
Thorn language: a flexible tool for code generation
Yuri Okulovsky

Ural State University
Yekaterinburg, Lenina str. 51

Email: yuri.okulovsky@gmail.com

Abstract—This paper presents a new approach to domain-
specific languages creation. Instead of defining both language
syntax and semantics for each case, the same general-purposed
markup language Thorn is used. The original model of trans-
lation associates commands inside a Thorn document with pro-
grams written in some script language. When the compiler needs
to execute a command, it launches a corresponding program,
passes data from the document to the program, and uses an
output value of the program as the result of the command. We
describe an approach to code generation based on Thorn, and
compare the approach to other known code generation methods.
We give various examples of Thorn-based code generators.

Index Terms—code generation, domain-specific languages, au-
tomated programming, language-oriented approach

I. I NTRODUCTION

Every programmer likes writing elegant code, implementing
sophisticated algorithms and developing original architecture.
Real software, however, often consists of stereotyped and
uncreative code: business logic control, layout of widgets,
interaction with database, automata dispatch tables, etc.The
more features a software product has, the larger amount of
stereotyped code it contains. This leads to the staff expansion
and project management issues. In addition, a comprehensive
testing of stereotyped code is required. The natural desire
emerges to eliminate these inconviniences.

In fact, all the history of programming languages is a history
of attempts to decrease the percentage of stereotyped code
and to improve its structure. Simple arithmetical operations
in Assembler require several lines of code. More modern
languages like C allow writing the same operations in one
line. Memory management in C demands special attention,
leading to lots of stereotyped code and numerous memory
leaks. These issues was resolved with garbage collection in
Java and C#. The most recent developements in programming
languages simplify significantly collection management and
interaction with databases (LINQ [13]), widgets layout (WPF
[13]), or contracts control (Eifell [10]). However, software
products often have unique patterns in addition to well-known
ones. These patterns are typically not supported by languages.

The promising approach to described problems is code
generation: writing programs that write programs [8], [5].The
simpliest case is a tool that allows description of the desired
code in text or graphic format, and then produces the code. For
example, Microsoft Visual Studio contains a special wizard
for visual creation of widgets and forms [2]. Another example
is production of parsers from grammars [9]. There are many

code generators, which produce specific software from UML
diagrams or other description of data [7]. Code generator tools
cover areas that are less common than database handling or
widgets layout. They are not, however, a general solution of
the stereotyped code problem. There is no general approach
behind these tools, and so they cannot be reused to produce
code for other patterns.

Domain-specific languages (DSL, [14]) are an attempt to
apply code generation to even narrower areas. In the DSL
approach, a new small language is created for every specific
code pattern. The language is applicable only in its domain:it
is not general purpose language, and may even not be Turing-
complete. DSL are widely used in program engineering.

The obvious way to create DSL is to define its grammar,
then write or generate a parser and implement a transla-
tion scheme on certain program language. Language analysis
requires substantial additional competence of a programmer
and therefore sets an “entry threshold“ that limits the code
generation availability. In many cases, it is simplier just
to write a templated code manually than to design a new
language. There also exist several tools for DSL creation,
the most prominent being Visual Studio DSL Tools [4] or
JetBrains Meta-Programming system [6]. These tools have
immense capabilities and allow creation of very complex
models and languages. However, studying these tools is even
more complex than writing DSL compiler manually.

Our concern is to decrease a complexity of DSL creation
and therefore improve a code generation availability. We want
to make code generation so simple that its usage would be
reasonable even in simpliest cases. We explore a different
approach to domain-specific languages. By our observations,
domain-specificlanguageis not required in many cases. We
may use the same general-purpose markup language (like
XML) in different domains to describe a desired program code.
However, domain-specificsemanticsis still needed, because
the way the description is to be processed changes with each
domain. We propose a new way to create code generators: a
language with separted semantics. The language only defines
how we should markup the data with commands, and does not
specify what the commands mean. The logic of commands is
written in arbitrary programming language for each domain.

