
The ARTCP header structure, computation and
processing in the network subsystem of Linux kernel.

Anatoliy Sivov
Yaroslavl State University

Yaroslavl, Russia
mm05@mail.ru

V.A. Sokolov (research supervisor)
Yaroslavl State University

Yaroslavl, Russia

Abstract—ARTCP is a transport level communication protocol
based on TCP. It uses temporal characteristics of data flow to
control it, that allows to split algorithms of congestion avoidance
and reliable delivery. The article discusses possible ARTCP
header structure and practical aspects of forming the header and
calculation of the header fields. It demonstrates the possibility of
transparent replacement of TCP with ARTCP due to flexible
ARTCP connection setup implementation and ARTCP packets
structure compatibility with TCP. The questions of precise time
dispatching of the received packets are discussed. The Linux
kernel interfaces for time measurement are described as well as
the clock source abstraction layer and its implementation.

Networking; transport protocol; ARTCP; time measurement;
Linux kernel.

I. INTRODUCTION

TCP is the most widespread transport protocol with the
reliable data delivery today. It has become the industry
standard de facto. However, this protocol is not ideal. It has at
least two big disadvantages. The first of them is that its data
flow management algorithm results in periodic network
congestion by design. It leads to unnecessary packet loss and
latency increase. The second is inefficient bandwidth use in the
unreliable physical environment (i.e. wireless networks) where
BER can be reasonably high. This disadvantage comes from
TCP impossibility to distinguish packet loss due to congestion
and packet loss due to some transmission errors.

Adaptive Rate TCP (ARTCP) is a transport protocol with
the reliable data delivery that uses some TCP principles but
tends to solve these two TCP's disadvantages. ARTCP uses
temporal characteristics of data flow in its data flow
management algorithm. It allows ARTCP to determine
bandwidth efficiently without need in periodic network
congestion. The main feature of ARTCP is a logical separation
of error correction and data flow management. Due to this
separation ARTCP is able to use bandwidth more efficiently
than TCP in unreliable environment [1]. The ideas of ARTCP
and protocol's description can be found in [1] and [2].

This article is a research-in-progress report about ARTCP
implementation in Linux kernel. It considers the following
things: transparent replacement of TCP with ARTCP,
coexistence of TCP and ARTCP, ARTCP header structure and

processing, and computation of ARTCP header fields values in
Linux kernel.

The Linux kernel is chosen as the target platform of
ARTCP implementation for several reasons:

• Linux is an open source system. It allows to use its
source code and modify it. So, Linux allows the most
flexible implementation process it could be what is
very important while implementing protocol that is
closely associated with the existing one. It makes
implementation to be much more easy and efficient
comparing with writing the module for operating
system with closed sources.

• Linux has very good network subsystem. When
implementing transport protocol it is very desirable to
have good implementation of underlying protocols as
well as networking implementation at whole. Linux
has advantages of very good networking stack with
well-implemented layers abstraction and object-
oriented socket concept. The other advantage is a TCP
implementation modularity.

• Linux is a popular, industry-choice operating system.
Linux is the most popular operating system in the
industry comparing with the other open source
operating systems. The wish to create an
implementation of ARTCP for OS widely used in the
industry influenced on the choice among variety of
open source operating systems.

• Linux can run on various hardware platforms. Linux
has support of many hardware platforms including
x86, ia64, x64, arm, avr, mips, ppc and so on. ARTCP
implementation written hardware-independently will
be supported on all of these platforms.

II. ARTCP AND TCP
It is very important to have TCP working on the system

which supports ARTCP. Taking into account that ARTCP is
considered as transparent replacement of TCP the
responsibility for this lies on ARTCP implementation. It is so
because applications (or overlying protocols such as HTTP)
does not know whether they establish TCP or ARTCP
connection unlike the situation when they use the other

transport protocols (UDP or something more exotic like
SCTP).

We have chosen to support TCP on ARTCP-featured
systems in two ways. At first, operating system administrator
must have a simple capability to choose whether to use TCP or
ARTCP. This problem is solved with addition of
tcp_enable_artcp kernel parameter with possible values 0 or 1
where 0 means that ARTCP is disabled (and TCP is used) and
1 means that ARTCP is enabled (and ARTCP is used if
possible for all connections). Like any other kernel parameter
this parameter is accessible in runtime with /proc/sys/ interface.
Its value can be changed with writing 0 or 1 to
/proc/sys/net/ipv4/tcp_enable_artcp file. Also its value can
be set in /etc/sysctl.conf file in the same way as any other
kernel parameter.

