
 1

Abstract—C/C++ language is widely used for developing tools

in various applications, in particular, software tools for critical
systems are often written in C language. Therefore, the security
of such software should be thoroughly tested, i.e., the absence of
vulnerabilities has to be confirmed. When detecting C program
vulnerabilities static source code analysis can be used. In this
paper, we present a short survey of existing software tools for
such analysis and show that for some kinds of C code
vulnerabilities this analysis is insufficient. Thus, we briefly
present an approach for SPIN based approach for vulnerability
detection which may be useful in some cases.

Index Terms—C programming language, software
vulnerability, static/dynamic detection method

I. INTRODUCTION

HE problem of computer-aided software testing
becomes important as the complexity of software tools

increases and programs written in C/C++ programming
language are often used in many critical systems. The security
of such software should be thoroughly tested, i.e., the absence
of vulnerabilities has to be confirmed. There are two different
approaches for vulnerability testing: static and dynamic
methods. In this paper, we present a short survey of existing
tools based on static vulnerability detection methods and show
that for detecting some vulnerabilities, for example a buffer
overflow vulnerability, SPIN [1] based approach may be more
appropriate.

The structure of the paper is as follows. Section II contains
preliminaries. Section III is devoted to static code analyzers: a
short survey of existing tools for static vulnerability detection
is presented in this Section. Section IV discusses a SPIN based
approach for vulnerability detection while Section V
concludes the paper.

II. PRELIMINARIES

A program vulnerability is a property of the program that
allows a user to disturb confidentiality, integrity, and/or
availability of this software. Given a set of vulnerabilities
(features) of a C program, if the program has none of these

1 This work is partly supported by RFBR-NSC grant № 10-08-92003

features then the program is said to be safe w.r.t. the given set
of vulnerabilities; otherwise, the program is unsafe w.r.t. this
set of vulnerabilities. Vulnerability detection methods can be
classified as static and dynamic methods [2]. When static
detecting methods are applied the source code is analyzed
without running the program while dynamic detection
methods require the program of interest to be executed.

Given a C program, in this paper, when illustrating the
approaches, we consider the following types of possible
vulnerabilities: type overflow, type conversion overflow, array
overflow (incorrect array index), string overflow which can be
considered as different types of a buffer overflow vulnerability
and double free vulnerability. All these types of vulnerabilities
are specified in details in [3]. Type overflow occurs in a C
code when a variable v is defined as a variable of type t and
the value e of this variable when executing the code can
exceed the maximal value for type t. It can occur when a given
expression e is assigned to a variable v, i.e., the C code has an
instruction v = e, and in general, the maximal value for type t
might be different for different platforms and operating
systems. An array overflow takes place when a programmer
deals with an array a that has size_a items while using a
variable a[i] for i >= size_a. When analyzing student software
tools implementing well-known array algorithms such as
different sorts and/or search of minimal/maximal array item,
we noticed that many those programs are unsafe w.r.t. type
overflow and array overflow (incorrect array index)
vulnerabilities. In order to estimate whether existing static
methods can detect type overflow and array overflow
vulnerabilities we consider three student implementations of
array algorithms and run existing tools for detection of such
vulnerabilities. In the next section, we present a short survey
of existing tools for static code analysis and their outputs for
several vulnerable student programs. We then show that some
of such vulnerabilities can be detected using SPIN based
approach.

III. STATIC CODE ANALYZERS

When estimating the security of student implementations of
array algorithms we considered the following tasks:
calculating the average value of integer array items, the bubble
sort, the insertion sort. C implementations of these programs
are specified in the Table 1 which is divided into three

Detecting C Program Vulnerabilities 1

Anton Ermakov, Natalia Kushik
dept. of Information Technologies

Tomsk State University
Tomsk, Russsia

antonermak@inbox.ru, kushiknatalya@yahoo.com

T

 2

sections. Table 1.1 contains a C implementation of calculating
the average value of integer array items (Program 1), Table
1.2 contains a C implementation of the bubble sort (Program
2) while Table 1.3 contains a C implementation of the
insertion sort (Program 3). Program 1 has a type overflow
vulnerability in the line

sred+=a[i];
There is no check in Program 1 if sred variable value does

not exceed the maximal value of the type unsigned short; in
this paper, the maximal value equals 65536 and each unsigned
short variable occupies two memory bytes. Programs 2 and 3
have an array overflow vulnerability, since array indexes of
arrays a and arr are not checked whether they exceed the
number of array items.

