Thorn language: a flexible tool for code generation

Yuri Okulovsky

Ural State University
Yekaterinburg, Lenina str. 51
Email: yuri.okulovsky@gmail.com

Abstract—This paper presents a new approach to domain- code generators, which produce specific software from UML
specific languages creation. Instead of defining both langge diagrams or other description of data [7]. Code generatiisto
syntax and semantics for each case, the same general-pureds c,yer areas that are less common than database handling or

markup language Thorn is used. The original model of trans- idaets | t Th t h | soluti f
lation associates commands inside a Thorn document with pro widgets layout. 1hey are not, however, a general solution o

grams written in some script language. When the compiler nets the stereotyped code problem. There is no general approach
to execute a command, it launches a corresponding program, behind these tools, and so they cannot be reused to produce
passes data from the document to the program, and uses ancode for other patterns.

output value of the program as the result of the command. We Domain-specific languages (DSL, [14]) are an attempt to

describe an approach to code generation based on Thorn, and | d tion t In the DSL
compare the approach to other known code generation methods apply code generation o even narrower areas. In the

We give various examples of Thorn-based code generators. approach, a new small language is created for every specific
Index Terms—code generation, domain-specific languages, au- code pattern. The language is applicable only in its domigin:
tomated programming, language-oriented approach is not general purpose language, and may even not be Turing-

complete. DSL are widely used in program engineering.
The obvious way to create DSL is to define its grammar,
Every programmer likes writing elegant code, implementingpen write or generate a parser and implement a transla-
sophisticated algorithms and developing original arciitee. tion scheme on certain program language. Language analysis
Real software, however, often consists of stereotyped arejuires substantial additional competence of a programme
uncreative code: business logic control, layout of widgetand therefore sets an “entry threshold” that limits the code
interaction with database, automata dispatch tables,Téte. generation availability. In many cases, it is simplier just
more features a software product has, the larger amounttofwrite a templated code manually than to design a new
stereotyped code it contains. This leads to the staff expanslanguage. There also exist several tools for DSL creation,
and project management issues. In addition, a comprelenshe most prominent being Visual Studio DSL Tools [4] or
testing of stereotyped code is required. The natural desitetBrains Meta-Programming system [6]. These tools have
emerges to eliminate these inconviniences. immense capabilities and allow creation of very complex
In fact, all the history of programming languages is a histormodels and languages. However, studying these tools is even
of attempts to decrease the percentage of stereotyped codwe complex than writing DSL compiler manually.
and to improve its structure. Simple arithmetical operstio Our concern is to decrease a complexity of DSL creation
in Assembler require several lines of code. More modeemd therefore improve a code generation availability. Watwa
languages like C allow writing the same operations in orte make code generation so simple that its usage would be
line. Memory management in C demands special attentiaeasonable even in simpliest cases. We explore a different
leading to lots of stereotyped code and numerous mema@pproach to domain-specific languages. By our observations
leaks. These issues was resolved with garbage collectiondimmain-specifidanguageis not required in many cases. We
Java and C#. The most recent developements in programmingy use the same general-purpose markup language (like
languages simplify significantly collection managemend arXML) in different domains to describe a desired program code
interaction with databases (LINQ [13]), widgets layout (WP However, domain-specifisemanticsis still needed, because
[13]), or contracts control (Eifell [10]). However, softwea the way the description is to be processed changes with each
products often have unique patterns in addition to wellvkmo domain. We propose a new way to create code generators: a
ones. These patterns are typically not supported by lareguadanguage with separted semantics. The language only defines
The promising approach to described problems is cotiew we should markup the data with commands, and does not
generation: writing programs that write programs [8], [Bfie specify what the commands mean. The logic of commands is
simpliest case is a tool that allows description of the @ekirwritten in arbitrary programming language for each domain.
code in text or graphic format, and then produces the code. FoOur approach to code generators resembles the Common
example, Microsoft Visual Studio contains a special wizar@ate Interface (CGI) approach to web applications. CGI does
for visual creation of widgets and forms [2]. Another exaenplnot require invention of a special language for each web
is production of parsers from grammars [9]. There are masite, like the DSL approach. It does not make us write