Secondly, ARTCP implementation must be able to fall back
to TCP if the other end of connection does not support
ARTCP. This capability allows to have ARTCP enabled in the
TCP world. It is very useful to be able to switch to TCP in the
kernel without any packet retransmission or disturbing
overlying protocol or an application that uses ARTCP/TCP
connection but imposes ARTCP packet structure and
connection setup to be TCP-compatible. This article suggests
ARTCP header structure and connection setup that are TCP-
compatible and makes it possible to fallback to TCP at any
time of connection. Also it represents implementation of
ARTCP header processing in Linux networking subsystem and
discusses the questions of ARTCP header fields values
calculation.

III. ARTCP HEADER STRUCTURE

As mentioned above ARTCP header structure must be
TCP-compatible. Let us consider TCP header and how it is
possible to extend it to fit ARTCP needs.

TABLE I. TCP HEADER

Bit 0-3 4-7 8-15 16-31

0 Source port Destination port

32 Sequence number

64 Acknowledgment number

96
Data
offse

t

Rese
rved Flags Window size

128 Checksum Urgent data pointer

160 Options (optional field)

TCP has a native support to extend header called TCP
options. TCP options are considered in [3] and succeeding
RFCs and have the following format: first byte contains option
number, second byte contains option length (in bytes including
2 bytes for number and length fields) and 0 or more bytes
(specified in the length field) contains option value. There are
only two exception for this format. Option number 0 is one
byte long. It is used to mark the end of options list. The other
exception is an option number 1 which is used for padding to

align other options on 32-bit boundaries. TCP header allows up
to 40 bytes to be used for options list.

ARTCP requires only two extra fields for its functionality:
PS field and TI field. Each one of them can be represented as
32 bit number. PS (Packet Sequence) field holds unique packet
sequence number (modulo 232, of course). According to [1] this
field must be presented in every ARTCP packet with payload
data. ARTCP receiver uses this field to determine whether the
packet received is the next packet in the stream comparing with
the previous received packet. So, the value of PS field in
ARTCP is to help receiver to distinguish the packet in order
sent first time from the packet in order sent again (due to some
packet loss). Indeed data presented in TCP header are enough
to distinguish segments in order from segments out of order
using the sequence number field. However, in terms of TCP
there is no difference between the segment sent first time and
the segment sent again (due to retransmission) because both of
them share the same sequence number and there is no any
indication of retransmitted segment in TCP.

The second field, TI (Time Interval) is used by ARTCP to
compute the value of stream's duty ratio. The paper [4]
suggests to carry the time interval measured between two
consecutive moments of ARTCP packets arrival. It is
considered more useful to carry time intervals in the TI field
instead of carrying duty factor what was suggested in [1].
ARTCP receiver puts this field in every its acknowledgment
packet (packet that has ACK flag). It is necessary to use real
(“human”) time units for time interval resolution in TI that
must not depend on hardware used by sender or receiver (i.e.
these units must not be CPU ticks or something like that). The
paper [4] suggests to use microseconds for this purpose. Time
measurement with this resolution is possible on the most of
hardware used nowadays and has a sufficient precision for the
existing problem. TI field may be represented with 32 bit
number.

Both TI and PS can take the form of TCP options in
ARTCP header. In this case they must take at least 6 bytes (8
bytes to keep the 32 bit alignment) – 1 byte for option number,
1 byte for option length and 4 bytes for option value (and 2
bytes for alignment). For today implementation PS field may
use option number 253 and TI field may use option number
254. These option numbers are chosen in conformity with
RFC 4727 [5] to use in experiments. They must be changed
later in conformity with RFC 2780 [6]. The use of TCP options
numbers 253 and 254 is regulated in RFC 3692 [7].

Summing up, ARTCP header is a valid TCP header
extended with two TCP options called PS and TI. Every
ARTCP packet with payload data as well as packet with SYN
or FIN flag contains PS field with packet sequence number in
the header. This number is one more than the number of
previous segment transmitted by the sender (excluding case of
retransmission during connection setup). Namely, if the
segment with value N in the field PS was transmitted by sender
but was not delivered (or its acknowledgment was not received
by sender) then this segment is retransmitted (with possible
repacketization) but has value N+1 (modulo 232) in the PS
field. Every ARTCP packet with ACK flag must contain TI
field in its header. TI field must have 0 as value if this packet is

an acknowledgment for a packet that contains in PS field value
that differs from the value of previous received packet
incremented by one modulo 232. Otherwise, field TI must
contain calculated value of the time interval. Both fields PS
and TI are written in the network order.

