Using Hardware-Assisted Virtualization
to Protect Application Address Space
Inside Untrusted Environment

Denis Silakov
Institute for System Programming
at the Russian Academy of Sciences
Moscow, Russian Federation
Email: silakov@ispras.ru

Abstract—In this paper we present a virtualization-based
approach of protecting execution of trusted applications inside
potentially compromised operating system. In out approach, we
do not isolate application from other processes in any way;
instead, we use hypervisor to control processes inside OS and to
prevent undesired actions with application resources. The only
requirement for our technique to work is presence of hardware
support for virtualization; no modifications in application or OS
are required.

Index Terms—Virtual Machine Monitor, Hypervisor, Security,
Protection

I. INTRODUCTION

In modern software world, an operating system is a key
component responsible for many security aspects of applica-
tion execution process. In particular, it should provide pos-
sibilities to manage access permissions of application files
and other resources, guarantee isolation of application address
space in memory and so on.

However, many widespread operating systems (such as
Linux or Windows) are known to be subjected to vulnerabili-
ties which can be used by malicious code to compromise the
whole system or particular application. As operating systems
evolves, vulnerabilities are detected and fixed. But at the
same time a lot of new features are added which potentially
introduce new vulnerabilities. Size of code which is executed
with highest privileges in modern OS is large. In particular,
many popular systems are based on monolithic kernel where
every device driver is a part of the kernel (that is, works in the
same address space with other kernel parts and other drivers).
It is common for drivers to contain issues. Vulnerability
research performed in 2005 has shown that device drivers were
responsible for about 85% of failures in Windows XP [1];
similar statistics was reported for Linux [2]. It is very likely
that the situation will not change in the near future, since size
of drivers grows faster than size of any other part of the kernel
[3].

Microkernel-based operating systems are claimed to be
more secure due to the fact that the size of code executed
in privileged mode is very small [4]. However, in such
systems interaction between micro kernel and drivers which

becomes quite expensive. If used on a desktop machine with
lots of peripheral devices, such systems often demonstrate
worse performance. In addition, there are a lot of applications
developed for widespread OSes with monolithic kernels. It
would be very expensive to port all these programs to a system
with completely new architecture. As a result, nowadays
microkernel-based systems are primarily used either in highly
tailored areas (e.g., QNX for embedded real-time systems) or
for educational purposes (e.g., Minix).

Thus, there is a need for application protection techniques
that will not require modifications of existing operating sys-
tems or applications, but at the same time will provide more
reliable and secure services than traditional approaches.

One of the possible techniques is to use hardware-assisted
virtualization. As implemented in modern Intel and AMD
processors, it allows to launch a program (called hypervisor)
that has full control over hardware and runs with higher
privileges than OS. Normally, hypervisor is responsible for
virtualization (e.g., creating and managing virtual machines),
but its functionality can be enhanced. In particular, it can
provide some security services. Hypervisor is usually much
more smaller than OS (for example, most hypervisors do not
have a large set of device drivers). As a result, hypervisor
potentially contains less vulnerabilities and usually considered
to be more secure than commodity operating systems. In
this paper, we suggest an approach for protecting application
address space using hypervisor.

The remainder of the paper is structured as follows: Section
2 observes existing virtualization-based approaches to pro-
tection of application resources. Section 3 describes general
architecture of our protection system and specific aspects of
protecting address space of applications of different kinds.
Section 4 describes implementation of our approach and
present performance measurement results. Finally, Section 5
summarizes the main ideas.

II. HYPERVISOR-BASED PROTECTION SYSTEMS

The idea of using hypervisor for different security tasks
has got much attention after Intel and AMD introduced their
first implementations of hardware-assisted virtualization in

years 2005-2006. Many approaches requires modifications of
applications, OS (e.g., [5] or [6]) or even hardware ([7], [8]).
Though some of these approaches seem to be quite effective,
their usage is rather limited.

A promising approach is Overshadow technology of mem-
ory protection suggested by researches from Stanford and
Princeton Universities, MIT and VMware, Inc ([9]). It does
not require modifications of OS or applications. Instead, it
encrypts process memory area of working processes. If OS
or other program try to access process memory, they only
see encrypted data. For trusted process itself, a ’normal”
memory view is provided. Similar approach based on dynamic
encryption of application memory is presented in [10].

However, these approaches are primarily aimed at hiding
application data from third parties. In our work, we suggest
an approach that allows other processes to read memory of
a trusted process, but denies to modify it. Such assumption
is useful for cases when trusted application needs to pass
some data to other processes by means, for example, of shared
memory. That is, our approach protects execution process of a
trusted application, but does not hide its whole data from other
programs. But if necessary, our system can be easily modified
to completely deny access to application’s memory.