I. INTRODUCTION

individual programs that analyze HTTP packages. Insteadrs of a command is fixed, their names may be omitted:
CGI parses packages itself and adopts environment vasiablé abl e[1 cent er] . Secondly, we may define the nesting
and standard input to carry information from the packagef commands. We knowitr command is always inside
Then CGI launches an arbitrary program, which processes theabl e, and\ t d is inside\t r. Therefore, curly brackets
request, accepts an output of the program and sends it backntay also be omitted. The resulting code is shown in Listing 3.
the user over the network. In spite of thorough research, we
have not found this model to be implemented in any knowkisting 3 Compact Thorn code for a table.
programming language or tool. \tabl e[1 center]

Our approach to code generation was implemented in Thorn\tr \td all \td al2
— a new programming language with separated semantics\tr \td a2l \td a22
designed especially for code generation. It is an Open soure
product under GPL v3 licence. Thorn is a fully operable soft-

ware product, tested for more than four years, with suc@elssqt should be mentioned that due to curly brackets ommiting,

practice in code generation. . . : ,
In the first section, we describe Thorn language: the s ntTQorn grammar is ambiguous. Depending on commands
' guage- y finitions, the string cnd1 \ cnd2 may be interpreted as

of Thorn document, the way to create a new command a L

detail_s of the way commands are executed. In section 2 \%ﬁfg?:rft\pcar;gs{tr}e}es?r \emd1{}\ cmd2{}, which implies

S\?Sg'be a re_:lat:\\/llilyls?ple code glenerat_or fgr HT(I;/IL and rhe order of parameters’ names, the rules of nesting and the
oraprocessing [_] ocume_nts. n sectloq we escrll?ggic of commands are defined in command files. The set of

the Thorn programming technique for creation of cqmple ch files (library) must be loaded by Thorn before document

generators — functional generators. We also describe t\(lzvgmpilation starts. The example of abl e command file is

examples of functional generators. The first generatorexsyv shown in Listing 4

bibliographic data from Thorn to BibTeX, HTML, Wordpro- '

cessingML and some other formats. The second genera}_(lfg,ting 4 Declaration of\t abl e command.

described in section 4, is rather a programming framewo#

that consists of Thorn libraries and C# auxiliary assemsblie keys=bor_der ' ?l ! gn;_BI ocl.<s=ent_ry;)
#Par ent s=body; Type=Per | ; Fr ee=yes;

Parsing of input stream is provided by pushdown automaton.

Il. THORN ESSENTIALS
Thorn document is a tree of nested commands. The exampfel Rl NG=" <t abl e bor der =3PARAM bor der }

of Thorn syntax is shown in Listing 1. We may compare al i gn=$PARAM al i gn} >
the Thorn document with the corresponding HTML document $TEXT{ent ry}
which is shown in Listing 2. </tabl e>";

Listing 1 Thorn code for a table. The command description starts with service section, which

\tabl e[border=1 align=center] { is marked with# symbol (lines 1-2 in Listing 4). The service
\tr | section specifies the default order of two parametsos,der
\td {all} \td {al2} and al i gn. Their names may be omitted, as in Listing 3.
} The command description also specifies the name of text
\tr { entry to use inside the program. Other parameters specify
\td {a21} \td {a22} the command, which can contalirt abl e, the language the
} command logic is programmed in, the fact that we may omit
} curly brackets fott abl e command.

After the service section is completed, the program in Perl
is written. This program fillsSSSTRI NG variable, which is an
Listing 2 HTML code for a table. output of the program. It uses special hasB@ARAM and
%IEXT, which store text variables from the input document.
Aside from special variables, the program is arbitrary:aihc
manipulate files, use modules, etc. The program is executed
not by Thorn, but by the Perl compiler. When Thorn acquires
all the information about the command abl e (in Listings
1 and 3, these are values '1’ andent er’ and the result
of execution of twotr commands), it launches the Perl
compiler with ’processor’ program, and stores information
about command and its parameters to STDIN. The processor

Thorn document is more compact than HTML. Its sizeeads the information from STDIN, executes the command
may be further decreased. Firstly, if the order of parameede byeval function, and prints the result to STDOUT.

