APPLICATION OF THE FUNCTIONAL PROGRAMMING TOOLS IN THE TASKS
OF LANGUAGE AND INTERLANGUAGE STRUCTURES REPRESENTATION

Peter Ermakov
Institute for Informatics Problems,
The Russian Academy of Sciences
IPI RAN
Moscow, Russia
petcazay@gmail.com

Abstract. The paper considers issues of formal austlin
the tasks of knowledge representation includingntiptition
of formal grammars by means of functional prograngni
languages. One of the possible applications of fivenal
notation given is illustrated by the task of pagalhatural
texts analysis and comparison.

Keywords: functional programming tools, language
structures representation, parallel texts analysand
comparison

|. Introduction

At present the problem of machine text analysiedtural
language is one of the key challenges in the fiefd
information technologies and research. For its tsmtuone
involves various interdisciplinary approaches andthuds.
This caused by the complex character of the rekdadt in
the direction: several disciplines are engaged, aeigm
computer linguistics, artificial intelligence, andormal
mathematical methods.

Among linguistic resources that have been devel@zed
result of such research in the fields of naturaiglaage
analysis and knowledge acquisition are well-knovatteonic
dictionaries, syntactic parsers, language ontofogjenerators
of syntactic trees: WordNet, EuroWordNet, Ontoliagu
Russian dictionary RusLan, rakxxke Penn Treebank, Ragel,
Syntax Definition Formalism, Spirit Parser Framekyor
SYNTAX, Yacc, etc. This list is quite incompletdyough, it
only demostrates variety of approaches and instntene
involved in the procedures of natural language rapiEms
analysis and modelling.

Thus, automatization of a set of processes withia t
language (grammar analysis, syntactic and semantic
representations, etc.) and of its interaction witbman
activities (speech recognition, machine translatiparallel
texts comparative analysis, and so on) is oneeiihto-date
relevant tasks for several disciplines and domains
simultaneously. [i, ii].

Olga Kozhunova
Institute for Informatics Problems,
The Russian Academy of Sciences
IPI RAN
Moscow, Russia
kozhunovka@mail.ru

But the level of sophistication of the existing emaches
to language structures and processes represensaiides up
with the growing demands to the language modelss Th
induces a search of new approaches to languagetsts
representation and hybridization of the well-fuantng old
methods.

As an example one can study the difficult and lamy of
universal grammar search to use it in natural laggu
representations which is dramatic for the optimaratof
machine translation systems, syntactic and semaetit
analysis, texts comparative analysis and preseteqis and
relations acquisition, etc. One of the principalriders of the
approach to modelling of natural language unitsti@ns, and
mechanisms of their interaction by means of forgralmmars
was Noam Chomsky [iii]. Time passed, and many fedos of
his approach appeared. They started the aboveanedtiong
search. It led them to the gradual enumerationraenigion of
the existing grammar types, then — to their congpian and
adaptation to possible applications, and finally +e
dissatisfaction from the formal representation tigey as a
result, and address to statistical methods thatajiesl in this
field up to the moment. But soon many experts imirth
independent research found out that statisticahaust don't
solve the problem of completeness and accuradyeofiatural
language structures representation. For this regmtay more
and more specialists address to hybrid methods hvhie
untrivial in construction but more precise accogiijnto the
applications needed. Besides, validation of their
implementation is to be carried out through all thages of
the language representations, its structures dsalys
comparison with the existing patterns, and so o |i

Thus, as it was mentioned above, formal grammams is
mathematical apparatus meant for the text analysis.most
interest form the perspective of the problem cosr&d attract
regular and context-free grammars [iii]. For eadhttem a
relevant analytical engine exists thanks to whidrsimg
might be conducted automatically, i.e. by means of
computational procedures. Each analytical engirssggses a
set of advantages and disadvantages. For instsoices of the
disadvantages are complex structure, infeasibibfy the
universal engine design and need in its constahtilce
according to a specific application.

