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Abstract—A storing of spatial data and processing of spatial
queries are important tasks for modern databases. The execution
efficiency of spatial query depends on underlying index structure.
R-tree is a well-known spatial index structure. Currently there
exist various versions of R-tree, and one of the most common
variations between them is node splitting algorithm. The problem
of node splitting in one-dimensional R-tree may seem to be too
trivial to be considered separately. One-dimensional intervals can
be split on the base of their sorting. Some of the node splitting
algorithms for R-tree with two or more dimensions comprise
one-dimensional split as their part. However, under detailed con-
sideration, existing algorithms for one-dimensional split do not
perform ideally in some complicated cases. This paper introduces
a novel one-dimensional node splitting algorithm based on two
sortings that can handle such complicated cases better. Also this
paper introduces node splitting algorithm for R-tree with two or
more dimensions that is based on the one-dimensional algorithm
mentioned above. The tests show significantly better behavior of
the proposed algorithms in the case of highly overlapping data.

I. INTRODUCTION

Spatial data processing is an important task for modern
databases. Since the volume of information in databases
increases continuously, the database management systems
(DBMS) need spatial index structures in order to handle
spatial queries efficiently. The problem of spatial indexes is
that there is no ordering which reflects proximity of spatial
objects [5]. This is why B-tree [3] can not handle spatial object
efficiently. R-tree [7] is the most well-known index structure
for spatial data. R-tree is a height balanced tree like B-tree,
which hierarchically splits space into possibly overlapping
subspaces. Spatial objects in R-tree are approximated by
minimal bounding rectangles (MBRs), see figure 1. Leaf node
entry of R-tree contains MBR of spatial object and a reference
to the corresponding database object. An entry of non-leaf
node of R-tree contains reference to the child node and MBR
of all rectangles in child node. Since the rectangles of a same
node of R-tree can overlap, exact match query may lead to
multipath tree scan. This forms significant difference of R-tree
from such data structures as B-tree. The number of query paths
and, in turn, the number of node accesses of non-exact match
query also strongly depends on degree of rectangle overlap.
R-tree was originally designed for access to multidimensional
data, but it is also applied for one-dimensional intervals [10].

The quality of R-tree strongly depends on the node splitting
algorithm. The task of node splitting is to split entries of the
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Fig. 1. MBR illustration

overflowed node into two groups which will form two new
nodes. Node splitting algorithm substantially determines the
area and degree of overlap of the tree rectangles. In turn these
parameters determine the probability of multipath queries. The
following parameters can be used in order to estimate the
quality of a node splitting:

• The overlap of bounding rectangles. The smaller overlap
of entry rectangles leads to the smaller probability of
multipath queries.

• The coverage of bounding rectangles. The coverage of a
split is a total area of bounding rectangles. In general
smaller coverage leads to the smaller probability of
multipath queries when query area is relatively large [1].

• Storage utilization. As the measure of storage utilization,
a ratio between a numbers of entries in the smaller group
and the greater group can be used. Typically, constraint
is imposed on this parameter, i.e., the minimal number
of entries in the resulting node m is defined. Restriction
of this parameter is very reasonable, but this parameter
can also be an optimization target. The higher ratio leads
to the smaller tree balancing during construction. In turn,
this influences the tree quality.

The illustration of dillemma between less overlap and less
coverage is given on figure 2.

The paper is organized as follows. Section II describes
node splitting algorithms which currently exist. Section III
introduces double sorting-based one-dimensional node split-
ting algorithm and its generalization for multidimensional
case. Section IV provides the experimental comparison of the
proposed algorithm with other existing algorithms. Section V
is a conclusion.



Fig. 2. Illustration of overlap vs. coverage dilemma

II. RELATED WORK

Originally Guttman in [7] introduced three node splitting
algorithms:

• Exponential algorithm. This algorithm searches for global
minimum of the area covered by rectangles by the enu-
merations of all possible splits. This method is too CPU
expensive, because it requires exponential time.

