
Fuzzy matching for partial XML merge
Vladimir Fedotov

ISP RAS
Moscow

Email: vfl@ispras.ru

Abstract—In this paper we describe our experience in creating
a tool capable to provide traceability of the requirements between
different versions of the LSB and POSIX standards. We propose
an approach for merging requirement markup without exact
matching of the documents by means of arithmetic hashing and
context similarity analysis.

I. I NTRODUCTION

In the past several years XML made huge progress, mostly
due to its extensions. ISO finally standardized OpenXML and
OpenDocument as document formats for office applications,
thus making possible long standing dream of simple and robust
document exchange in a heterogeneous environment.

At present day there are hundreds of XML extensions [1],
applicable to a huge variety of tasks, from relational databases
to vector graphics. Among the most important - XHTML pro-
viding transition from HTML to XML. Its importance relies on
a huge amount of standards, specifications, recommendations
and RFCs available in HTML and, with adoption of XHTML,
available to processing by means of XML-aware tools.

Our present work is intended to provide requirement trace-
ability between different versions of POSIX and LSB stan-
dards. Previous versions of these standards were convertedto
XHTML with requirements markup for the needs of OLVER
[2] and other projects.

Actual markup consists of one or more span tags wrapping
requirement-related text nodes. It is important to note here
that span can actually divide text node to several chunks,
therefore creating a sub-tree in place of one node, thus making
impossible direct matching between marked and non-marked
documents.

<p a r e n t>
u n r e l a t e d t e x t

The s p i c e must f low !
< / span>
u n r e l a t e d t e x t

< / p a r e n t>

Listing 1. Markup example

So our goal may be defined as follows: given marked up
previous version of the document, trace requirements chunks
in the next version of the document and, if that trace was
successful, merge requirement markup.

II. PROBLEM DESCRIPTION

Despite being straightforward, this problem actually repre-
sents a challenge to existing XML merging tools. Limited to
open source Java implementations, we were unable to find a
solution robust enough due to various reasons.

First of all, the given task requires zero faults merge, as a
fault leads to document corruption. In case of XML merge, a
fault is mismatching during the node mapping process, which
can easily occur between nodes with the same names or values.

Second, it requires to trace a match between actually
different nodes, as the markup can break up a text node in
two or more chunks.

Third, the solution should take into account the context
of matching nodes. For example, valid requirement for one
document isn’t valid for another document if it was moved to
”Deprecated requirements” section.

Finally, the solution has to be stable enough to work in the
production environment. Unfortunately, most of the discovered
tools were academic researches discontinued by their authors.

III. R ELATED WORK

Tree diffing and merging remains a very active field of
research, presently due to popularity of the bio-informatics.
There is a variety of different techniques applicable to very
different sets of problems. Very good review of the techniques
available for XML was done by K. Komvoteas in [3].

Basically, an XML documents can be merged by direct
comparison of their nodes, traversed in the definite order. Dis-
covered conflicts fall into two categories: node insertion and
node deletion. Some algorithms also recognize moving and
updating, while others simply represent them as a consecutive
deletion and insertion. Ruling out these conflicts is actually
called a ”merge”.

Unfortunately, such direct comparison will often provide
bogus results because nodes may only differ by their context.
There are several approaches developed to compare node
contexts.

DiffX algorithm [4] uses fragment matching technique. Ac-
cording to it, a node is considered a match if it has the largest
matching neighborhood then any other equal node. Weakness
of that approach is in corner cases – it is unable to provide
any ruling in case of equal nodes with equal fragments, thus
leaving us without guarantees of correct matching. Moreover,
there is no simple way to perform a reverse task – to trace a
single node by its context, in case we want to match actually
different nodes.

A slightly different approach is proposed in [5]. So-called
”fingerprinting” is a way of storing node context in a vector of
MD5 hashes. A node is considered a match if its fingerprint
has the matching neighborhood within a given radius. As
opposed to DiffX, it is possible to trace a node by matching
its context, but such an approach will produce false resultsin
case of matching several equal chunks with the same context,
like brackets or commas enclosing reference links, which often
occurs in documents.

Radically different is a three-way merge approach, which
makes use of three documents instead of two. Often used in
the revision control systems, three-way merge compares two
target documents while also considering a ”base” document.In
practice, it is implemented as a diff between the documentα

and the base, and then patching the documentβ with resulting
delta.