This involves many questions, particularly: is @spible to
build a universal mechanism of the natural langusigectures
representation using the existing formal methodsd an
techniques? Is there any probability of minimiziwgrk of
experts in the procedures of formal representatmasnatural
language structures comparison and their veribho&ti

In an attempt to answer these and other questibiss t
paper suggests an approach which allows repregemétural
language grammars (as well as formal ones) in m foot
demanding an analytical engine design for textipgrand
analysis. Rejection of analytical engines use gille us an
opportunity to get rid of a set of technical probteassociated
with their complex implementation. For instance, ig
suggested to enhance formal grammars with the ifuradt
programming languages and their tools. One of thssiple
applications of the suggested formal representatisn
illustrated by an example of the comparison of ratu
language parallel texts.

I1. Formal Grammarsand Analytical Engines

Consider a selected at random formal grammar
G= (VT AV ,S,P), where V; is a finite set of terminals,

V, is afinite set of nonterminals, start sym#L1V,; andP

is a finte set of productions of a form

a - Bra,pOM, OV,)Oaz O OVOV, :vOa.
According to Chomsky classification, formal gramsar

are divided into four types [iii]:

. unrestricted (type 0)

. context-sensitive (type 1)
. context-free (type 2)

. regular (type 3)

The first two types (type 0 and type 1) have noliapfion
due to their complexity, except for the contextstve
grammars which might be used when analyzing natural
languages texts excluding the task of compilatorkling.

The types 2 and 3 on the contrary have plenty obua
applications. For example, context-free grammases wsed
when describing computer languages syntax. Regular
grammars are applied for description of the unary
constructions: identifiers, strings, constants, eagder
languages, command processors, etc.

An analytical engine for regular grammars is finstate
automaton. Equivalence of the regular grammar anite f
state automaton is proved in the Kleene theoremvjtiich
allows assuming the concepts of regular grammagylae
expression, and finite state automaton equivalent.

The field of application of regular grammars in thsks of
natural language structures recognition is ratimeitédd. This
is related to the uneasiness of finding a regutaression for
describing any of the formal languages, not to mematural
language and its structures. We'd like to note gmouthat
regular expressions is a very convenient tool foalyzing
short and highly formalized language constructions.

At present basic instruments of formal and natural
languages analysis are context-free grammars. Acaly
engine for context-free grammars is a one-sided
nondeterministic automaton with stack outer memobnythe
most trivial case of such automaton’s algorithm
implementation, it is characterized by an expormnti
complexity. But iterative upgrade of the algoritinmay lead us
to its polynomial time value depending on the léngf the
input set of symbols and necessary for its analyfis

Among the existing context-free languages one can
distinguish a class of deterministic context-fremduages,
which are interpreted by deterministic automatothvatack
outer memory. The principal feature of these laiggsds their
unambiguity: it is proved that one can always buid
unambiguous grammar for any deterministic conteog-f
language [vi, vii]. Since the languages are unaomug, they
are most useful when it comes to building compika{wi].

Moreover, among all the deterministic context-free
languages exist such classes of languages whiaw all
building a linear recognizer for them. This is tleEognizer
which time value related to the time for decisioaking
about a set of symbols belonging to a languageahtasear
dependency on the chain length [vi]. Syntactic tmsions
in the majority of the existing programming langaagnight
be classified as ones of the class mentioned. aspect is
very important when developing up-to-date high-spee
compilers.

As a rule, the more complex from the mathematical
perspective an analytical engine is, the more ehglhg is its
technical implementation. Case with finite stateomata
(both with memory and without it) isn't an exceptiolt's
well-known that having formal grammar one can budd
automaton accepting it [vii, viii]. But this autotoa possesses
a set of disadvantages when it comes to its apjaitao
natural language grammars. For instance, rules abfiral
language include a plenty of features of naturalgleage
structures which are attributive by their natureodessing of
such transformation rules implemented using finitate
automaton may lead to the increase of the automstiates
and to growth of amount of the transformation rudsen
changing the states. Moreover, when implementiegathove
mentioned transformation rules one needs to ceepteblem-
oriented analytical engine to handle processinfp@finput set
of symbols of the natural language structures anapply
interpreting rules to them.