<tabl e border=1 align=center>
<tr>
<td> all </td> <td> al2 </td>
</[tr><tr>
<td> a2l </td> <td> a22 </td>
</tr>
</tabl e>

Thorn compiler reads STDOUT, removes the command fromComparison to XML and XSL approach. In certain

the document and places the result in corresponding placedegree, Thorn follows XML/XSLT approach to HTML/CSS
Commands may return an error message, which will lgeneration. In this approach, data is written in an XML docu-

passed to the user. Commands may interact by global varient. The document is then converted into HTML with XSLT.

ables, stored if4LOBAL hash. Processor obtaif6LOBAL It is even possible to use XSL to convert XML document into

hash from Thorn compiler and sends it back each time. Macradmva source code [3].

are also available: the result of a macro command will be We argue that Thorn is more comfortable for code gen-

processed by Thorn again. eration than XML/XSLT technology. The key difference is
Currently, there are three ways to execute the Thorn com-possibility to use an arbitrary language for commands’
mand: logic. That simplifies generators greatly. Note how natural
« Use Perl commands: and readable listing 5 looks, especially in comparison with

« Make the new type of command and write a plugin thafSLT schemata in [3]. We may develop different commands
executes this type. This includes addition of new script different languages, therefore choosing the most fitting
languages in Thorn; language. In addition, we may create new command types and

« Reference Thorn.dll in a .NET project, associate a corfherefore patterns for commands’ logic, as it will be shown
mand name with a class that implements correspondeglow.
interface, and launch Thorn compiler from the project. It is possible to develop an XML compiler that acts exactly

Commands can be documented in Thorn language. A cofif: Thorn compiler: parses tags and processes them _with Perl.
ment section is placed before a command section With The reason why we have developed a new language is that we

marker. It contains a commentary in Thorn language with sp@@nted to minimize manual typing and therefore make Thorn
cial commands lika desc (general description) key[i] More co_mf(_)rtable for code_ generation. Still, Thorn apphoac
or bl ock[i] (i-th parameter or text block description), etc!® compilation can be applied to other languages.
Let us give an example of basic code generation of C# code COmparison to DSL approach Thorn language itself is not
Consider a commantlevent in Listing 5. This command domain-specific, since its semantics is not defined. However
Thorn with selected set of libraries can be considered as a

Listing 5 Command for generation of events. domain-specific Ianguage. Therefor.e, Thorn can bg viewed
#Type=Per; Keys=Type, Nane, Bl ocks=Comment; 25 @ _tooI for DSL creation. We bellev_e that Thorn is muc_h
$t ype=$PARAM Type} Event Handl er ; simplier than other such tools. There is no need to describe
$name=$PARAM Nane} Event Si ze; tokens,.wrlte down language grammar, etc. To create largguag
$ar gs=SPARAM Type} Event Ar gs: semantics we only need to write simple Perl programs, and

demands for these programs to be Thorn commands are
$STRI NG, =" not burdensome. Summarizing, Thorn has a very low “entry
/11 <summary> threshold” and can be used for fast creation of small DSL for
/11 $TEXT{ Comment } a project, hence making code generation more available.

Thorn can be also used as a back-end for a compiler.
Commands of Thorn form a tree, therefore a parse tree of
a front-end compiler can be stored as a Thorn document and
then interpreted with appropriate library.

/1] </ summary>
public event $type $nane;

/1] <summar y>Rai ses $nane</ sumrary>

protected virtual void On$name($args e) { [1l. CODE GENERATION FOR MARKUP LANGUAGES
if ($nane!=null) $name(this,e);) . . _ .
} In this section, we consider generation of documents writte

in markup languages [11]. We have developed a library for

producing an HTML code from Thorn description. It supports
will transform the following Thorn code: all HTML tags. It defines nesting of tags so curly brackets are
rarely used. It specifies orders of most popular paramefers o
tags. In addition, if a parameter name starts witlsymbol
into a declaration of event and corresponding invocatighSomeStyl e), it will be placed instyl e attribute as
method. SoneSt yl e=Sonet hi ng. All these improvements make