Our approach to code generators resembles the Common
Gate Interface (CGI) approach to web applications. CGI does
not require invention of a special language for each web
site, like the DSL approach. It does not make us write

individual programs that analyze HTTP packages. Instead,
CGI parses packages itself and adopts environment variables
and standard input to carry information from the package.
Then CGI launches an arbitrary program, which processes the
request, accepts an output of the program and sends it back to
the user over the network. In spite of thorough research, we
have not found this model to be implemented in any known
programming language or tool.

Our approach to code generation was implemented in Thorn
— a new programming language with separated semantics,
designed especially for code generation. It is an Open source
product under GPL v3 licence. Thorn is a fully operable soft-
ware product, tested for more than four years, with successeful
practice in code generation.

In the first section, we describe Thorn language: the syntax
of Thorn document, the way to create a new command and
details of the way commands are executed. In section 2 we
describe a relatively simple code generator for HTML and
WordprocessingML [1] documents. In section 3 we describe
the Thorn programming technique for creation of complex
generators – functional generators. We also describe two
examples of functional generators. The first generator converts
bibliographic data from Thorn to BibTeX, HTML, Wordpro-
cessingML and some other formats. The second generator,
described in section 4, is rather a programming framework
that consists of Thorn libraries and C# auxiliary assemblies.

II. T HORN ESSENTIALS

Thorn document is a tree of nested commands. The example
of Thorn syntax is shown in Listing 1. We may compare
the Thorn document with the corresponding HTML document
which is shown in Listing 2.

Listing 1 Thorn code for a table.
\table[border=1 align=center] {
\tr {

\td {a11} \td {a12}
}
\tr {

\td {a21} \td {a22}
}

}

Listing 2 HTML code for a table.
<table border=1 align=center>
<tr>

<td> a11 </td> <td> a12 </td>
</tr><tr>

<td> a21 </td> <td> a22 </td>
</tr>

</table>

Thorn document is more compact than HTML. Its size
may be further decreased. Firstly, if the order of parame-

ters of a command is fixed, their names may be omitted:
\table[1 center]. Secondly, we may define the nesting
of commands. We know\tr command is always inside
\table, and\td is inside\tr. Therefore, curly brackets
may also be omitted. The resulting code is shown in Listing 3.

Listing 3 Compact Thorn code for a table.
\table[1 center]
\tr \td a11 \td a12
\tr \td a21 \td a22

Parsing of input stream is provided by pushdown automaton.
It should be mentioned that due to curly brackets ommiting,
Thorn grammar is ambiguous. Depending on commands’
definitions, the string\cmd1 \cmd2 may be interpreted as
\cmd1{\cmd2{}} or \cmd1{}\cmd2{}, which implies
different parse trees.

The order of parameters’ names, the rules of nesting and the
logic of commands are defined in command files. The set of
such files (library) must be loaded by Thorn before document
compilation starts. The example of\table command file is
shown in Listing 4.

Listing 4 Declaration of\table command.
#Keys=border,align;Blocks=entry;
#Parents=body;Type=Perl;Free=yes;

$STRING="<table border=$PARAM{border}
align=$PARAM{align}>

$TEXT{entry}
</table>";

The command description starts with service section, which
is marked with# symbol (lines 1-2 in Listing 4). The service
section specifies the default order of two parameters,border
and align. Their names may be omitted, as in Listing 3.
The command description also specifies the name of text
entry to use inside the program. Other parameters specify
the command, which can contain\table, the language the
command logic is programmed in, the fact that we may omit
curly brackets fortable command.

After the service section is completed, the program in Perl
is written. This program fills$STRING variable, which is an
output of the program. It uses special hashes%PARAM and
%TEXT, which store text variables from the input document.
Aside from special variables, the program is arbitrary: it can
manipulate files, use modules, etc. The program is executed
not by Thorn, but by the Perl compiler. When Thorn acquires
all the information about the command\table (in Listings
1 and 3, these are values ’1’ and ’center’ and the result
of execution of twotr commands), it launches the Perl
compiler with ’processor’ program, and stores information
about command and its parameters to STDIN. The processor
reads the information from STDIN, executes the command
code byeval function, and prints the result to STDOUT.