• Quadratic algorithm. This algorithm consists of two steps.
At the first step, two seeds of two resulting groups are
selected. The seeds are selected as the rectangles that
have maximal difference between their MBR area and
their own area. At the second step, all other rectangles
sequentially join some of the groups. Each time the
rectangle for which the increase of MBR area due to its
joining to one of the groups is maximal joins the group
which MBR area increases less.

• Linear algorithm. This algorithm is similar to quadratic
one, but it has two differences that make it linear. At
first, seeds are selected along the axis that allows avoiding
comparison of each pair of rectangles. The second is that
rectangles join the groups in arbitrary order.

In [6] Green’s algorithm was proposed. This algorithm is
similar to Guttman’s linear algorithm, but it uses sorting along
the chosen axis and splitting entries at halves between the
groups according to the sorting.

In [4] R*-tree splitting algorithm was proposed. This work
contains tree construction modifications as well as new node
splitting algorithm. The important feature of this work is using
rectangle margin as an optimization criterion of node splitting.
This algorithm is similar to Green’s algorithm, but has two
differences. At first, it chooses axis for splitting that minimizes
the sum of margins of MBR groups among all possible sorting-
based splits along this axis. At second, it does not split entries
at halves, but finds the minimal overlap between all splits
based on sorting along this axis. In [12] the comprehensive
perfomance analysis of R*-tree is presented. The optimization
of R*-tree for non-uniform data is presented in [9].

In [2] a new linear algorithm was proposed. This algorithm
makes splits of rectangles along axes based on the closeness

of rectangles to value boundaries of the axes. After that, the
choice is made among the splits by comparison of the overlaps
and distribution ratios.

Since applications of R-tree exist for one-dimensional case,
one-dimensional split for R-tree can be considered as a
separate problem. One of the negative aspects of R-tree
application to one-dimensional case is weak performance of
high-overlapping data, such as validity interval or transactional
time intervals [11]. This aspect can be partially eliminated by
introducing new node splitting algorithm for one-dimensional
case which deals better with highly overlapping data.

Guttman’s quadratic and linear algorithms can be easily
applied to one-dimensional case. For Guttman’s quadratic
algorithm there is no matter to use quadratic algorithm for
picking seeds, because most distant seeds can be found as
the intervals which contain the general lower and upper
bound, correspondingly. Green’s and R*-tree splitting algo-
rithms comprise one-dimensional split as their part. A new
linear algorithm also can be applied to one-dimensional case,
but we have only one axis for split and will not have to choose
among the axes.

III. PROPOSED ALGORITHM

A. Definitions

In one-dimensional splitting algorithm, the input entries
contain a set I of the intervals xi: I = {xi}. An interval
is the pair of the lower and the upper bounds: xi = (li, ui).
The general lower bound is l = min{li}, and the general
upper bound is u = max{ui}. At first, the consideration of
splits will be limited by the splits in which one group contains
general lower bound and another group contains general upper
bound. For this class of splits we will say that a pair (a, b)
is a splitting pair, if any interval from I is bounded by (l, a)
or (b, u): ∀x(x ∈ I ⇒ (x ⊆ (l, a)) ∧ (x ⊆ (b, u)). In other
words, a and b are the upper and the lower bound of groups,
respectively, for some split of split class under consideration.
Let us note that sometimes the splits which are not contained
in this class of splits are reasonable. In the figure 3, a split
of this class is shown. In the figure 4, a split for the same
dataset is shown. In that split, one group stretches from the
general lower bound to the general upper bound while another
group has rather small area. This split can not be produced by
splitting pair.

