
APPLICATION OF THE FUNCTIONAL PROGRAMMING TOOLS IN THE TASKS 

OF LANGUAGE AND INTERLANGUAGE STRUCTURES REPRESENTATION 

 
Peter Ermakov 

Institute for Informatics Problems,  
The Russian Academy of Sciences 

IPI RAN 
Moscow, Russia 

petcazay@gmail.com 
 

 Olga Kozhunova 
Institute for Informatics Problems,  
The Russian Academy of Sciences 

IPI RAN 
Moscow, Russia 

kozhunovka@mail.ru 
 

Abstract. The paper considers issues of formal methods in 
the tasks of knowledge representation including optimization 
of formal grammars by means of functional programming 
languages. One of the possible applications of the formal 
notation given is illustrated by the task of parallel natural 
texts analysis and comparison.  

Keywords: functional programming tools, language 
structures representation, parallel texts analysis and 
comparison 

 
 
I. Introduction 
 
At present the problem of machine text analysis in natural 

language is one of the key challenges in the field of 
information technologies and research. For its solution one 
involves various interdisciplinary approaches and methods. 
This caused by the complex character of the research led in 
the direction: several disciplines are engaged, namely, 
computer linguistics, artificial intelligence, and formal 
mathematical methods.  

Among linguistic resources that have been developed as a 
result of such research in the fields of natural language 
analysis and knowledge acquisition are well-known electronic 
dictionaries, syntactic parsers, language ontologies, generators 
of syntactic trees: WordNet, EuroWordNet, Ontolingua, 
Russian dictionary RusLan, а также Penn Treebank, Ragel, 
Syntax Definition Formalism, Spirit Parser Framework, 
SYNTAX, Yacc, etc. This list is quite incomplete, though, it 
only demostrates variety of approaches and instruments 
involved in the procedures of natural language mechanisms 
analysis and modelling. 

Thus, automatization of a set of processes within the 
language (grammar analysis, syntactic and semantic 
representations, etc.) and of its interaction with human 
activities (speech recognition, machine translation, parallel 
texts comparative analysis, and so on) is one of the up-to-date 
relevant tasks for several disciplines and domains 
simultaneously. [i, ii]. 

But the level of sophistication of the existing approaches 
to language structures and processes representation scales up 
with the growing demands to the language models. This 
induces a search of new approaches to language structures 
representation and hybridization of the well-functioning old 
methods. 

As an example one can study the difficult and long way of 
universal grammar search to use it in natural language 
representations which is dramatic for the optimization of 
machine translation systems, syntactic and semantic text 
analysis, texts comparative analysis and preset concepts and 
relations acquisition, etc. One of the principal founders of the 
approach to modelling of natural language units, relations, and 
mechanisms of their interaction by means of formal grammars 
was Noam Chomsky [iii]. Time passed, and many followers of 
his approach appeared. They started the above mentioned long 
search. It led them to the gradual enumeration and revision of 
the existing grammar types, then — to their complication and 
adaptation to possible applications, and finally — to 
dissatisfaction from the formal representation they got as a 
result, and address to statistical methods that prevailed in this 
field up to the moment. But soon many experts in their 
independent research found out that statistical methods don't 
solve the problem of completeness and accuracy of the natural 
language structures representation. For this reason today more 
and more specialists address to hybrid methods which are 
untrivial in construction but more precise accordingly to the 
applications needed. Besides, validation of their 
implementation is to be carried out through all the stages of 
the language representations, its structures analysis, 
comparison with the existing patterns, and so on [iv]. 

Thus, as it was mentioned above, formal grammars is a 
mathematical apparatus meant for the text analysis. The most 
interest form the perspective of the problem considered attract 
regular and context-free grammars [iii]. For each of them a 
relevant analytical engine exists thanks to which parsing 
might be conducted automatically, i.e. by means of 
computational procedures. Each analytical engine possesses a 
set of advantages and disadvantages. For instance, some of the 
disadvantages are complex structure, infeasibility of the 
universal engine design and need in its constant rebuild 
according to a specific application. 