IV. ARTCP HEADER PROCESSING

ARTCP shares a lot of algorithms with TCP, also ARTCP
implementation must allow fallback to TCP if one of
connection ends does not support ARTCP. So it's decided to
use existing network subsystem of Linux kernel,
implementation of Ipv4/TCP stack in particular, to implement
ARTCP.

As described above, ARTCP header differs from TCP
header with presence of PS and TI fields only. These fields are
represented in the form of TCP options so that it is necessary to
modify the code that implements TCP options reading and
writing to implement reading and writing of ARTCP header.

To form TCP options to be sent in the header Linux kernel
uses struct tcp_out_options, the structure that contains the
fields with values of different TCP options supported by
network stack of Linux and bit field options to set flags that
indicates which options must be written to the header of the
current TCP packet. To implement writing of ARTCP header
the fields for TI and PS values were added to this structure,
also bit flags, that indicates the presence of the fields and are
used in options bit field, were created.

For this structure to be filled correctly the functions that
initializes the instance of this structure were modified. These
functions are tcp_syn_options, tcp_synack_options and
tcp_established_options. They forms options for SYN
packets, SYN-ACK packets and the other packets,
respectively. The modified functions checks whether socket is
in the ARTCP mode and if so adds information about needed
PS or/and TI field.

To write TCP options into network buffer that contains the
header tcp_options_write function is used. This function is
modified as well to write PS and TI fields to the header if it is
specified in the instance of the modified struct
tcp_out_options. All these modifications make it possible to
form ARTCP packets in the Linux network subsystem.

To parse the options of the TCP header in the packet
received Linux calls tcp_parse_options function, which
analyzes the received data and forms the instance of struct
tcp_options_received by writing received values into it. To
support ARTCP this structure was extended with fields ps and
ti that contains values of fields PS and TI of the received
ARTCP packet and bit field artcp_options that determines
which ARTCP fields were actually presented in the header (PS,
TI, both or none). Also tcp_parse_options function must be
modified to handle ARTCP fields and form the modified
structure.

To handle ARTCP packets properly it is necessary to
process received ARTCP fields depending on the connection
state and the presence/absence of payload data in the received
packet. In IPv4/TCP stack received SYN packet is processed in

tcp_v4_conn_request function. The modified code of this
function checks the kernel parameters set by administrator by
reading sysctl_tcp_enable_artcp variable which has
information whether ARTCP is globally enabled in the system
or not. If ARTCP is enabled tcp_v4_conn_request checks the
presence of field PS in the received SYN packet and the
correctness of its value as well as the absence of field TI. If all
checks are passed then function puts socket in ARTCP mode
and initializes all resources needed by ARTCP connection.
Otherwise, the function puts socket in TCP mode.

If the socket has already sent SYN packet (and is in SYN-
SENT state) then the packets received with this socket are
handled with tcp_rcv_synsent_state_process. The modified
code of this function checks the presence of PS and TI fields in
the header and correctness of their values when SYN-ACK
packet is received for socket in ARTCP mode. If checks are not
passed then the function puts the socket in TCP mode.
Otherwise, function initializes all resources needed by ARTCP
connection.

For established ARTCP connection all received packets are
handled with tcp_rcv_established function. The modified
code of this function processes ARTCP packets for the socket
in ARTCP mode. If the header of the received packet has no
needed fields PS (for packet that has payload data) or TI (for
packet that has ACK) or the header of the packet without
payload data has field PS then socket falls back to TCP. If
ACK packet received then the value of field TI is passed to
data flow management algorithm of ARTCP. For packet that
has payload data the function checks the value of field PS. If
this packet is the next (after previous received packet) packet
sent by the other end according to this field then it is necessary
to calculate the difference between the time of arrival of these
two packets to send it in the field TI of the acknowledgment
packet. Otherwise, the ACK packet will contain 0 in the field
TI.