Several simple libraries for generation of C# code havihorn files very small and readable in comparison with

been developed. Commands in these libraries can genegeaerated HTML.
properties (with custom access modifiers and optional in-All commands for HTML tags perform the same logic. The
vocation of event), events, enumeratioe®i t ch operators name of a command is translated into a tag, all attributes are
(in case they are large and nested) and other templates Ifsted after this tag with their names, the only text block is
fast C# programming. We can use commands from differeplaced inside a tag, etc. Hence, we actually do not need to
libraries in the same document. It corresponds to mergidg caprogram the command logic in Perl, as in Listing 4. Instead,
generator applications, but does not require any sped@tef we develop new command types. In command declaration,

\ event [Mouse MouseMove] { Corment }

we write Type=HTM_Pai r edTag instead ofType=Per|. In each record, some fields are specified. Instead of progucin
Commands of this type are executed by the Thorn compileutput, Thorn commands fill a relation in global variables. |
itself, without launching the Perl compiler. It improvesrpe many cases, a generator that translates a relation désaript
formance greatly, since the major time of Thorn work lies imto source code can be represented as a following function
passing parameters between the compilers. (which we call functional generator):

The second library is a library for producing Wordprocess- .
ingML [1]. WordprocessingML is an XML dialect for text p(4) = 91{ jzlgﬁl%’ T ?Eﬁm; }’
processors. This standard is supported by Microsoft Word, gL 2AA)s e J20Em) s
Open Office Word Processor and other text processors. Output Y

P P 4 gl Fa(A1), s falAm)).

in WordprocessingML format allows using all features of
text processors. However, WordprocessingML files are ndere k. produces the source code. In an object-oriented pro-
easy to type. The first reason is XML being redundant. Ttggam, % typically produces one class. Functiops,..., g,
second reason is that WordprocessingML reflects the logic pfoduce parts of code, for example, methods inside the.class
a word processor, but not of a human. For example, iterRginctionsfi,..., f, produce parts of methods, correspond-
of multi-level lists are not really nested within each otheing to one record in the relationd,,..., A,, are records
as in HTML or TeX. Instead, each item is a paragraph, ard the relation. Usuallyg; are concatenation functions, i.e.
its level is determined by a style. Bold and italic words are;(z1,...,z,) = 1-...-z,, Where- denotes the concatenation
not embedded in a plain text. Instead, the plain text endweration. Also/: can usually be represented as
then a text with bold style starts and ends, and then plain
continues. There are many other similar inconveniences.
have developed the Thorn library, which allows to write Thorwhereq; are string constants.
documents in a habitual way (very much likeXJ and then A simple way of representing relations in global variables
to transform them into WordprocessingML. Not all featurés qs chosen. A value of fieldFi el d in a record with num-
WordprocessingML are currently supported. ber N in a relationRel ati on is stored in global variable

A special extension for both these libraries (and potégtialRe| at i on#N#Fi el d. This representation is supported by a
for any library that produces text documents) is createds Thew type of Thorn commands, as with HTML commands. We
extension allows to create not only a document, but alsohave also developed a Perl module that provides user-fiiend
program that produces this document. Consider the codeway to access relation in global variables. A set of methods

te
ﬁxlax%---vxn):a()'xl'al'x2'a3'---'an'xn'an+1a

Listing 6. to implement functional generators in Thorn and Perl isechll
Fungi (functional generator interface).

Listing 6 A document with a variable inside. Based on Fungi, we have developed BibThorn, an analogy

\ docunent \htm \body to BibTeX. BibTeX is a flexible and widespread technology
for storing bibliographic data. However, TeX can generaily o

\'p Variable equals a small set of formats. TeX cannot produce HTML files to

\vari abl e[nane=Var type=Int defaul t =5] place bibliography on a web site, or a plain text to include in
a scientific report. Using Fungi, we may describe bibliogmsap
as a relation. A simplified example is placed in Listing 7.