This involves many questions, particularly: is it possible to 
build a universal mechanism of the natural language structures 
representation using the existing formal methods and 
techniques? Is there any probability of minimizing work of 
experts in the procedures of formal representations and natural 
language structures comparison and their verification? 

In an attempt to answer these and other questions this 
paper suggests an approach which allows representing natural 
language grammars (as well as formal ones) in a form not 
demanding an analytical engine design for text parsing and 
analysis. Rejection of analytical engines use will give us an 
opportunity to get rid of a set of technical problems associated 
with their complex implementation. For instance, it is 
suggested to enhance formal grammars with the functional 
programming languages and their tools. One of the possible 
applications of the suggested formal representation is 
illustrated by an example of the comparison of natural 
language parallel texts. 

 
 
II. Formal Grammars and Analytical Engines 
 
Consider a selected at random formal grammar 

( )PS,,V,V=G NT , where TV  is a finite set of terminals, 

NV  is a finite set of nonterminals, start symbol NVS∈  and P 

is a finite set of productions of a form 

( ) α:αβα:βα ∈∈∃∧∅≠∧∪∈→ vVvVV, NNT . 

According to Chomsky classification, formal grammars 
are divided into four types  [iii]: 

• unrestricted (type 0) 
• context-sensitive (type 1) 
• context-free (type 2) 
• regular (type 3) 
The first two types (type 0 and type 1) have no application 

due to their complexity, except for the context-sensitive 
grammars which might be used when analyzing natural 
languages texts excluding the task of compilators building.  

The types 2 and 3 on the contrary have plenty of various 
applications. For example, context-free grammars are used 
when describing computer languages syntax.  Regular 
grammars are applied for description of the unary 
constructions: identifiers, strings, constants, assembler 
languages, command processors, etc. 

An analytical engine for regular grammars is finite state 
automaton. Equivalence of the regular grammar and finite 
state automaton is proved in the Kleene theorem [v], which 
allows assuming the concepts of regular grammar, regular 
expression, and finite state automaton equivalent.  

The field of application of regular grammars in the tasks of 
natural language structures recognition is rather limited. This 
is related to the uneasiness of finding a regular expression for 
describing any of the formal languages, not to mention natural 
language and its structures. We’d like to note though, that 
regular expressions is a very convenient tool for analyzing 
short and highly formalized language constructions.  

At present basic instruments of formal and natural 
languages analysis are context-free grammars. Analytical 
engine for context-free grammars is a one-sided 
nondeterministic automaton with stack outer memory. In the 
most trivial case of such automaton’s algorithm 
implementation, it is characterized by an exponential 
complexity. But iterative upgrade of the algorithm may lead us 
to its polynomial time value depending on the length of the 
input set of symbols and necessary for its analysis [vi]. 

Among the existing context-free languages one can 
distinguish a class of deterministic context-free languages, 
which are interpreted by deterministic automaton with stack 
outer memory. The principal feature of these languages is their 
unambiguity: it is proved that one can always build an 
unambiguous grammar for any deterministic context-free 
language [vi, vii]. Since the languages are unambiguous, they 
are most useful when it comes to building compilators [vi]. 

Moreover, among all the deterministic context-free 
languages exist such classes of languages which allow 
building a linear recognizer for them. This is the recognizer 
which time value related to the time for decision-making 
about a set of symbols belonging to a language has a linear 
dependency on the chain length [vi]. Syntactic constructions 
in the majority of the existing programming languages might 
be classified as ones of the class mentioned. This aspect is 
very important when developing up-to-date high-speed 
compilers. 