I11. Computational and Functional Grammars

In order to minimize above mentioned challenges the
authors suggest an approach which allows repreggruf
natural language grammar rules as functions in emattical

B or Y= f(X:XOAYOB. For

sense, that i A _,

making it more convenient and clear to handle mtur
language grammar rules as mathematical functiaes ¢ a

f
transformation which is written e A _, B) we suggest

to use such tools as n-tuples to keep necessaiputiite
characteristics (for example, gender, singulargdjuetc.).
Representation of the rules as functions also giaes
opportunity to use instruments of the functionalgramming
to build systems of grammar parsing and analysid an
interlingual transfer not loosing efforts to buiklich an
analytical engine as a finite state automaton.

Consider the approach in more detail.

Representation of grammar rules, or transformatides,
as mathematical functions has the following advgesain
comparison with formal grammar apparatus:

. Usage of functional programming tools to
build systems of transfer immediately;

. Possibility of higher-order function
applications.

It's worth noting that by concept “system of tragrsfin
the paper we understand software implementationarmf
analytic engine for processing of transformatioxgressed as
functions.

We'll illustrate it by an example: consider a siepl
sentence in English «I can swim» and its trangfafitto
Russian A ymero mnaBarb».

Examine transformations expressed as mathematical
functions. For the example given we use syntax h#d t
functional programming language Erlang:

(1)

trans(i)— 1,

trans(can)- mousb,

trans(Swim)— 1IbITh;

On applying the functional programming tools, oran c
split an input sentence into separate words (théshanism
isn’t given in detail in the paper). Having applitte above
given rules immediately, the following result miglie
obtained:

(2) s MOYB TUTBITE.

Such “translation” is quite unfit to the translativaking
into account all the links between natural langustgectures.
However, we'd emphasize that to build such a systédm
transfer no additional tools were involved except fhe
system of rules. The whole mechanism of transfas w
provided with the functional programming language.

Application of higher-order functions gives an oppaity
to pass a function as a parameter to other furstidinis
allows, for instance, handling the normalizatiore.(iputting
into normal form — for example, infinitive verb far noun in
singular, etc.) of any natural language structwfeie transfer.

Using n-tuples as a form of representation of ratur
language structures enables to generalize atwibuti
characteristics of words and use pattern alternatimf such
structures in prospect (see an example below). iGensn
example of a function which in a case with its angnt a
noun in singular leaves it without any modificasout in a
case with it in plural, adds an “s” inflexion toetend of the
word:

(3)

func({X, noun, singular}}— X,

func({X, noun, plural})— X ++ «s»;

Such function might be of use, say, when generagrgin
English.

That's why we'd like to consider such representafiarm
of natural language information as n-tuples in itlefes one
can see from the example above, this approach gives
opportunity of arrangement of attributive featurasd its
further use in transformations. Apart from thisingsn-tuples
for storage of attributive features of languageudtires
enables us to extract functions according to laggua
structures of various levels of abstraction (fostamce, a
word, a phrase, a sentence, etc). any of such daegu
structures has its own set of attributes, henceetiould be
functions which have words, phrases, and so onthes
arguments.

At first sight the above given approach to représtén of
natural language grammar rules apparently geneeatesge
amount of transformations even for a narrow domiirs. the
case. But one should note that since system o$fearmuilt
using functional programming tools cannot be comiEd a
finite state automaton, and, thus, doesn’'t have states and
rules of transformations between the states, samheunt of
transformations isn’t dramatic. Absolute clearn@dsence of
the inner state) of the analytical engine givespportunity to
perform analysis and synthesis of transformatignarbexpert
in the field of computer linguistics in a convertiemde.