We will say that the split pair (a, b) is a corner splitting
pair if (a ∈ {ui}) ∧ (b ∈ {li}) ∧ ((∀t(t < a ⇒ ∃x(x ∈
I ⇒ (x 6⊆ (l, t)) ∧ (x 6⊆ (b, u)))) ∨ (∀t(t > b ⇒ ∃x(x ∈
I ⇒ (x 6⊆ (l, a)) ∧ (x 6⊆ (t, u))))). In other words, a is one
of the upper interval bounds, b is one of the lower interval
bounds, and a can not be lower or b can not be higher if the
property of being splitting pair still remains. This assumption
regarding split seems reasonable since otherwise another split
would exist which overlap would be smaller and the minimal
number of entries in the group would not be smaller, i.e., there
would be a better split in terms of optimization target of this
algorithm.
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Fig. 3. A split that can be produced by the splitting pair
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Fig. 4. A split that can not be produced by the splitting pair

B. Algorithm

The algorithm EnumerateCornerSplitPairs(see Algorithm 2)
enumerates all corner splitting pairs. The algorithm is based
on using two sorted arrays: the first one contains the input
entries sorted by the lower bound and the second one contains
the input entries sorted by the upper bound. In the main loop
of this algorithm, iterations for both arrays are performed
simultaneously, so that the property of splitting pair is retained.
When a corner splitting pair is found, the ConsiderSplit(see
Algorithm 3) is invoked. ConsiderSplit takes the bounding
intervals of groups and maximal numbers of entries which
can be placed into groups as its input data. Maximal numbers
of entries that can be placed into groups are determined using
EnumerateCornerSplitPairs by the indexes in the sorted arrays
in which the values of splitting pairs are placed. ConsiderSplit
reveals the split with minimal overlap of group bounding
intervals, where the minimal number of entries in group is
greater than or equal to m (m is minimal number of entries
in group). When the split with zero overlap is possible,
ConsiderSplit chooses the split for which the distance between
group bounding intervals is maximal. This property is achieved
by allowing the overlap variable to be negative. Let us note that
if there are some entries which can be placed into both groups,
ConsiderSplit considers the split in which the distribution of
entries between groups is closest to the uniform one.

The algorithm DoubleSortSplit(see Algorithm 1) represents
the splitting algorithm in general. At first, it invokes Enumer-
ateCornerSplitPairs in order to find allowable corner splitting
pair with minimal overlap. Then it distributes entries which
can be distributed unambiguously. After that, the rest of entries
is sorted by centers of their interval, and they are distributed
in a way that makes distribution between groups the most
uniform. Since sorting is most time expensibe part of this
algorithm, it’s time complexity is O(n · log(n)) (n – number

of input entries).

Algorithm 1 DoubleSortSplit
Input: Overflowed node
Output: Two nodes, at least m entries in each

1: Invoke EnumerateSplitPairs in order to find the corner
splitting pair with minimal overlap.

2: Distribute entries that can be placed in only one group
into groups.

3: Sort the rest of entries by centers of their intervals.
4: Distribute first m entries to the first group, and distribute

other entries to the second group in a way that makes
distribution between groups the most uniform.

C. Application to multidimensional case

The proposed algorithm can also be applied to multidimen-
sional case. Algorithm MultidimensionalDoubleSortSplit(see
Algorithm 4) represents such an application. At first, it enu-
merates corner splitting pair along all the axes, and selects the
corner splitting pair and the corresponding axis which have the
minimal overlap. At second, the entries which can be placed
unambiguously are placed. After that the rest of entries are
sorted by difference of group area incensement. Finally the
split is chosen which has minimal overlap of groups.

IV. PERFOMANCE TESTS

A. Experimental setup

All the tests were on run on Core 2 Duo 3 GHz computer
with 2 GB of memory with Ubuntu 10.10 32bit. For the im-
plementation of R-tree with various node splitting algorithms
GiST[8] framework in PostgreSQL DBMS was selected. GiST
generalizes various search trees including R-tree.