Thorn compiler reads STDOUT, removes the command from
the document and places the result in corresponding place.

Commands may return an error message, which will be
passed to the user. Commands may interact by global vari-
ables, stored in%GLOBAL hash. Processor obtains%GLOBAL
hash from Thorn compiler and sends it back each time. Macros
are also available: the result of a macro command will be
processed by Thorn again.

Currently, there are three ways to execute the Thorn com-
mand:

• Use Perl commands;
• Make the new type of command and write a plugin that

executes this type. This includes addition of new script
languages in Thorn;

• Reference Thorn.dll in a .NET project, associate a com-
mand name with a class that implements corresponded
interface, and launch Thorn compiler from the project.

Commands can be documented in Thorn language. A com-
ment section is placed before a command section with##
marker. It contains a commentary in Thorn language with spe-
cial commands like\desc (general description),\key[i]
or block[i] (i-th parameter or text block description), etc.

Let us give an example of basic code generation of C# code.
Consider a command\event in Listing 5. This command

Listing 5 Command for generation of events.
#Type=Perl; Keys=Type,Name; Blocks=Comment;
$type=$PARAM{Type}EventHandler;
$name=$PARAM{Name}EventSize;
$args=$PARAM{Type}EventArgs;

$STRING.="
///<summary>
///$TEXT{Comment}
///</summary>
public event $type $name;

///<summary>Raises $name</summary>
protected virtual void On$name($args e) {

if ($name!=null) $name(this,e);
}";

will transform the following Thorn code:

\event[Mouse MouseMove]{Comment}

into a declaration of event and corresponding invocation
method.

Several simple libraries for generation of C# code have
been developed. Commands in these libraries can generate
properties (with custom access modifiers and optional in-
vocation of event), events, enumerations,switch operators
(in case they are large and nested) and other templates for
fast C# programming. We can use commands from different
libraries in the same document. It corresponds to merging code
generator applications, but does not require any special efforts.

Comparison to XML and XSL approach. In certain
degree, Thorn follows XML/XSLT approach to HTML/CSS
generation. In this approach, data is written in an XML docu-
ment. The document is then converted into HTML with XSLT.
It is even possible to use XSL to convert XML document into
Java source code [3].

We argue that Thorn is more comfortable for code gen-
eration than XML/XSLT technology. The key difference is
a possibility to use an arbitrary language for commands’
logic. That simplifies generators greatly. Note how natural
and readable listing 5 looks, especially in comparison with
XSLT schemata in [3]. We may develop different commands
in different languages, therefore choosing the most fitting
language. In addition, we may create new command types and
therefore patterns for commands’ logic, as it will be shown
below.

It is possible to develop an XML compiler that acts exactly
as Thorn compiler: parses tags and processes them with Perl.
The reason why we have developed a new language is that we
wanted to minimize manual typing and therefore make Thorn
more comfortable for code generation. Still, Thorn approach
to compilation can be applied to other languages.

Comparison to DSL approach. Thorn language itself is not
domain-specific, since its semantics is not defined. However,
Thorn with selected set of libraries can be considered as a
domain-specific language. Therefore, Thorn can be viewed
as a tool for DSL creation. We believe that Thorn is much
simplier than other such tools. There is no need to describe
tokens, write down language grammar, etc. To create language
semantics we only need to write simple Perl programs, and
demands for these programs to be Thorn commands are
not burdensome. Summarizing, Thorn has a very low “entry
threshold“ and can be used for fast creation of small DSL for
a project, hence making code generation more available.

Thorn can be also used as a back-end for a compiler.
Commands of Thorn form a tree, therefore a parse tree of
a front-end compiler can be stored as a Thorn document and
then interpreted with appropriate library.