V. TIME MEASUREMENT FOR TI FIELD IN LINUX

TI requires time measurement with microseconds
resolution what may be nontrivial problem. Linux kernel
guarantees the availability of so-called “system clock”
represented with jiffies interface. Jiffies can be considered as
read only global variable which is updated with HZ frequency.
HZ is a compile-time kernel parameter whose reasonable
range is from 100 to 1000 Hz [8]. So, it is guaranteed to have
an interface for time measurement with 1-10 milliseconds
resolution.

The availability of more precise techniques for time
intervals measurement is hardware-dependent. Let us consider
x86 architecture as an instance. All IMB-compatible PCs have
Programmable Interval Timer (PIT) known as chip Intel 8523
(or Intel 8524 and other analogues). This chip (or an analogue,
i.e. south bridge of the motherboard may have this
functionality) has three independent 16-bit counters called
channels. Channel 0 usually is used for clock interrupts
generation. Channel 1 assists in generating timing for DRAM
memory refreshes. And channel 2 commonly generates PC
speaker tones. PIT allows to achieve 1 ms time resolution.

The other clock source is Real Time Clock (RTC). RTCs
usually have an alternate source of power, so they can continue
to keep time while the primary source of power is off or
unavailable. RTC's functionality is provided with south bridge
in the modern motherboards. However, RTC allows time
measurement with 1 ms resolution.

The most modern x86 motherboards have Advanced
Programmable Interrupt Controller (APIC) and APIC timer as
a consequence. This timer's frequency equals CPU bus
frequency what allows time measurement with a high
resolution (about 10 nanoseconds). The other benefit is that in
contradistinction to PIT and RTC local APIC timer does not
require call to I/O port. The most uniprocessor PCs above
Pentium 4 explicitly prohibits APIC by disabling it in BIOS.

Also systems, that have a support of Advanced
Configuration and Power Interface (ACPI), have so-called
Power Management timer (PM timer). Unlike APIC timer, it is
possible with PM timer to have a reliable time independently
on CPU speed changes due to active power management with
OS.

At the beginning of 2000s Intel and Microsoft corporations
has developed High Precision Event Timer (HPET) [9]. This
timer has a high frequency (not less than 10 MHz) and uses 64-
bit counter. Often it is a most preferable high-precision clock
source in the system.

In addition to peripheral timers x86 computers have on-
chip (on-CPU) 64-bit counter called Time Stamp Counter
(TSC). Comparing with the other counters this one has
advantages of less read latency and high resolution. The
frequency of this counter on different CPUs varies and can
equal CPU frequency or CPU bus frequency. There are two
major problems to use this counter as clock source. The first
one is that Time Stamp Counters may be not synchronized
between cores of SMP [10]. The second is that frequency of
TSC may be non-constant (due to power management or
processor frequency changes on idle and so on).

Intel's software developer's manual [11] describes in depth
the differences in TSC implementation on different Intel CPU
families. It also describes the way to recognize whether CPU
has TSC with invariant rate. Most AMD processors have TSC
that is unusable as a reliable clock source because of certain
circumstances.

The facilities for time interval measurement in x86
architecture listed above give an idea of the difficulty to solve
this problem more precisely for different processors. The
support of other hardware architectures (arm, mips and so on)
highly increases this difficulty. The other problem is a non-
triviality of time units translation from “machine” time units
used in the chosen device to “human” time units (for example,
microseconds needed by ARTCP). Reading the report [12]
shown in 2005 in Ottawa (Canada) at a symposium devoted to
Linux you can get an idea on the complexities associated with
the solution of this problem.

Fortunately, Linux kernel provides the means for solving
these problems. To have a possibility to use different hardware
counters and timers “clock source” concept is implemented in

Linux kernel. According to this concept, each hardware
architecture supported by Linux implements for each available
facility a “clock source” interface. It does it by initializing an
instance of struct clocksource interface and registering it in
operating system with call to either clocksoure_register_khz
or clocksource_register_hz. Struct clocksource has field
rating that allows Linux to choose the best “clock source”
available for the specified hardware. Best “clock source”
corresponds to the registered instance of struct clocksource
with the biggest value of field rating. The values of this field
are logically interpreted in that way: 1-99 – unfit for real use
(only available for bootup and testing purposes), 100-199 –
base level usability (functional for real use, but not desired),
200-299 – good (a correct and usable clocksource), 300-399 –
desired (a reasonably fast and accurate clocksource), 400-499 –
perfect (the ideal clocksource, that is a must-use where
available).