Program 1 –
C implementation of

calculating the average
value of integer array

items

int main(){
unsigned short n=0, a[10];
printf("Enter size of array,
please:");
scanf("%d",&n);
for (int i=0; i<n; i++)
{printf("%d. ",i);
scanf("%d",&a[i]);
}
unsigned short sred=0;
for (int i=0; i<n; i++)
{
sred+=a[i];
}
sred/=n;
printf("Sred:%d",sred);
system("pause"); return sred;
}

Table 1.1 C implementation of array algorithms
(Program 1)

Program 2 –
C implementation
of the bubble sort

int main()
{
unsigned short j=0,i=0,n, a[10];
cout<<"Enter integer, please:";
cin>>n;
for (i=0; i<n; i++)
{
 cout<<i<<" = ";
 cin>>a[i];
}
unsigned short temp;
bool t = true;
while (t==true)
{
 t = false;
 for (j=0;j<n-1; j++)
 {
 if (a[j]>a[j+1])
 {
 temp=a[j];
 a[j]=a[j+1];
 a[j+1]=temp;
 t=true;

 }
 }
}
 for (i=0;i<n; i++)
 {
 cout<<i<<"="<<a[i]<<endl;
 }
system("pause");return1;
}

Table 1.2 C implementation of array algorithms
(Program 2)

Below we describe the outputs of several static source code
analyzers that have been run against C implementations in the
Table 1.

A. ITS4 is a static code analyzer that has been
developed in USA by the Cigital company in 1992 [4]. The
ITS4 is a tool for static detection vulnerabilities in C/C++
programs. The tool can be executed under Windows or Linux
operating systems.

Program 3 –
C implementation

of the insertion sort

int main()
{
unsigned short length, key,
arr[10];
int i=0, j=0, tmp=0;
cout<<"length:";
cin>>length;
 for (i=0; i<length; i++)
 {
 cout<<i<<" = ";
 cin>>arr[i];
 }
for (i=0; i < length; i++)
{
tmp = arr[i];
for (j=i-1;j>=0 && arr[j]>tmp;j-
-)
 arr[j+1] = arr[j];
arr[j+1] = tmp;
}
for (i=0;i<length; i++)
 {

cout<<i<<"="<<arr[i]<<endl;
 }
system("pause"); return 1;
}

Table 1.3 C implementation of array algorithms
(Program 3)

When analyzing a given C code the ITS4 relies on its

database of potentially dangerous C functions and if there is a
call for such dangerous function in the given code the ITS4
returns a corresponding report with some recommendations
about proposes (preferable changes) in the code. The ITS4 tool
is a free software tool that can be easily downloaded from
web-site [4]. We executed ITS4 against Programs 1, 2, 3
(Tables 1.1, 1.2, 1.3) and the ITS4 has detected two calls for

 3

dangerous functions. Those are scanf() and printf(), in
particular, the ITS4 has reported that scanf() is a function of a
high risk for a buffer overflow vulnerability.

B. Flawfinder is also a static C/C++ code analyzer that
has been developed by David A. Wheeler in May, 2004 [5].
Flawfinder “scans” a given code and similar to the ITS4, has a
list of potentially dangerous instructions of a code. Given a
code, selected dangerous instructions (if any) are then ordered
according to the risks. The Flawfinder report for a
programmer points out the calls for dangerous functions and
proposes a way for changing the code. However for the above
Programs 1, 2, 3 the Flawfinder report has only one dangerous
function – system() and the recommendation “try using a
library call that implements the same functionality if
available”.

C. Graudit is a tool that can also help to statically
detect several C code vulnerabilities [6]. In order to run this
tool it is necessary to call utility Grep under Unix operating
system. As usual, there can be several options how to run this
utility but in the simplest case only the path to cpp file has to
be specified. As a result, a colorful report will appear where
for a given C program, some dangerous instructions are blue
colored. One can also manually add more instructions into the
database of dangerous functions. For each program in Table 1
the Graudit colored functions scanf(), printf() and stream
input/output operators cin and cout.

D. CppCheck 1.46 is a tool with the original name
С++check that has been developed by Daniel Marjamäki and
Cppcheck team from 2007 until 2010 [7]. The CppCheck
utility is specialized for memory leakage vulnerabilities. As it
is mentioned in [7] CppCheck has detected 21 errors in the
Linux Core and many other errors in free software. The
Cppcheck is also a free software tool under the conditions of
the GNU General Public License. We have run the Cppcheck
against above Programs 1, 2, 3 and the output message “No
errors found” has been returned.