Commands docunent and\ vari abl e are defined in
two libraries: Iib.program_mer gnd Iib.makerup.lln lib.nealp, Listing 7 A bibliography information on Thorn.
\ docunent does nothing, it only returns its entry. Thq bibli o h
) e gr aphy
command var i abl e returns default value (5’ in Listing 6). \i t enf book]
Therefore, the maker-up sees an example of a document, \ :
. .) aut hor John Snith
which will be created by a program. In lib.programmer, these \title M/ book
commands are defined differently. Commandari abl e
is transformed into a marker, which separates the text ir\t%ri nt
variable and invariable parts. Commandocunent assem-
bles parts and produces methods, which take all variables as
arguments, and store a resulting document in a stream. Thereommand\ i t em adds a new record in a relation. Com-
are two versions of lib.programmer: PHP version for webssitgnands\ aut hor and\ti t | e fill corresponding fields. The
and C# version for offline software. logic of \ aut hor command could be encoded on Perl as in
Listing 8.
Module db. pmis a Fungi implementation for Perl. Is
When a code generator becomes more complicated, pdews easy access to relations in global variables. Sioch s
rameters of each command become numerous and harccammands are required for authors, title, publisher anéroth
remember. We need to divide one command into several. Thiedds, their logic is stereotyped. Commakaut hor may
can be done by using relations. The relation is a set of racortherefore be described as in Listing 9.

IV. FUNCTIONAL GENERATORS

Listing 8 Perl implementation ofaut hor

#Bl ocks=Aut hor ; Fr ee=yes;
#Par ent s=i t em Type=Per | ;
require ’db. pm;
$db=db- >new(\ %G OBAL) ;
$db- >Set Fi el dl nCur r ent Row
(" Aut hors", $TEXT{ Aut hor });

Listing 9 Fungi implementation ofaut hor

#Bl ocks=Aut hor ; Fr ee=yes;
#Par ent s=i t em Type=Fungi Sett er;

Command\ pri nt actually prints the bibliography. The
prototype of thé pri nt command is shown in Listing 10.

Command\ fi el d specifies the type of the field and its
name. Command desc specifies the commentary for this
field in the generated code. It also specifies the caption for
this field in graphic user interfaces.

Command\ i o specifies an object that transforms a field
into a string and parses it from string. In C#, primitive tgpe
(i nt, doubl e, etc.) can be written and parsed from a string
by .NET means. Unfortunately, many types do not support
parsing and writing in human-readable forms. The way to
specify how exactly the object should be converted is often
entangled and inconvinient. There is also no way to read
and write nul I value. Therefore, we introduc&ypel O
classes for input and output objects. For example, methods
Typel O Int. Wite and Typel O I nt. Par se convert
i nt value into a string and vice versdypel O. I nt is
a predefined object of nt | O class. Many formats for the
same type may exist: for exampldoubl e can be pro-
cessed withTypel O Doubl e, Typel O. Doubl e. Money

Listing 10 Using Fungi in Perl command to create a bibliogg, Typel O. Doubl e. Per cent . Many Typel Oclasses are

raphy.

#Type=Per | ;

require 'db. pm ;

sub Makel tem {
=@ ;

$STRI NG =" $h{ Aut hor}. $h{Nane}\n";

}
$db=db- >new(\ %GLOBAL) ;
$db- >RunOver (\ &vakel t en) ;

RunOver method looks through records, copies ea
record into a hash, launchéfékel t emmethod and passes

the hash to the method.

V. THORNADO FRAMEWORK

developed, including those for classes that are not usually
converted to string (like colors, pens and brushes). Intanidi
eachTypel OobjectX has propertieX. Nul | abl e that may
process null anck. | nArr ay that may process arrays.

Command\ gui specifies a type of graphic user interface.
Several types are availabl@ext Box option allows input
of an arbitrary string with following conversion into a valu
with specifiedTypel Oobject.Li st Box means selecting one
value from a list. In this casé,val ues command allows to
specify items of the list, which is arbitradyEnumar abl e
object. Note that it is impossible to specify an object as an
Crﬁttribute in C#.

Finally, \ check command describes the business logic of
this field. The logic can be described by Thorn commands
(\err, for example). It is also possible to place pure C# code
into \ check command with predefined variables(a new
value of the field) and i st (a list that stores errors). This

Thornado is a framework that allows fast creation of bustode will be placed in corresponding location of a generated
ness software [12]. The main aim of Thornado is assistanseurce code. Business logic for one field is to be insertas int
in input and output of data. It contains a code generator foorresponding property. Business logic for the whole daiss
data description, and a .NET library with useful templatebe placed into a methoGheckConsi st ancy. The method

Listing 11 demonstrates a description of one field.

is called before input-output procedure begins and afteadt
been completed.