Since the best “clock source” has been chosen Linux kernel
is able to read its counter values by calling the function passed
in field read of struct clocksource. This function returns the
value in abstract “machine” time units represented with cycle_t
data type. Linux kernel can use the values of field mult and
field shift of struct clocksource to translate this value to
nanoseconds.

Linux kernel provides various interfaces for indirect work
with “clock sources” and to retrieve the values of time in
“human” units. The most interesting of them are
getnstimeofday and getrawmonotonic functions. Both of
these functions return the value of time as an instance of struct
timespec. This structure consists of two fields: tv_sec that
carries seconds and tv_nsec that carries nanoseconds. The most
significant difference between these functions is that the former
unlike the second uses NTP correction to adjust value it
returns. The absence of this correction in getrawmonotonic
allows to use this function to compute time intervals where the
correspondence of the time set on the machine to the actual
time does not matter. Based on these considerations, ARTCP
implementation uses getrawmonotonic interface to calculate
time intervals between two consecutive received ARTCP
packets with payload data.

The first time reading with getrawmonotonic happens in
artcp_init function in the process of ARTCP connection
initialization when either socket, that sent ARTCP packet with
ACK, receives ARTCP packet with SYN-ACK, or socket
receives ARTCP packet with SYN (and ARTCP is globally
enabled). Subsequent readings occur when ARTCP packets
with payload data are received. Moreover, if the value of the
field PS in the received packet is one greater (modulo 232), than
the value of the field PS in the previous received packet, then
the value for the field TI of the acknowledgment packet is
calculated with call to artcp_ts_diff_to_ti function. The
function artcp_ts_diff_to_ti takes two struct timespec
arguments, that represent the time interval, and returns the
difference between these moments of time in microseconds.

Summarizing the material described in this article, we can
conclude that, having made the above changes in the source
code of Linux network subsystem, we get the implementation
of ARTCP packets processing (receiving, sending, calculation

of field values) that is completely independent from the
implementation details of data flow management function and
the other parts of ARTCP. Moreover, the implementation is
cross-platform (in the hardware) and uses the best available
hardware facility for time intervals calculation with the ability
to increase the resolution of the field TI up to nanoseconds. It is
also worth nothing that the implementation does not conflict
with the existing functionality of Linux network subsystem,
allowing the latter to use TCP connections simultaneously with
ARTCP and even switch ARTCP connections to TCP mode.

[1] I. V. Alekseev, V. A. Sokolov, D.U. Chaly. Modeling and analysis of
Transport protocols for computer networks. Yaroslavl State University,
2004. (in Russian)

[2] I. V. Alekseev, V. A. Sokolov Compensation Mechanism for Adaptive
Rate TCP. // 1-St International IEEE/Popov Seminar "Internet:
Technologies A and Services". P. 68-75, October 1999

[3] J. Postel. Transmission Control Protocol. // RFC 793 (STD7). 1981.
[4] I. V. Alekseev, S. A. Merkulov, A. A. Sivov. “Aspects of practical

implementation of ARTCP in Linux kernel 2.6” // Modeling and
analysis of information systems. Volume 17, №2. Yaroslavl: Yaroslavl
state university, 2010. P. 144-149 (in Russian)

[5] B. Fenner. Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6, UDP,
and TCP Headers. // RFC 4727. 2006.

[6] S. Bradner, V. Paxson. IANA Allocation Guidelines For Values In the
Internet Protocol and Related Headers. // RFC 2780. 2000.

[7] T. Narten. Assigning Experimental and Testing Numbers Considered
Useful. // RFC 3692. 2004.

[8] J. Corbet, A. Rubini, G. Kroah-Hartman. Linux Device Drivers. 3rd
edition. O'Reilly, 2005.

[9] IA-PC HPET (High Precision Event Timers) Specification. Rev. 1.0a.
Intel Corporation, 2004.

[10] AMD Technical Bulletin – TSC Dual-Core Issue & Utility Fix.
Advanced Micro Devices, Inc. 2007.

[11] Intel® 64 and IA-32 Architectures Software Developer's Manual.
Volume 3A: System Programming Guide, Part 1. Intel Corporation.
January 2011.

[12] J. Stultz, N. Aravamudan, D. Hart. We Are Not Getting Any Younger: A
New Approach to Time and Timers. // Proceedings of the Linux
Symposium. Vol. 1. P. 219-232, July 2005.

	I. Introduction
	II. ARTCP and TCP
	III. ARTCP header structure
	IV. ARTCP header processing
	V. Time measurement for TI field in Linux