E. AEGIS is another tool for static detection
vulnerabilities in C/C++ programs [8]. The AEGIS has been
developing in Digitek Labs since 2008. This laboratory is
strongly connected with Saint-Petersburg Polytechnic
University, Russia. One of the advantages of this tool is that
the AEGIS supports vulnerability detection for several files
simultaneously if they are united in one project. The AEGIS
detects vulnerabilities that can often occur in C programs,
such as memory leakage, incorrect pointers, incorrect array
indexes, uninitialized variables, the use of potentially
dangerous functions etc. In order to statically detect these
vulnerabilities the AEGIS derives the abstract model of the
program for verification. The free usage of the analyzer is
available via the official Digitek Labs web-site [9]. Before
running this tool it is necessary to make some transformations
of a given C code for further compiling. For example, in the
AEGIS, it is prohibited to analyze a code where two or more C
instructions are located in the same program line. We have
correspondingly changed the above Programs 1, 2, 3 and have
run the AEGIS. For Program 1 of average value calculating the
AEGIS detected an incorrect array index for the array arr
while for Programs 2 and 3 of array sorts the AEGIS
mentioned only the call of unsafe function system().

F. There are other static code analyzers that can be
used for vulnerability detection in C programs. For example,
Cqual [10], developed by Dan Wilkerson in 2004, Eshelon
AK-VS [11] developed in Russia, Klocwork Truepath [12]
developed by Klocwork company and Coverity Static Analysis
[13] developed by Coverity company in USA, MOPS [14] and
BOON [15] are tools for static detection vulnerabilities. We
could not execute these tools due to some reasons such as a
high price, lack of documentation, absence of demonstrating
version etc. However, according to their descriptions [10–15],
all these tools are developed for static detection of
vulnerabilities and many of them allow static analysis not only
for C/C++ code but also for Java or C# programs.

According to the above short survey of static code
analyzers, one can conclude that most existing tools only
search for dangerous functions and despite of their
descriptions do not detect type overflow and incorrect array
index vulnerabilities. The latter means that for some kinds of
software vulnerabilities static detection is not enough, that is
the reason why in the next section we present a brief overview
of an approach for dynamic detection vulnerabilities [3].

IV. SPIN BASED APPROACH FOR DETECTING VULNERABILITIES

Most existing tools providing dynamic detection
vulnerabilities are based on randomly generated input data for
a given program. Thus, it is difficult to guarantee the fault
coverage for such security testing. There also exist special
tools for distributed programs testing, for example, Helgrind
[16] that is designed for multithreaded programs testing. We
note that this tool does not support buffer overflow detection
technique but it is able to control synchronization between
threads.

There are other model checking techniques which are
widely used for vulnerability detection. Working together with
our French colleagues we proposed a detection technique
based on SPIN model checker [1]2 and have partially
presented the obtained results in the technical report [3]. In
this case, a vulnerability is described as a property that has to
be verified. However, SPIN accepts a program written in
PROMELA language and thus, the first question is how to
translate a C code into PROMELA instructions when
verifying a property of interest. If the program is vulnerable,
i.e., possesses a “bad” feature, then SPIN produces a
counterexample that corresponds to the values of internal
variables or of input data of the program. We note that,
according to SPIN documentation features might be specified
as temporal logic formulas or Buchi automata [17]. In the
former case, we propose how to inject such data into the
program in order to show a programmer which part of the
code is vulnerable. The proposed technique somehow takes
into account both static and dynamic vulnerability detection,
since PROMELA model is verified statically while
counterexample is injected into the program through its run-
time. In [3], some discussions can be found how to translate C
instructions into PROMELA instructions and how the

2 The work was done together with French scientific group of Prof. Ana
Cavalli (TELECOM & Management Sud Paris)

 4

injection procedure can be implemented. In PROMELA
language verified properties are described as assertions and
such assertions have to be constructed for each type of
vulnerabilities. Unfortunately the translation performed by
MODEX tool [18] cannot be applied directly and since we are
in the process of developing new automatic tools for such
translation, some C codes were manually converted into
PROMELA codes and corresponding assertions were added.
We have applied a proposed technique to the above Programs
1, 2, 3 and SPIN produced counterexamples for all of them.
We injected data according to these counterexamples, found
out that the programs return wrong results and no error
message about “bad” input data has appeared, i.e., SPIN has
detected type overflow and array overflow vulnerabilities in
the above programs. For example, for Program 1 a
counterexample produced by SPIN has the value 10005 for
each array item value, the returned result when running the
program was 3451 while the right value should be 100050,
i.e., this C code has a type overflow vulnerability.