As a rule, the more complex from the mathematical 
perspective an analytical engine is, the more challenging is its 
technical implementation. Case with finite state automata 
(both with memory and without it) isn’t an exception. It’s 
well-known that having formal grammar one can build a 
automaton accepting it [vii, viii]. But this automaton possesses 
a set of disadvantages when it comes to its application to 
natural language grammars. For instance, rules of natural 
language include a plenty of features of natural language 
structures which are attributive by their nature. Processing of 
such transformation rules implemented using finite state 
automaton may lead to the increase of the automaton states 
and to growth of amount of the transformation rules when 
changing the states. Moreover, when implementing the above 
mentioned transformation rules one needs to create a problem-
oriented analytical engine to handle processing of the input set 
of symbols of the natural language structures and to apply 
interpreting rules to them. 

 



III. Computational and Functional Grammars 
 
In order to minimize above mentioned challenges the 

authors suggest an approach which allows representing of 
natural language grammar rules as functions in mathematical 

sense, that is BA
f

→  or ( ) ByA,xxf=y ∈∈: . For 

making it more convenient and clear to handle natural 
language grammar rules as mathematical functions (i.e. as a 

transformation which is written as BA
f

→ ) we suggest 

to use such tools as n-tuples to keep necessary attributive 
characteristics (for example, gender, singular\plural, etc.). 
Representation of the rules as functions also gives an 
opportunity to use instruments of the functional programming 
to build systems of grammar parsing and analysis and 
interlingual transfer not loosing efforts to build such an 
analytical engine as a finite state automaton. 

Consider the approach in more detail.  
Representation of grammar rules, or transformation rules, 

as mathematical functions has the following advantages in 
comparison with formal grammar apparatus:  

• Usage of functional programming tools to 
build systems of transfer immediately;  

• Possibility of higher-order function 
applications.  

It’s worth noting that by concept “system of transfer” in 
the paper we understand software implementation of an 
analytic engine for processing of transformations expressed as 
functions.  

We’ll illustrate it by an example: consider a simple 
sentence in English «I can swim» and its translation into 
Russian «Я умею плавать». 

Examine transformations expressed as mathematical 
functions. For the example given we use syntax of the 
functional programming language Erlang: 

(1) 
trans(i) → я, 
trans(can) → мочь, 
trans(swim) → плыть; 
On applying the functional programming tools, one can 

split an input sentence into separate words (this mechanism 
isn’t given in detail in the paper). Having applied the above 
given rules immediately, the following result might be 
obtained:  

(2) я мочь плыть. 
Such “translation” is quite unfit to the translation taking 

into account all the links between natural language structures. 
However, we’d emphasize that to build such a system of 
transfer no additional tools were involved except for the 
system of rules.  The whole mechanism of transfer was 
provided with the functional programming language. 

Application of higher-order functions gives an opportunity 
to pass a function as a parameter to other functions. This 
allows, for instance, handling the normalization (i.e. putting 
into normal form – for example, infinitive verb form, noun in 
singular, etc.) of any natural language structure before transfer.  

Using n-tuples as a form of representation of natural 
language structures enables to generalize attributive 
characteristics of words and use pattern alternations of such 
structures in prospect (see an example below). Consider an 
example of a function which in a case with its argument a 
noun in singular leaves it without any modifications, but in a 
case with it in plural, adds an “s” inflexion to the end of the 
word: 

(3) 
func({X, noun, singular}) → X, 
func({X, noun, plural}) → X ++ «s»; 
Such function might be of use, say, when generating text in 

English. 
That’s why we’d like to consider such representation form 

of natural language information as n-tuples in detail. As one 
can see from the example above, this approach gives an 
opportunity of arrangement of attributive features and its 
further use in transformations. Apart from this, using n-tuples 
for storage of attributive features of language structures 
enables us to extract functions according to language 
structures of various levels of abstraction (for instance, a 
word, a phrase, a sentence, etc). any of such language 
structures has its own set of attributes, hence there should be 
functions which have words, phrases, and so on, as their 
arguments.  