III. C ODE GENERATION FOR MARKUP LANGUAGES

In this section, we consider generation of documents written
in markup languages [11]. We have developed a library for
producing an HTML code from Thorn description. It supports
all HTML tags. It defines nesting of tags so curly brackets are
rarely used. It specifies orders of most popular parameters of
tags. In addition, if a parameter name starts with! symbol
(!SomeStyle), it will be placed in style attribute as
SomeStyle=Something. All these improvements make
Thorn files very small and readable in comparison with
generated HTML.

All commands for HTML tags perform the same logic. The
name of a command is translated into a tag, all attributes are
listed after this tag with their names, the only text block is
placed inside a tag, etc. Hence, we actually do not need to
program the command logic in Perl, as in Listing 4. Instead,
we develop new command types. In command declaration,

we write Type=HTMLPairedTag instead ofType=Perl.
Commands of this type are executed by the Thorn compiler
itself, without launching the Perl compiler. It improves per-
formance greatly, since the major time of Thorn work lies in
passing parameters between the compilers.

The second library is a library for producing Wordprocess-
ingML [1]. WordprocessingML is an XML dialect for text
processors. This standard is supported by Microsoft Word,
Open Office Word Processor and other text processors. Output
in WordprocessingML format allows using all features of
text processors. However, WordprocessingML files are not
easy to type. The first reason is XML being redundant. The
second reason is that WordprocessingML reflects the logic of
a word processor, but not of a human. For example, items
of multi-level lists are not really nested within each other,
as in HTML or TeX. Instead, each item is a paragraph, and
its level is determined by a style. Bold and italic words are
not embedded in a plain text. Instead, the plain text ends,
then a text with bold style starts and ends, and then plain text
continues. There are many other similar inconveniences. We
have developed the Thorn library, which allows to write Thorn
documents in a habitual way (very much like TEX) and then
to transform them into WordprocessingML. Not all features of
WordprocessingML are currently supported.

A special extension for both these libraries (and potentially
for any library that produces text documents) is created. This
extension allows to create not only a document, but also a
program that produces this document. Consider the code in
Listing 6.

Listing 6 A document with a variable inside.
\document \html \body

\p Variable equals
\variable[name=Var type=Int default=5]

Commands\document and\variable are defined in
two libraries: lib.programmer and lib.makerup. In lib.makerup,
\document does nothing, it only returns its entry. The
command\variable returns default value (’5’ in Listing 6).
Therefore, the maker-up sees an example of a document,
which will be created by a program. In lib.programmer, these
commands are defined differently. Command\variable
is transformed into a marker, which separates the text into
variable and invariable parts. Command\document assem-
bles parts and produces methods, which take all variables as
arguments, and store a resulting document in a stream. There
are two versions of lib.programmer: PHP version for web sites
and C# version for offline software.

IV. FUNCTIONAL GENERATORS

When a code generator becomes more complicated, pa-
rameters of each command become numerous and hard to
remember. We need to divide one command into several. This
can be done by using relations. The relation is a set of records.

In each record, some fields are specified. Instead of producing
output, Thorn commands fill a relation in global variables. In
many cases, a generator that translates a relation description
into source code can be represented as a following function
(which we call functional generator):

p(A) = h(g1[f1(A1), . . . , f1(Am)],
g2[f2(A1), . . . , f2(Am)],
. . .

gn[fn(A1), . . . , fn(Am)]).

Hereh produces the source code. In an object-oriented pro-
gram, h typically produces one class. Functionsg1, . . . , gn
produce parts of code, for example, methods inside the class.
Functionsf1, . . . , fn produce parts of methods, correspond-
ing to one record in the relation.A1, . . . , Am are records
of the relation. Usually,gi are concatenation functions, i.e.
gi(x1, . . . , xn) = x1·. . .·xn, where· denotes the concatenation
operation. Also,h can usually be represented as

h(x1, x2, . . . , xn) = a0 · x1 · a1 · x2 · a3 · . . . · an · xn · an+1,

whereai are string constants.
A simple way of representing relations in global variables

is chosen. A value of fieldField in a record with num-
ber N in a relationRelation is stored in global variable
Relation#N#Field. This representation is supported by a
new type of Thorn commands, as with HTML commands. We
have also developed a Perl module that provides user-friendly
way to access relation in global variables. A set of methods
to implement functional generators in Thorn and Perl is called
Fungi (functional generator interface).