The second distinctive feature of the suggestedoagp is
quite technical one. It is essential to design emglement a
relevant analytic engine for every information systwhich
tasks correlate with natural language structuredyais based
on mathematical apparatus of formal grammars. A&# said
above, this task is rather complex and laboriouswéter, in
the case of functional representation of grammégsras an
analytical machine the environment of the functiona
programming might be used (for instance, Erlangskdh)
[ix].

But here’s a more formal description of the sugegkst
approach.

Firstly, introduce a concept “Computational and
Functional Grammar”. Consider a formal
grammaG = (VT AN ,S,P), where P

isa » B:o,pO(, OV,)Doz0O00vOV,, :vOa.
Computational and Functional Grammar (CFG) is anfor
of notation of the above mentioned formal

grammaiG . = (T, f,A), where T is a finite set of

parametric n-tuples, f — transformation functibnT — T,

A — finite set of atoms.
By parametric n-tuple we mean an n-tuple elemefits o

which might be elements of the s¥g, V;, A and special

symbol «_».
By atom we assume any unambiguously determined

identificator such thatAn (VN DVT): U. Atoms are

meant for setting attributive characteristics diunal language
words (gender, singular/plural, case, etc.). They specific
instrument for simplifying of natural language stures
analysis in particular.

We'd like to emphasize that atoms and atomic strast
are included into CFG description. Thus, all pdssib
attributive characteristics of language structaesdefined in
the Grammar. That is, CFG is a formalism sufficidéot
natural language structures analysis, and thene isecessity
for using any of other mathematical tools in aduiitfo it.

Function f in Computational and Functional Grammars is
defined in the table form similar with the BackuatM form
which is used for setting the rules in context-fge@mmars.

The symbol «_» is suggested to denote an n-tuplaesit
which value one may ignore when defining the tramsftion
function. Thus, illustrate the sense of the spesyahbol «_ »
by an example.

Consider a set of aton#s = {noun, verb, plural, singular,
ok, not ok and a function defined as follows:

4)

f({noun, _}) — {ok},

f({verb, _}) — {not ok};

Then f({noun, plural}) = {ok} and f({noun, singuldy =
{ok}, i.e. the function’s value will be {ok} regatdss of noun
is in singular or in plural.

To illustrate the difference in grammar rules
representations by example, we’ll consider a forgraimnmar
G = ({a, the, dog, cat, chased}, {<S>, <NP>, <VRN>,
<V>, <DET>}, <S>, P) where P:

©)

<S> 1= <NP> <VP>,

<NP> ::= <DET> <N>,

<VP> 1= <V> <NP>,

<DET> ::= a | the,

<N> ::= dog | cat,

<V> ::= chased

where

<S>, < NP>,<VP>,< DET >0V, and

a,the,dog,cat,chased]V; .

In case of functional representation the above ndefi
grammar will be expressed as follows:

Gee = ({($(NP(VP (N (V),(DET) ,a,thedogcatchase}i f,I])
where f:

(6)

f(<DET>) -> a,

f(<DET>) -> the,

f(<N>) -> dog,

f(<N>) -> cat,

f(<V>) -> chased,

f(KNP>) -> f(<DET>) ++ f(<N>),

f(<VP>) -> f(<V>) ++ f(<NP>),

f(<S>) -> f(<NP>) ++ f(<VP>);

Symbol «++» denotes an operation of concatenation.

One should pay attention that in the consideredngia
the set of atoms A is empty. This points to thd that such
grammar doesn'’t take into account attributive cbtardstics
of words and language constructions. One may atoenthat
the set T in the example above is just a joint alfgt of
terminals and nonterminals of the initial grammar G

IV. Task of parallel texts analysisand comparison

At the contemporary stage of design and developroent
natural language processing systems the main eispigas
merged towards creation of parallel texts (i.etdem several
languages equivalent by their contents and repratem
forms) analysis techniques. It generates a set askst
concerned with their adequate interpretation arligtion,
above all, those are tasks of machine translatiod a
knowledge processing [X, Xi, Xii].