B. Datasets

Each dataset contains 106 randomly generated intervals. The
size of intervals conforms to Gaussian distribution with zero
mean and the variance that produces the required level of
interval overlapping. The level of interval overlapping varied
exponentially from 1 to 104. The interval center distribution
is determined by the dataset type as follows.

• Uniform dataset. The centers of intervals conform to the
uniform distribution along interval [0; 1);

• Gaussian dataset. The centers of intervals conform to the
standard Gaussian distribution.

• Uniform cluster dataset. At first, 500 cluster centers,
which conform to the uniform distribution along interval
[0; 1), were generated. After that, for each center 2000
interval centers were generated which offsets from the
center conform to the uniform distribution along the
interval [0; 6 ∗ 10−4).

• Gaussian cluster dataset. At first, 500 cluster centers,
which conform to the standard Gaussian distribution,
were generated. After that, for each center 2000 interval
centers were generated which offsets from the center



Algorithm 2 EnumerateCornerSplitPairs
Input: Set of invervals
Output: Enumeration of all splits that can be produced with

corner splitting pairs by invoking ConsiderSplit
1: Sort intervals by lower bound, write the result to array a
2: Sort intervals by upper bound, write the result to array b
3: s1⇐ (a[0].l, b[0].u)
4: s2⇐ (a[0].l, b[n− 1].u)
5: i⇐ 0
6: j ⇐ 0
7: {Iterate until finding a first split produced by the corner

splitting pair.}
8: while b[j].u = s1.u and j < n do
9: j ⇐ j + 1

10: end while
11: considerSplit (s1, j, s2, n− i)
12: while i < n do
13: prev s2 l⇐ s2.l
14: next s1 u⇐ s1.u
15: next i⇐ i
16: {Find next value of s1 upper bound and the correspond-

ing value of s2 lower bound which forms the corner
splitting pair with it.}

17: while next i < n and next s2 l = s2.l do
18: next s1 u⇐ max{next s1 u, a[next i].u}
19: next i⇐ next i+ 1
20: if next i ≥ n then
21: break
22: end if
23: next s2 l⇐ a[next i].l
24: end while
25: if next i ≥ n and next s1 u = s1.u then
26: break
27: end if
28: {All intermediate values of s2 lower bound form the

corner splitting pair with the previous value of s1 upper
bound.}

29: while j < n and b[j].u ≤ next s1 u do
30: if b[j].u > s1.u and b[j].u < next s1 u then
31: s1.u⇐ b[j]
32: considerSplit (s1, j + 1, s2, n− i)
33: else
34: s1.u⇐ b[j]
35: end if
36: j ⇐ j + 1
37: end while
38: {Passage to the next values of s1 upper bound and s2

lower bound.}
39: s1.u⇐ next s1 u
40: s2.l⇐ next s2 l
41: if next i < n then
42: i⇐ next i
43: considerSplit (s1, j, s2, n− i)
44: else
45: considerSplit (s1, j, s2, n− i)
46: break
47: end if
48: end while

Algorithm 3 ConsiderSplit
Input: Bounding intervals s1 and s2 of two groups, numbers

n1 and n2 which represent the maximal numbers of entries
that can be placed into each group.

Output: Updated information regarding the optimal split cur-
rently found.

1: overlap⇐ (s1.u− s2.l)/(s2.u− s1.l)
2: if n1 ≥ m and n2 ≥ m and overlap < best overlap

then
3: best overlap1⇐ overlap
4: best s1⇐ s1
5: best s2⇐ s2
6: best n1⇐ n1
7: best n2⇐ n2
8: end if

Algorithm 4 MultidimensionalDoubleSortSplit
Input: Overflowed node
Output: Two nodes, at least m entries in each

1: Invoke EnumerateSplitPairs for each axis in order to
find allowable corner splitting pair with overall minimal
overlap.

2: Distribute entries which can be unambiguously placed into
only one group in accordance with the corner splitting pair
previously found.

3: Sort other entries by the difference of group area incense-
ment when adding the entry.