At first sight the above given approach to representation of 
natural language grammar rules apparently generates a huge 
amount of transformations even for a narrow domain. It is the 
case. But one should note that since system of transfer built 
using functional programming tools cannot be considered a 
finite state automaton, and, thus, doesn’t have any states and 
rules of transformations between the states, so the amount of 
transformations isn’t dramatic. Absolute clearness (absence of 
the inner state) of the analytical engine gives an opportunity to 
perform analysis and synthesis of transformations by an expert 
in the field of computer linguistics in a convenient mode.  

The second distinctive feature of the suggested approach is 
quite technical one. It is essential to design and implement a 
relevant analytic engine for every information system which 
tasks correlate with natural language structures analysis based 
on mathematical apparatus of formal grammars. As it was said 
above, this task is rather complex and laborious. However, in 
the case of functional representation of grammar rules as an 
analytical machine the environment of the functional 
programming might be used (for instance, Erlang, Haskell) 
[ix]. 

But here’s a more formal description of the suggested 
approach.  



Firstly, introduce a concept “Computational and 
Functional Grammar”. Consider a formal 

grammar ( )PS,,V,V=G NT , where P 

is ( ) α:αβα:βα ∈∈∃∧∅≠∧∪∈→ vVvVV, NNT . 

Computational and Functional Grammar (CFG) is a form 
of notation of the above mentioned formal 

grammar ( )Af,T,=GFC , where T is a finite set of 

parametric n-tuples, f – transformation function TTf →: , 
A – finite set of atoms. 

By parametric n-tuple we mean an n-tuple elements of 

which might be elements of the setsNV , TV , A  and special 

symbol «_». 
By atom we assume any unambiguously determined 

identificator such that ( ) ∅∪∩ =VVA TN . Atoms are 

meant for setting attributive characteristics of natural language 
words (gender, singular/plural, case, etc.). They are specific 
instrument for simplifying of natural language structures 
analysis in particular. 

We'd like to emphasize that atoms and atomic structures 
are included into CFG description. Thus, all possible 
attributive characteristics of language structures are defined in 
the Grammar. That is, CFG is a formalism sufficient for 
natural language structures analysis, and there is no necessity 
for using any of other mathematical tools in addition to it. 

Function  f  in Computational and Functional Grammars is 
defined in the table form similar with the Backus-Naur form 
which is used for setting the rules in context-free grammars.  

The symbol «_» is suggested to denote an n-tuple element 
which value one may ignore when defining the transformation 
function. Thus, illustrate the sense of the special symbol «_» 
by an example. 

Consider a set of atoms A = {noun, verb, plural, singular, 
ok, not ok} and a function defined as follows: 

(4) 
f({noun, _}) → {ok}, 
f({verb, _}) → {not ok}; 
Then f({noun, plural}) = {ok} and f({noun, singular}) = 

{ok}, i.e. the function’s value will be {ok} regardless of noun 
is in singular or in plural. 

To illustrate the difference in grammar rules 
representations by example, we’ll consider a formal grammar 
G = ({a, the, dog, cat, chased}, {<S>, <NP>, <VP>, <N>, 
<V>, <DET>}, <S>, P)  where P: 

(5) 
<S> ::= <NP> <VP>, 
<NP> ::= <DET> <N>, 
<VP> ::= <V> <NP>, 
<DET> ::= a | the, 
<N> ::= dog | cat, 
<V> ::= chased 

where NV>DET< >,VP< >,NP< >,S< ∈ and 

TVchased cat, dog, the, a, ∈ . 
In case of functional representation the above defined 

grammar will be expressed as follows:  
{ }( )∅f,,chasedcat,dog,the,a,,DET,V,N,VP,NP,S=GFC

 

where f: 
(6) 
f(<DET>) -> a, 
f(<DET>) -> the, 
f(<N>) -> dog, 
f(<N>) -> cat, 
f(<V>) -> chased, 
f(<NP>) -> f(<DET>) ++ f(<N>), 
f(<VP>) -> f(<V>) ++ f(<NP>), 
f(<S>) -> f(<NP>) ++ f(<VP>); 
Symbol «++» denotes an operation of concatenation.  
One should pay attention that in the considered example 

the set of atoms A is empty. This points to the fact that such 
grammar doesn’t take into account attributive characteristics 
of words and language constructions. One may also notice that 
the set T in the example above is just a joint alphabet of 
terminals and nonterminals of the initial grammar G. 