An advantage of Overshadow is that no modifications are
required in existing software (OS, applications) and hardware.
More precisely, there are no hardware-specific requirements
only if hypervisor used is able to perform virtualization
without hardware assistance. However, in this case protection
system architecture is bounded to architecture of particular
hypervisor. Moreover, such hypervisors for x86 platform are
rather complex and they are rather hard to implement (since
x86 architecture by itself is hard to virtualize due to de-
sign). Among effective implementations, we can mention only
VMware VMM (used in Overshadow) and VirtualBox [11].
Since such hypervisors are complex (and in addition, VMware
hypervisors are mostly closed source products), it is not easy
to modify them to implement additional functionality.

On the other hand, in the last several years Intel and
AMD have added virtualization support to their processors
and made it easier to create virtualization products [12]. These
possibilities are now utilized by such products as Kernel-based
Virtual Machine (KVM), Xen, VMware ESX and others. In
our approach we assume that target system provide hardware-
assisted virtualization. This puts some limitations on hardware
where our approach is applicable, but significantly simplifies
its implementation.

III. CONTROLLING CONSISTENCY OF A TRUSTED
PROCESS

In our threat model, we suppose that the operating system is
not reliable and contains vulnerabilities which can be exploited
by malware to gain high privileges. Such privileges would
allow attacker to control all processes running in the system
and perform malware injections in their files or directly in the
process code in the memory.

In our protection system, potentially compromised OS is
located inside virtual machine controlled by hypervisor, which
is a core part of the protection system. Hypervisor has higher
privileges than OS inside VM and can monitor and control
events inside VM.

In order to guarantee consistency of a trusted application,
hypervisor should guarantee the following:

o application files on disk (in particular, executables and
libraries) are not modified by malicious software; in this
paper, we only consider executable files and libraries that
form the application, ignoring the task of protection of
other files and resources that can be used by application
(e.g., protection of different data files);

« address space of a running process is not modified in an
unallowed way by other processes running in OS.

Let us consider how these tasks are solved by suggested
protection system.

A. Checking Consistency of Executable Files and Libraries

When launching a trusted application, we should first ensure
that executable being launched is an expected one. In order
to do this, we should check that application executable file
(and shared libraries, if any) on disk was not modified by
malicious code. To make such check possible, every trusted
application in our system should provide hypervisor with a
registration data, generated inside trusted environment on the
basis of application files. This registration data is stored in
hypervisor and cannot be accessed by OS.

Registration data for application executable files and shared
libraries consists of SHA-1 hash codes. Such codes are gener-
ated for every memory page containing either instructions or
static data. Currently we assume that the page size is equal
to 4 kilobytes (a default value on most systems). However,
nowadays Linux provides support for larger pages [13], and
we plan to support such pages in future, as well.

B. Protecting Control Flow

In our system, the working virtual machine is provided
with a single-core virtual CPU, so OS inside this VM can
only use a pure time-sharing multitasking. There is no way
to run different processes on different CPU cores in parallel.
In particular, at any moment of time either CPU and other
resources are used by trusted code or they are used by
potentially malicious software. Thus, if we want to protect
trusted process, we should only ensure that the process address
space and other system resources that can influence process
execution (e.g., different system registers) were not modified
in a forbidden way while the trusted process was inactive.
When trusted process is active, all events in the system are
allowed. In particular, trusted process can modify its own code
segments in memory. Besides application code and static data
loaded at launch, we can control consistency of any data pages
loaded by during process execution. More particular, we track
states of all memory pages written by the process.

In order to implement such protection, we use hypervisor to
handle interruptions of trusted code execution. When a trusted

process is interrupted, hypervisor saves information about its
address space and other protected resources inside its own
memory. Only after that, control is passed to operating system.
When OS returns control to the trusted process, hypervisor
compares actual state of protected resources with the saved
one. If any discrepancy is detected, the protection system
reports an attack attempt and the process is not considered to
be trusted any more. From that moment, it will not be allowed
to use protected system resources (e.g., network connection).

One of the main components of the protection system is a
register integrity checker used to protect control flow of trusted
processes. The control flow is considered to be integral, if the
following requirements are met:

1) actual address of program entry point is equal to the
value specified in the registration data;

2) every time the control is passed from the OS kernel
to the trusted process, address of instruction invoked
in the process is either equal to the instruction where
the process was previously interrupted, or is equal to
a special signal handler (registered by the process in
advance).

