbe_val)); 

if ((((signed int )blast_must_tmp__86) < 

((signed int )0u))) 

  goto llvm_cbe_bb; 

else 

  goto llvm_cbe_bb1; 

llvm_cbe_bb: 

  *(&llvm_cbe_tmp__73) = 

18446744073709551594ull; 

  goto llvm_cbe_bb5; 

llvm_cbe_bb1: 

  blast_must_tmp__87 = *(&llvm_cbe_val); 

  blast_must_tmp__88 = *(&llvm_cbe_slot); 

  blast_must_tmp__89 = *((&blast_must_tmp__88-

>field1)); 

if ((blast_must_tmp__87 != 0ull)) 

  goto llvm_cbe_bb2; 

else 

  goto llvm_cbe_bb3; 

llvm_cbe_bb2: 

  blast_must_tmp__90 = *((&blast_must_tmp__89-

>field1)); 

  blast_must_tmp__91 = 

pci_rescan_bus(blast_must_tmp__90); 

llvm_cbe_bb3: 

 

infrastructure used is responsible for this shortcoming. First of 
all it deals with a GCC internal representation called GIMPLE 
that already rather differs from a source code pure 
representation. Next it is intended for machine independent 
source code generation. So one can see large positive numbers 
instead of small negative ones in Fig. 7. 

Figure 7.  Comarison of a driver source code with the generated one 

Another big shortcoming is connected with the fact that 
LLVM GCC Front End is based on the rather old GCC 
compiler (of 4.2.1 version, nowadays 4.5.2 is a stable release) 
while the modern Linux kernel drivers already posses such new 
constructions that aren’t processed with it. So different 
workarounds are required to overcome this. 

After all let us imagine how different approaches 
introduced in Section III could meet aspect files presented in 
Fig. 6, driver source code instrumentation, following static 
analysis and obtained verification results examination. First of 
all none of them supports the join point concerned with the 
preprocessor construction define(mutex_lock(lock)). 

Then, step by step, ACC fails to parse driver source code 
because of unsupported fresh GNU extensions to the C 
programming language and that tool cannot be adjusted 
because of it uses a closed parser. InterAspect deals with 
GIMPLE representation of source code and, if we had some C 
backend tool for GCC, InterAspect would produce 
instrumented source code too dissimilar to the original one 
almost as well as LLVM C backend. Both ACC and 

InterAspect doesn’t support state variables and functions like 

ldv_mutex and ldv_mutex_lock correspondingly. Most 
likely that we could verify the given model by means of SLIC, 
except the preprocessor issue, but in fact this is one of the 
simplest model from the LDV project. Other models require 
more complex join points and advice bodies, so what can we 
do if SLIC supports just function calls and definitions and it is 
the closed project. 

VI. CONCLUSION 

This paper describes an approach of how to implement 
aspect-oriented programming in the way specific for the C 
programming language. It considers features and shortcomings 
of current implementations. After all a new implementation 
that tends to cover all major features of the C programming 
language as well as to take into account those features that 
come from the C programs build process is considered. It’s 
shown how the given C AOP implementation behaves to reach 
the required intention. 

For the supposed C AOP implementation its real 
application for the Linux driver verification process is 
demonstrated. An example of real aspect files implementing a 
correctness rule associated with the mutex lock/unlock problem 
is given. Also the supposed approach is compared with another 
one that doesn’t use AOP. It’s shown that the given C AOP 
implementation is rather good except a generated source code 
is too complex for further analysis and it’s quite unlike the 
original one. Mental comparison with another AOP 
approaches, such as ACC, InterAspect and SLIC, is done. 
Finally it becomes clear that the given approaches can not meet 
all requirements imposed on the suggested C AOP 
implementation by a number of reasons.   

The current development of the supposed approach of the 
AOP implementation for the C programming language tends to 
overcome the restrictions specified above. To keep all 
advantages of the supposed approach as well as to eliminate the 
given shortcomings it was decided to develop our own C 
backend tool intended directly for GCC itself. It’s assumed that 
it’ll be built on top of stable GCC “from svn” that is it’ll parse 
all modern constructions and GNU language extensions. Also 
the given C backend tool should work at the low-level GCC 
internal representation even before GIMPLE. Thus far a 
produced source code will most likely to be very similar to the 
original one. We believe that this will allow to combine 
abilities of both the supposed C AOP implementation and 
powerful GCC compiler to process C source code and to use 
AOP.  

One can obtain the current AOP implementation for the C 
programming language from a LDV development site [14]. 
There it can be found as a part of rule-instrumentor. It’s planed 
that an updated C AOP implementation will also be there soon.  

REFERENCES 

[1] Definitions of key AOP concepts. 

http://www.aosd.net/wiki/index.php?title=Main_Page 

[2] AspectJ: an aspect-oriented extension to the Java programming 
language. http://www.eclipse.org/aspectj/ 

[3] An AspectJ example. 



http://eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html 

[4] A. Khoroshilov, V. Mutilin, V. Shcherbina, O. Strikov, S. Vinogradov, 
and V. Zakharov, “How to cook an automated system for Linux driver 
verication,” 2nd Spring Young Researchers' Colloquium on Software 
Engineering, vol. 2, pp. 10-14, 2008. 

[5] A. Khoroshilov, V. Mutilin, A. Petrenko, and V. Zakharov, 
“Establishing Linux driver verification process,” Perspectives of 
Systems Informatics, vol. 5947 of Lecture Notes in Computer Science, 
pp. 165-176, 2010. 

[6] M. Gong, C. Zhang, and H.-A. Jacobsen, “AspeCt-oriented C,” 
Technology Showcase, CASCON 2007, Markahm, Ontario, 2007. 

[7] W. Gong and H.-A. Jacobsen, “AspeCt-oriented C Language Spefication 
Version 0.8,” University of Toronto, 2008. 

[8] J. Seyster, K. Dixit, X. Huang, R. Grosu1, K. Havelund, S. A. Smolka, 
S. D. Stoller, and E. Zadok, “Aspect-Oriented Instrumentation with 

GCC,” Procedings of the First International Conference on Runtime 
Verification, pp. 405-420, 2010. 

[9] GCC plugins. http://gcc.gnu.org/wiki/plugins 

[10] T. Ball and S.K. Rajamani, “SLIC: a Specification Language for 
Interface Checking (of C),” Technical Report MSR-TR-2001-21, 
Microsoft Research, 2002. 

[11] The LLVM Compiler Infrastructure. http://llvm.org/ 

[12] Linux kernel 2.6.31.6. http://www.kernel.org/ 

[13] D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar, “The software 
model checker Blast: Applications to software engineering,” Int. J. 
Softw. Tools Technol. Transf. 9(5), pp. 505-525, 2007. 

[14] The LDV project. http://forge.ispras.ru/projects/ldv 

 

 