In our case it could be implemented by considering the
original unmarked document as a base, diffing it with the
marked up document, and patching the target document with
resulting delta. Diffing the unmarked base with the marked
up document will produce the markup anchored to the actual
nodes, which can be traced much more effectively in a
target document. We are considering implementation of this
approach in the future versions of our tool.

IV. A RITHMETIC HASHING

To address the issues described above we propose an
approach combining two different ways of evaluation of the
node equality: by using positional metric and by comparing
similarity of their text contents.

Each node has several attributes defining its position in the
document: position in the traversal sequence, position among
the siblings, depth, index among the identical siblings and
overall siblings count. The problem is that these attributes
should be properly weighted to be used in the positional metric
and approach to provide such weighting isn’t clear. Which is
more important for node equality: to have same depth or same
traversal position? What if the node match candidate have
exactly same siblings and depth, but is located in completely
different place in document? And if another match candidate
is located in exactly same place, but has no matching siblings?

In our implementation arithmetic hash provides us with
cumulative positional metric. It uses general approach quite
similar to arithmetic coding algorithm [6], but in completely
different way.

Starting from the root, an interval is assigned to each node,
with a random number from that interval assigned as its label.
Each interval is divided by the number of node descendants
and each descendant is provided with a range within parent
interval according to its position among sibling nodes (fig.1).

While being extremely simple this hashing technique pro-
vides us with positional metric which can be easily evaluated
as a distance between the node labels (1). Its deliberately made
biased towards matching of the nodes on the same axis, but
being extremely sensitive to any changes in the siblings order

roo t

a b

a a ab ba

Fig. 1. Labelling example

providing better matching for equal text chunks, as opposed
to [5].

distance(x, y) =
|label(x)− label(y)|

min(interval(x), interval(y))
(1)

V. CONTEXT SIMILARITY

Bearing in mind that we are dealing with an XHTML
documents, it is safe to say that almost any axis in such
documents ends with a text node leaf. Therefore any ascendant
nodes can be defined by the concatenation of the descendant
text node values.

Evaluating similarity between text contexts provides us the
similarity metric, that can be used for searching of the proper
parent node, which later serves as a context for positional
metric. Similarity itself can be evaluated by applying Jaccard
index to the tokenized text contents (2).

jaccard(A,B) =
|A ∩B|

|A ∪B|
(2)

Being much faster than commonly used Levenshtein edit
distance [7], Jaccard index provides satisfactory results, which
can be further improved by taking into account the fact that
requirement text should be equal or included into reference
text. Therefore in our approach we use slightly modified
similarity index (3).

similarity(A,B) =
|A ∩B|

A
(3)

VI. GLUING IT TOGETHER

While none of the metrics described above can be used ef-
fectively separately, being combined they provide surprisingly
robust results.

Similarity metric provides good results in case of compar-
ison between nodes with diverse chunks of text, but fails if
text contexts are exactly the same, which occurs quite often.

On the contrary, positional metric is ineffective in case of
comparison between trees with strong differences, but becomes
extremely effective for the small sub-trees.

Wrapping these metrics inside a stable sorting algorithm
achieves the desired result. Firstly nodes are being sorted
by their positional metric, then by their similarity metric.
Therefore similarity metric has the priority over positional
one, but in the corner case of several nodes having the same
similarity index, they will be ruled out by their label distance,
as opposed to [4].

VII. C ONCLUSION

This paper presents a new approach to merge XML doc-
uments without exact matching of their nodes by using an
algorithm combining node matching, based on the positional
metric evaluated as label distance, with text similarity analysis
based on the evaluation of modified Jaccard index between
reference and target text nodes.

Despite being work in progress, our approach is already
showing good results while merging different versions of LSB
and POSIX standards as well as RFCs and many others.

In the nearest future we consider implementing three-way
merge, based on our current approach and provide an open
source Java implementation.

REFERENCES

[1] http://en.wikipedia.org/wiki/Listof XML markup languages
[2] http://linuxtesting.org/project/olver
[3] K. Komvoteas,XML Diff and Patch Tool, 2003.
[4] R. Al-Ekram, A. Adma and O. Baysal,diffX: An Algorithm to Detect

Changes in Multi-Verion XML Documents, 2005.
[5] S. Ronnau, G. Philipp and U.M. Borghoff,Efficient Change Control of

XML Documents, 2009.
[6] J.J. Rissanen,Generalized Kraft Inequality and Arithmetic Coding, 1976.
[7] V.I. Levenshtein,Binary codes capable of correcting deletions, insertions,

and reversals, 1966.