 
IV. Task of parallel texts analysis and comparison 
 
At the contemporary stage of design and development of 

natural language processing systems the main emphasis is 
merged towards creation of parallel texts (i.e. texts in several 
languages equivalent by their contents and representation 
forms) analysis techniques. It generates a set of tasks 
concerned with their adequate interpretation and application, 
above all, those are tasks of machine translation and 
knowledge processing [x, xi, xii]. 

 For that reason we demonstrate capabilities of the 
functional programming tools when applied in the task of 
parallel text analysis and comparison, including the task of 
interlanguage structures transfer from one language into the 
other [xiii]. As an example we consider texts of the patent 
claims (in chemical technologies) in German and English 
respectively: 

(7) 
• Claim in German: Verfahren zur Epoxidierung einer 

organischen Verbindung mit wenigstens einer C C-
Doppelbindung mit Wasserstoffperoxid in Gegenwart 
wenigstens einer katalytisch aktiven Verbindung und 
wenigstens eines Lösungsmittels, dadurch gekennzeichnet, 
dass ein Produktgemisch umfassend a-Hydroperoxyalkohole 
unter Einsatz wenigstens eines Reduktionsmittels reduziert 
wird. 



• Claim in English: A process for the epoxidation of 
an organic compound having at least one C-C double bond by 
means of hydrogen peroxide in the presence of at least one 
catalytically active compound and at least one solvent, 
wherein a product mixture comprising [alpha]-
hydroperoxyalcohols is reduced using at least one reducing 
agent. 

 
When consistently comparing the claims given (for 

instance, for the sake of confirmation of the patent 
information and data mining in chemistry) the following 
transformations were detected: 

(8) 
(a) Verfahren zur Epoxidierung → A process for the 

epoxidation 
 
N [verb, nom, neutr, sg] + Prep [zu+der, dat, comp, fem, 

sg] + N [dat, fem, sg] → Art [indef, sg] + N [com, sg] + Prep 
+ Art [def, 0] + N [com,sg] 

 
(b) ein Produktgemisch → a product mixture 
 
Art [indef, masc, nom, sg] + N [comp, nom, neutr, sg] → 

Art [indef, sg] + N [com, sg] + N [com,sg] 
 
(c) dadurch gekennzeichnet → wherein 
 
Pron + Part [II f, masc, sg] → Adv 
 
The above given transformations are described by means 

of primitive language markup and a set of grammar attributes. 
Thus, in case (b) (example (8)) the transfer of German phrase 
structure «ein Produktgemisch» into English one «a product 
mixture» is described as a modification of an article (Art) with 
attributes «indef, masc, nom, sg» (that is indefinite, 
masculinum, nominative case) and a compound noun N from 
the left part of the transformation into a phrase structure in 
English with an article and its attributes «indef, sg» and two 
nouns in the right part of the transformation. 

However, this technique of transformations notation (in the 
example above) possesses some disadvantages, namely, 
awkwardness of the rule itself and need to interpret it with the 
help of specifically designed analytic engine. 

But using functional programming tools (which are the 
instruments of language structures representation in the case 
as well) may give one an opportunity to write down the rule 
(b) from the example (8), as follows: 

(9) 
(b) ein Produktgemisch → a product mixture 
 
v({«ein»,art,indef,masc,nom,sg}) → «a», 
v({«Productgemisch»,noun,comp,nom,neutr,sg}) → 

«product mixture»; 
fgerman-english( 
{X1,art,indef,masc,nom,sg}, 

{X2,noun,comp,nom,neutr,sg}) → 
v({X1,art,indef,masc,nom,sg}) ++ 
v({X2,noun,comp,nom,neutr,sg}); 
 
V. Conclusion 
 
In the paper a new approach to natural language grammar 

representation as functions in mathematical sense is 
considered. Also opportunities of applying functional 
programming tools to building systems of transfer are 
demonstrated. Practical application of the approach is viewed 
from the perspective of parallel texts analysis and comparison 
(texts from patent and scientific fields).  