4: Distribute the first k sorted entries to the first group,
and other entries – to the second group, so that the
minimal overlap between group MBRs over all possible k
is achieved.

conform to the Gaussian distribution with zero mean and
the variance of 6 ∗ 10−4.

For two-dimensional case the datasets were similar. Rather
than scalar random values that were generated in the datasets
above, vectors of random values having the same distribution
that was used in one-dimensional case were generated. Thus
these datasets contained rectangles.

C. One-dimensional case

The tests have shown that all sorting-based splitting algo-
rithms perform on this datasets almost equally. This is why
only one sorting-based algorithm is represented here, namely,
the center sorting algorithm. The following node splitting
algorithms were included into tests for one-dimensional case.

• Guttman’s quadratic algorithm.
• Center sorting algorithm that searches for the split with

minimal level of overlap.
• The proposed double sorting-based algorithm.

In order to compare the efficiency of index structures produced
by various splitting algorithms, the numbers of node accesses
for query execution were measured. 100 small random inter-
vals having size 10−5 were generated for testing, and the
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Fig. 5. Comparison of the node access numbers for one-dimensional splitting
algorithms
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Fig. 6. Comparison of tree building time for one-dimensional splitting
algorithms

number of node accesses required for finding intervals in
test datasets that overlap with them was measured. In the
figure 5, the average number of node accesses is shown. To
simplify the comparison, not absolute value of node access
numbers is presented, but rather the ratio of that value for
particular algorithm to the average value for all algorithms.
The measurements were performed for four datasets described
in the subsection above, and for various data overlap levels. In
the figure 6 the comparison of tree building times is presented.
The data is presented in the same manner as for the data
access: as a ratio of building time of particular algorithm to
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Fig. 7. Comparison of the node access numbers for 2-dimensional splitting
algorithms
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Fig. 8. Comparison of tree building time for 2-dimensional splitting
algorithms

the average building time.
We can see that the number of node accesses required for

searching in double sorting-based algorithm is almost never
greater than this number in other algorithms. With large data
overlap, there is significant superiority of double sorting-
based algorithm, up to 50%, in comparison with sorting
algorithm, and up to 2 times in comparison with Guttman’s
quadratic algorithm. We can see that tree construction time for
double sorting-based splitting algorithm is smaller than that for
Guttman’n quadratic algorithm, but is slightly greater than the
time for the sorting algorithm.



D. Two-dimensional case

The following node splitting algorithms were included into
tests for two-dimensional case:

• Guttman’s quadratic algorithm.
• New linear algorithm.
• Proposed double sorting-based algorithm.
• R*-tree splitting algorithm.

Numbers of node accesses for query execution and tree
building time were compared in a same manner as in the one-
dimensional case. In the figures7 node access numbers are
compared. In the figure 8 tree building times are compared.
At first, we can see a weaker correlation between relative node
access numbers and the data overlapping. And that correlation
is decreased with increasing the number of dimensions. We
can see that double sorting-based algorithm shows superiority
in terms of node access numbers in most test cases. The tree
building time of double sorting-based algorithm is close to that
of R*-tree splitting algorithm.

V. CONCLUSION

In this paper, new double sorting-based node splitting al-
gorithm for R-tree was proposed. This algorithm was initially
developed for better handling of complicated cases in one-
dimensional split. The proposed splitting algorithm is based
on the notion of corner splitting pair and the algorithm of its
enumeration. After that, this splitting algorithm was applied
to multidimensional cases.

In one-dimensional case, the tests show superiority of the
proposed algorithm in terms of the number of node accesses
over Guttman’s quadratic and simple sorting-based algorithm.
The higher superiority was achieved with larger data overlap
due to ability of the proposed algorithm to better handle
complicated cases. In two-dimensional case, the tests show su-
periority in terms of number of node accesses over Guttman’s
quadratic, new linear and R*-tree splitting algorithms in most
test cases.
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