Listing 11 Description of one field in the extended system for Thornado can generate a class with required fields and

data description.

\field[string Email]
\desc E-nmmi|l address
\io TypelQ String
\gui Text
\ check
\err. Wy==""
-- Address nust be entered
\err. Wv. Lengt h<5
-- Address is too short
if ('v.Contains(' @))

list.Add("Address is not valid");

business logic. Each field of generated class is associated w
Fi el dI nf o object.Fi el dI nf o contains all the information
we specify in Thorn file: caption for a field, a type of
graphic user interface, etc. Thorn can gener&®r ovi der,
which stores a collection oFi el dl nf o objects and can
manipulate fields of generated class. Other classes perform
various operations by usingOPr ovi der : input and output
into INI- and XML-files, interconnection with ADO.NET,
generating of graphic user interface widgets, etc. Theeefo
we can generate a substantial part of an application fromrTho
description.

| OProvi der performs some sort of reflection. It is
more convenient than traditional C# reflection. Names of

Fi el dl nf o objects are C# variables and are checked in
compile time, unlike string values that are used in reflectio

Fi el dI nf o objects carry all additional information in their
fields, and there is no need to read attributes to access them.
Finally, it is impossible to write in attributes neither the
arbitrary business logic nor the references to other ctaarsd
objects.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we presented Thorn language, studied its
differences from other approaches to DSL creation and de-
scribed its basic programming techniques. Thorn is a fully
operable software product, available under GPL v3 licence.
Its area of usage is creation of small code generators for
simple code patterns. Due to its simplicity, Thorn seemseto b
more preferable than other tools for DSL creation, or manual
writting DSL compilers.

We consider following ways to improve our product:

« *nix version of Thorn

o Plug-ins for Microsoft Visual Studio, Eclipse and other
popular integrated development environments

« More languages will be supported "from the box” for
command development

« BibThorn will be extended and integrated witATEX
editors

« Thornado framework will be further developed

REFERENCES

[1] Standard ecma-376. http://www.ecma-internatiomglmublications/
standards/Ecma-376.htm.

[2] Windows forms designer. http://msdn.microsoft.com/e
us/library/e06hs424(VS.80).aspx.

[3] E. M. Burke. Java and XSLTO'Reilly, 2001.

[4] S. Cook, G. Jones, S. Kent, and A. C. WillRomain-Specific Devel-
opment with Visual Studio DSL ToolsAddison-Wesley Professional,
2007.

[5] K. Czarnecki and U. EiseneckeiGenerative Programming: Methods,
Tools, and ApplicationsAddison-Wesley Professional, June 2000.

[6] S. Dmitriev. Language oriented programming: The next
programming paradigm. http://www.jetbrains.com/mpsé&io
LanguageOriented Programming.pdf, 2004.

[7] K. Fertalj and M. Brcic. A source code generator based om u
specification. International journal on computers and communications
2(1), 2008.

[8] J. Harrington.Code Generation in ActionManning, 2003.

[9] J. Levine.Flex and Bison. Text processing too3'Reilly Media, 2009.

[10] B. Meyer. Object-Oriented Software Construction, Second Edition
Prentice Hall, 1997.

[11] Y. Okulovsky and D. Deyev. System of generation of doeuis in
html, mht and wordprocessingml formats (russiaBulletin of Saint
Petersburg State University of Information Technologlechanics and
Optics: Mechatronics, Technologies and Computer-aidesige (70),
2010.

[12] Y. Okulovsky, D. Deyeyv, V. Popov, and V. Chasovskikh.déegeneration
system thornado and its application to creation of busisefisvare
(russian). Bulletin of Saint Petersburg State University of Inforroati
Technologies, Mechanics and Opti¢87), 2008.

[13] A. Troelsen.Pro C# 2010 and the .NET 4 PlatfornA\Press, 2010.

[14] A. van Deursen, P. Klint, and J. Visser. Domain-spedditguages: An
annotated bibliographySIGPLAN Notices35(6):26—-36, 2000.