Based on Fungi, we have developed BibThorn, an analogy
to BibTeX. BibTeX is a flexible and widespread technology
for storing bibliographic data. However, TeX can generate only
a small set of formats. TeX cannot produce HTML files to
place bibliography on a web site, or a plain text to include in
a scientific report. Using Fungi, we may describe bibliography
as a relation. A simplified example is placed in Listing 7.

Listing 7 A bibliography information on Thorn.
\bibliography

\item[book]
\author John Smith
\title My book

...
\print

Command\item adds a new record in a relation. Com-
mands\author and\title fill corresponding fields. The
logic of \author command could be encoded on Perl as in
Listing 8.

Module db.pm is a Fungi implementation for Perl. Is
allows easy access to relations in global variables. Since such
commands are required for authors, title, publisher and other
fields, their logic is stereotyped. Command\author may
therefore be described as in Listing 9.

Listing 8 Perl implementation of\author
#Blocks=Author;Free=yes;
#Parents=item;Type=Perl;
require ’db.pm’;
$db=db->new(\%GLOBAL);
$db->SetFieldInCurrentRow

("Authors",$TEXT{Author});

Listing 9 Fungi implementation of\author
#Blocks=Author;Free=yes;
#Parents=item;Type=FungiSetter;

Command\print actually prints the bibliography. The
prototype of the\print command is shown in Listing 10.

Listing 10 Using Fungi in Perl command to create a bibliog-
raphy.
#Type=Perl;
require ’db.pm’;
sub MakeItem {

%h=@_;
$STRING.="$h{Author}. $h{Name}\n";
}

$db=db->new(\%GLOBAL);
$db->RunOver(\&MakeItem);

RunOver method looks through records, copies each
record into a hash, launchesMakeItem method and passes
the hash to the method.

V. THORNADO FRAMEWORK

Thornado is a framework that allows fast creation of busi-
ness software [12]. The main aim of Thornado is assistance
in input and output of data. It contains a code generator for
data description, and a .NET library with useful templates.
Listing 11 demonstrates a description of one field.

Listing 11 Description of one field in the extended system for
data description.
\field[string Email]
\desc E-mail address
\io TypeIO.String
\gui Text
\check
\err.W v==""

-- Address must be entered
\err.W v.Length<5

-- Address is too short
if (!v.Contains(’@’))

list.Add("Address is not valid");

Command\field specifies the type of the field and its
name. Command\desc specifies the commentary for this
field in the generated code. It also specifies the caption for
this field in graphic user interfaces.

Command\io specifies an object that transforms a field
into a string and parses it from string. In C#, primitive types
(int, double, etc.) can be written and parsed from a string
by .NET means. Unfortunately, many types do not support
parsing and writing in human-readable forms. The way to
specify how exactly the object should be converted is often
entangled and inconvinient. There is also no way to read
and write null value. Therefore, we introduceTypeIO
classes for input and output objects. For example, methods
TypeIO.Int.Write and TypeIO.Int.Parse convert
int value into a string and vice versa.TypeIO.Int is
a predefined object ofIntIO class. Many formats for the
same type may exist: for example,double can be pro-
cessed withTypeIO.Double, TypeIO.Double.Money
or TypeIO.Double.Percent. ManyTypeIO classes are
developed, including those for classes that are not usually
converted to string (like colors, pens and brushes). In addition,
eachTypeIO objectX has propertiesX.Nullable that may
process null andX.InArray that may process arrays.

Command\gui specifies a type of graphic user interface.
Several types are available.TextBox option allows input
of an arbitrary string with following conversion into a value
with specifiedTypeIO object.ListBox means selecting one
value from a list. In this case,\values command allows to
specify items of the list, which is arbitraryIEnumarable
object. Note that it is impossible to specify an object as an
attribute in C#.