Further research within the approach and associated tasks 
may be conducted in the following directions: 

• Customizing of the existing representations of 
the natural language grammars to functional form; 

• Creation of problem-oriented system of 
functional programming to make handling of natural language 
rules more convenient; 

• Enhancement of functional programming 
tools taking into account needs and tasks of computer 
linguistics. 

 
 

                     
i . Козеренко Е.Б. Лингвистическое моделирование для 
систем машинного перевода и обработки знаний // 
Информатика и ее применения, №1, том 1. – М.: Торус, 
2007. – С.54-65. 

ii . Козеренко Е.Б. Глагольно-именные трансформации 
при англо-русском машинном переводе // 
Компьютерная лингвистика и интеллектуальные 
технологии: Труды международной конференции 
«Диалог 2007» / Под ред. Л.Л. Иомдина, Н.И. Лауфер, 
А.С. Нариньяни, В.П. Селегея. - М.: Изд-во РГГУ, 
2007. – С. 286-294. 

iii   Chomsky N. Syntactiс Structures. — The Hague: Mouton, 
1957. 

iv . Jacobs, Roderick A. and Peter S. Rosenbaum. English 
Transformational Grammar. Blaisdell, 1968. 

v  Клини С.К. Математическая логика. -М.: изд-во Мир, 
[1967]1973. 

vi  Дж. Хопкрофт, Р. Мотвани, Дж. Ульман. Введение в 
теорию автоматов, языков и вычислений = Introduction 
to Automata Theory, Languages, and Computation. — М.: 
«Вильямс», 2002. — С. 528. 

vii . А. В. Гладкий, А. Я. Диковский, “Теория формальных 
грамматик” / Итоги науки и техн. Сер. Теор. вероятн. 
Мат. стат. Теор. кибернет., 10. – М.: ВИНИТИ, 1972. – 
C. 107–142. 

viii  . Кобринский Н.Е., Трахтенброт Б.А. Введение в 
теорию конечных автоматов. – М.: Гос. издательство 
физ.-мат. литературы, 1962. – 405 с. 



                                    
ix http://erlang.org, http://haskell.org 
x . Козеренко Е.Б. Проблема эквивалентности языковых 
структур при переводе и семантическом выравнивании 
параллельных текстов // Компьютерная лингвистика и 
интеллектуальные технологии: Труды международной 
конференции «Диалог 2006» / Под ред. Л.Л. Иомдина, 
Н.И. Лауфер, А.С. Нариньяни, В.П. Селегея. - М.: Изд-
во РГГУ, 2006. – С.252-258. 

xi . Nivre J., Boguslavski I., Iomdin L. Parcing the 
SynTagRus Treebank of Russian \ Proceedings of the 
International Conference COLING’2008, Manchester, UK, 
2008. 

xii . Macken L., Lefever E., Hoste V. Linguistically-based 
sub-sentential alignment for terminology extraction from a 
bilingual automotive corpus \ Proceedings of the 
International Conference COLING’2008, Manchester, UK, 
2008. 

xiii  .Кожунова О.С. Выявление номинализованных 
конструкций в параллельных текстах патентных 
документов на русском и немецком языках // 
Компьютерная лингвистика и интеллектуальные 
технологии: Труды международной конференции 
«Диалог 2009» / Под ред. Л.Л. Иомдина, Н.И. Лауфер, 
А.С. Нариньяни, В.П. Селегея. - М.: Изд-во РГГУ, 
2009. – С.185-191. 

 

 

 