For that reason we demonstrate capabilities of the
functional programming tools when applied in thektaf
parallel text analysis and comparison, including thsk of
interlanguage structures transfer from one languate the
other [xiii]. As an example we consider texts o€ thatent
claims (in chemical technologies) in German and lighg
respectively:

(7

. Claim in German: Verfahren zur Epoxidierung einer
organischen Verbindung mit wenigstens einer C C-
Doppelbindung mit Wasserstoffperoxid in Gegenwart
wenigstens einer katalytisch aktiven Verbindung und
wenigstens eines Losungsmittels, dadurch gekermeijc
dass ein Produktgemisch umfassend a-Hydroperoxyal&o
unter Einsatz wenigstens eines Reduktionsmittedsiziert
wird.

. Claim in English: A process for the epoxidation of
an organic compound having at least one C-C dobbled by
means of hydrogen peroxide in the presence of ast lene
catalytically active compound and at least one aoly
wherein a product mixture comprising [alpha]-
hydroperoxyalcohols is reduced using at least oeducing
agent.

When consistently comparing the claims given (for
instance, for the sake of confirmation of the paten
information and data mining in chemistry) the faling
transformations were detected:

(8)

(a) Verfahren zur Epoxidierung—» A process for the
epoxidation

N [verb, nom, neutr, sg] + Prep [zu+der, dat, confpm,
sg] + N [dat, fem, sg}— Art [indef, sg] + N [com, sg] + Prep
+ Art [def, 0] + N [com,sg]

(b) ein Produktgemisch> a product mixture

Art [indef, masc, nom, sg] + N [comp, nom, neuty s>
Art [indef, sg] + N [com, sg] + N [com,sq]

(c) dadurch gekennzeichnet wherein
Pron + Part [Il f, masc, sg}> Adv

The above given transformations are described bgnme
of primitive language markup and a set of gramntigibates.
Thus, in case (b) (example (8)) the transfer ofn@ar phrase
structure ein Produktgemisch into English one & product
mixture» is described as a modification of an article JAwith
attributes indef, masc, nom, sg (that is indefinite,
masculinum, nominative case) and a compound nodromN
the left part of the transformation into a phraseciure in
English with an article and its attributemeef, sg and two
nouns in the right part of the transformation.

However, this technique of transformations notafiarthe

. iv
example above) possesses some disadvantages, nhamely

awkwardness of the rule itself and need to inténprgith the
help of specifically designed analytic engine.

But using functional programming tools (which atet
instruments of language structures representatiotné case
as well) may give one an opportunity to write dothe rule
(b) from the example (8), as follows:

(9)

(b) ein Produktgemisch» a product mixture

v({«ein»,art,indef,masc,nom,sg} «a»,

v({«Productgemisch»,noun,comp,nom,neutr,sg}) —
«product mixture»;

fgerman-english(

{X1,art,indef,masc,nom,sg},

{X2,noun,comp,nom,neutr,sgh»
v({X1,art,indef,masc,nom,sg}) ++
v({X2,noun,comp,nom,neutr,sg});

V. Conclusion

In the paper a new approach to natural languagamgea
representation as functions in mathematical sense i
considered. Also opportunities of applying functibn
programming tools to building systems of transfee a
demonstrated. Practical application of the apprasahewed
from the perspective of parallel texts analysis aeochparison
(texts from patent and scientific fields).

Further research within the approach and assoctated
may be conducted in the following directions:

. Customizing of the existing representations of
the natural language grammars to functional form;
. Creation of problem-oriented system of

functional programming to make handling of natuaalguage
rules more convenient;

. Enhancement of functional programming
tools taking into account needs and tasks of coemput
linguistics.