Finally, \check command describes the business logic of
this field. The logic can be described by Thorn commands
(\err, for example). It is also possible to place pure C# code
into \check command with predefined variablesv (a new
value of the field) andlist (a list that stores errors). This
code will be placed in corresponding location of a generated
source code. Business logic for one field is to be inserted into
corresponding property. Business logic for the whole classis to
be placed into a methodCheckConsistancy. The method
is called before input-output procedure begins and after ithas
been completed.

Thornado can generate a class with required fields and
business logic. Each field of generated class is associated with
FieldInfo object.FieldInfo contains all the information
we specify in Thorn file: caption for a field, a type of
graphic user interface, etc. Thorn can generateIOProvider,
which stores a collection ofFieldInfo objects and can
manipulate fields of generated class. Other classes perform
various operations by usingIOProvider: input and output
into INI- and XML-files, interconnection with ADO.NET,
generating of graphic user interface widgets, etc. Therefore,
we can generate a substantial part of an application from Thorn
description.
IOProvider performs some sort of reflection. It is

more convenient than traditional C# reflection. Names of

FieldInfo objects are C# variables and are checked in
compile time, unlike string values that are used in reflection.
FieldInfo objects carry all additional information in their
fields, and there is no need to read attributes to access them.
Finally, it is impossible to write in attributes neither the
arbitrary business logic nor the references to other classes and
objects.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we presented Thorn language, studied its
differences from other approaches to DSL creation and de-
scribed its basic programming techniques. Thorn is a fully
operable software product, available under GPL v3 licence.
Its area of usage is creation of small code generators for
simple code patterns. Due to its simplicity, Thorn seems to be
more preferable than other tools for DSL creation, or manual
writting DSL compilers.

We consider following ways to improve our product:

• *nix version of Thorn
• Plug-ins for Microsoft Visual Studio, Eclipse and other

popular integrated development environments
• More languages will be supported ”from the box” for

command development
• BibThorn will be extended and integrated with LATEX

editors
• Thornado framework will be further developed

REFERENCES

[1] Standard ecma-376. http://www.ecma-international.org/publications/
standards/Ecma-376.htm.

[2] Windows forms designer. http://msdn.microsoft.com/en-
us/library/e06hs424(VS.80).aspx.

[3] E. M. Burke. Java and XSLT. O’Reilly, 2001.
[4] S. Cook, G. Jones, S. Kent, and A. C. Wills.Domain-Specific Devel-

opment with Visual Studio DSL Tools. Addison-Wesley Professional,
2007.

[5] K. Czarnecki and U. Eisenecker.Generative Programming: Methods,
Tools, and Applications. Addison-Wesley Professional, June 2000.

[6] S. Dmitriev. Language oriented programming: The next
programming paradigm. http://www.jetbrains.com/mps/docs/
LanguageOriented Programming.pdf, 2004.

[7] K. Fertalj and M. Brcic. A source code generator based on uml
specification.International journal on computers and communications,
2(1), 2008.

[8] J. Harrington.Code Generation in Action. Manning, 2003.
[9] J. Levine.Flex and Bison. Text processing tools. O’Reilly Media, 2009.

[10] B. Meyer. Object-Oriented Software Construction, Second Edition.
Prentice Hall, 1997.

[11] Y. Okulovsky and D. Deyev. System of generation of documents in
html, mht and wordprocessingml formats (russian).Bulletin of Saint
Petersburg State University of Information Technologies,Mechanics and
Optics: Mechatronics, Technologies and Computer-aided design, (70),
2010.

[12] Y. Okulovsky, D. Deyev, V. Popov, and V. Chasovskikh. Code-generation
system thornado and its application to creation of business-software
(russian). Bulletin of Saint Petersburg State University of Information
Technologies, Mechanics and Optics, (87), 2008.

[13] A. Troelsen.Pro C# 2010 and the .NET 4 Platform. APress, 2010.
[14] A. van Deursen, P. Klint, and J. Visser. Domain-specificlanguages: An

annotated bibliography.SIGPLAN Notices, 35(6):26–36, 2000.