For Program 2 SPIN produced a counterexample as well as
for the array dimension as for array item value. In this case
when detecting array overflow vulnerability the
counterexample was n = 11 when each array item equals 11
too. When detecting type overflow vulnerability SPIN
produced the value 70035 that was then assigned to each array
item. After applying these input data to Program 2 incorrect
result has been obtained when running the C program while no
error occurred. According to the incorrect result that can easily
be checked, one can conclude that SPIN has detected type and
array overflow in Program 2. For Program 3 (Table 1) SPIN
has produced the same counterexample n = 11 for an array
overflow while in the counterexample for a type overflow
vulnerability, each array item was assigned to 80040.

In order to compare SPIN based vulnerability detection
technique with other tools providing dynamic vulnerability
detection we have run the Memcheck utility of Valgrind
software [15] against Programs 1, 2, 3. Memcheck is designed
to detect memory leakages in C/C++ programs and incorrect
use of uninitialized values. Valgrind allows a programmer to
assign desirable values to input variables and by use of a
virtual machine the Memcheck utility checks whether memory
leakage occurs during the program execution. We have run
Memcheck against Programs 1, 2, 3 with counterexamples
produced by SPIN and neither type overflow nor array
overflow vulnerability has been mentioned.

Based on the obtained experimental results, we can
conclude that SPIN based detection techniques could be useful
when analyzing the C code safety.

V. CONCLUSIONS

In this paper, we have presented a short survey of existing
tools providing vulnerability detection in C/C++ programs.
Several tools have been executed against student
implementations of array algorithms. The experimental results
clearly show that for some kinds of C code vulnerabilities
static analysis can be insufficient and we have presented a
brief overview of a SPIN-based approach for vulnerability

detection. The obtained preliminary results clearly show that
SPIN based detection techniques could be useful when
analyzing the C code safety. In this paper, we did not discuss
vulnerability detection techniques based on other model
checkers; such a comparison is a part of our future work.

REFERENCES
[1] G. Holzmann. Spin Model Checker. Primer and Reference Manual.

Addison Wesley, 2003.
[2] Willy Jimenez, Amel Mammar, and Ana R. Cavalli. Software

Vulnerabilities, Prevention and Detection Methods. A Review, SEC-
MDA workshop.– Enschede, The Netherlands, June, 24, 2009.

[3] Technical report of the joint FCP Russian-French grant №
02.514.12.4002, Step 4.

[4] Cigital [Electronic resource] – http://www.cigital.com/its4/
[5] Flawfinder home page [Electronic resource] –

http://www.dwheeler.com/flawfinder
[6] Just Another Hacker [Electronic resource] –

http://www.justanotherhacker.com/projects/graudit/download.html
[7] Sound Forge [Electronic resource] –

http://sourceforge.net/apps/mediawiki/cppcheck/
[8] Digitek Labs [Electronic resource] – http://www.digiteklabs.ru/aegis/
[9] Digitek Labs [Electronic resource] – http://aegis-

demo.digiteklabs.ru/s2a.webserver/
[10] Department of computer science. University of Maryland [Electronic

resource] – http://www.cs.umd.edu/~jfoster/cqual/
[11] Soft Line [Electronic resource] – http://soft.softline.ru/NPO-

Echelon/eshelon-ak-vs/
[12] Klocwork [Electronic resource] –

http://www.klocwork.com/products/insight/klocwork-truepath/
[13] Coverity [Electronic resource] –

http://www.coverity.com/products/static-analysis.html
[14] Electrical engineering and computer sciences [Electronic resource] –

http://www.cs.berkeley.edu/~daw/mops/
[15] Electrical engineering and computer sciences [Electronic resource] –

http://www.cs.berkeley.edu/~daw/boon/
[16] Valgrind [Electronic resource] – http://valgrind.org/info/tools.html
[17] SPIN [Electronic resource] – http://spinroot.com/
[18] Modex [Electronic resource] – http://cm.bell-

labs.com/cm/cs/what/modex/index.html