. Koszepenko E.b. JIuHrBuctuueckoe MoaenupoOBaHUE IS
CHCTEM MAIIMHHOTO MepeBoja U 00paboTku 3HaHuil //
Hudopmaruka u ee mpumeHenus, Nel, tom 1. —M.: Topyc,
2007. —C.54-65.
. Kozepenko E.b. T'maronbHo-uMeHHBbIE TpaHChopMaruu
OpH aHIO-PyCCKOM MaumimHHOM — nepeBome [/
KommbroTepHass JIMHTBUCTHKA W HHTEJUIEKTYyallbHBIE
TexHojoruu: Tpymel MEXAYHApOAHOW KoH(pepeHLUH
«[luanor 2007» /Tlox pen. JI.JI. Uomauna, H.W. Jlaydep,
A.C. Hapunwsnu, B.II. Ceneres. - M.. Usn-Bo PITY,
2007. —C. 286-294.

Chomsky N. SyntaatiStructures. — The Hague: Mouton,
1957.
. Jacobs, Roderick A. and Peter S. Rosenbaum.ising|
Transformational Grammar. Blaisdell, 1968.

Knunu C.K. Maremarndeckas joruka. -M.: nu3a-so Mup,
[1967]1973.

Jx. Xonkpodrt, P. MotBanwy, /. Yneman. Beenenue B
TEOPHUIO aBTOMATOB, SI3BIKOB U BhIUKCIeHuid = Introduction
to Automata Theory, Languages, and ComputatiotM-—
«Bunesame», 2002. —C. 528.
. A. B. I'magkuit, A. 5. IukoBckuit, “Teopust popMaIbHBIX
rpammaruk” / WUtorn Hayku u TexH. Cep. Teop. BeposTH.
Mar. crar. Teop. kubepuet., 10. —M.: BUHUTU, 1972. —
C. 107-142.
. Kob6punckuit H.E., Tpaxrenbpor b.A. Bsenenue B
TEOPUI0 KOHEUHBIX aBTOMaroB. — M.: T'oc. u3garenbcTBO
¢u3.-mat. mureparypsl, 1962. — 40%.

Vi

Vi

viii

X http://erlang.org, http://haskell.org

¥ . Koszepenko E.B. TIpo6neMa 5KBUBAIEHTHOCTH SA3BIKOBHIX
CTPYKTYP IIpHU NEPEBOAC U CEMAHTHYCCKOM BbIpaABHHUBAHUU
napaienbHbIX TekcToB // KoMmbproTepHasi IMHIBUCTHKA U
MHTCJUICKTYaJIbHBIC TCXHOJIOTHM: prZ[BI Me)KILYHaPOZ[HOﬁ
koHpepenrmu «/Juamor 2006» /Tlox pexn. JI.JI. Momauna,
H.J. Jlaydep, A.C. Hapunsstan, B.I1. Ceneres. - M.: U3n-
Bo PITY, 2006. -C.252-258.

Nivre J., Boguslavskil.,, lomdinL. Parcing the
SynTagRus Treebank of Russian \ Proceedings of the
International Conference COLING’2008, Manchestéf, U
~2008.

X' Macken L., Lefever E., Hoste V. Linguisticallgded
sub-sentential alignment for terminology extractimm a
bilingual automotive corpus \ Proceedings of the
International Conference COLING’2008, Manchestéf, U
2008.

Koxynoa O.C. DBelsBieHHe HOMHHAIN30BaHHBIX
KOHCprKLII/Iﬁ B IMapauICJIbHBIX TEKCTaX IaTCHTHBIX
MOKyMCHTOB Ha pPYCCKOM H© HEMENKOM si3bikax //
KOMHBIOTepHaH JIMHTBUCTHUKA nu HUHTCIUICKTYaJIbHBIC
TexHonmoruu: Tpymel MEXIyHApOIHOH KOH(pEepeHIUH
«JIuamor 2009» /Tlox pen. JIJI. Nomauna, H.W. JTaydep,
A.C. Hapunbsuu, B.II. Ceneres. - M.: Uzn-so PITYVY,
2009. —C.185-191.

Xi

xiii