The first requirement is checked only when the process is
launched using a system call like exec(). More generally,
it should be checked when the process enters the trusted
mode, but in our work we do not consider situations when
the process can enter the trusted mode after the launch.
The second requirement is checked every time the control is
passed to the trusted process. When such an event occurs, the
hypervisor verifies instruction address, as well as values of
general purpose, segment and different system registers.

C. Protecting Address Space

Hypervisor controls integrity of all virtual memory pages
(containing either code or data) of the process. When a trusted
process accesses a memory page for the first time, this page
is marked as active. If the page accessed for the first time
contains program code or static data, then it is checked that
the page hash sum corresponds to the one specified in the
registration data. This allows to verify that the program code
and static data were not modified after registration data was
generated. Other pages are allowed to have random data when
they are accessed by trusted process for the first time. If in
the sequel trusted process accesses such a page, the hypervisor
checks that the page content was not modified since the last
time when it was accessed by the process.

In order to perform such integrity monitoring, hypervisor
uses a special control table of process active virtual pages
which we call Memory Integrity Table (MIT). For every virtual
page V, the MIT table contains either address of corresponding
physical page P (if V' is mapped to a physical memory) or
hash sum H if the page is not mapped.

At runtime, programs can detach memory pages from their
address space (e.g., by means of munmap() system call).
Hypervisor tracks such system calls and removes the active
mark from the detached pages.

Pages storing dynamic data inside address space of a trusted
process can be subjected to legal modifications by the process
itself, as well as by some system calls (e.g., read()). If an
active page of a trusted process is mapped to a physical page,
then write access to that page is allowed for the trusted process
only. When a trusted process tries to access a page for which
a hash sum is set in the MIT table, hypervisor checks integrity
of that page by calculating hash code for its current content
and comparing it with the expected value stored in the control
table.

Moreover, hypervisor allows only modifications that touch
memory areas explicitly specified in the system call parame-
ters. Modifications outside such explicitly specified areas are
prohibited. It is important to note that on Intel x86 architecture
it is possible to set access permissions on the page-level basis,
while processes may want to write data which is not aligned
to page size. In order to support protection of such data,
hypervisor used special trick based on the fact that for every
process one can specified address area writable for kernel with
per-byte precision.

Before transferring system call to OS kernel, the protection
system for every out parameter allocates a “shadow” memory
area inside virtual address space of the process and set registers
controlling passing of return values to point to that area. Thus,
output of every system call is redirected to memory area not
used by the process. When system call returns control to the
process, hypervisor copies its output to corresponding areas
inside process memory.

In order to maintain mappings in the MIT table and to
intercept page access attempts, hypervisor runs every trusted
process in a separate protection domain. Protection domain is a
set of memory pages with individual access permissions. This
set of pages for a particular protection domain is dynamically
altered by hypervisor when process requests more memory
or frees unnecessary pages. Every attempt to access a page
outside the protection domain, as well as access violation for
the page inside the domain, leads to exception which is caught
and handled by hypervisor.

Implementation of protection domains is based on the
Nested Page Tables (NPT) mechanism (NPT implementation
in Intel processors is called Extended Page Tables, the one
from AMD - Rapid Virtualization Indexing). NPT tables
are used to perform translation of pseudo-physical addresses
used inside VM to physical addresses of the real hardware.
When a process is launched in the trusted mode, hypervisor
creates an empty set of NPT tables for it. Every time when
OS kernel passes control to the trusted process, hypervisor
activates page tables corresponding to that process. This is
performed by means of the Virtual Machine Control Block
(VMCB) structure. When trusted process is interrupted and
control is passed back to the OS kernel, hypervisor switches
active nested pages once again and activates tables of untrusted
domain (a joint domain for OS kernel and other untrusted
processes).

When a process tries to access a page which is not yet
reflected in the NPT tables, or when access violation occurs, a

Nested Page Fault (#NPF) exception is thrown, VM is stopped
and control is passed to the hypervisor. Hypervisor maintains
NPT mapping only for active pages which are not swapped
out to the storage device and which were not modified by
third-party processes. This approach allows to determine if the
process accesses a page for the first time or it accesses pages
which were modified since the last access by this process or
loaded from swap.

When the #NPF exception is thrown, a pseudo-physical
address of page inside VM is reported, access to which led to
the exception. However, in order to get the expected hash sum
for the page from the control tables, hypervisor should also
know a virtual address, access to which finally led to #NPF.
In order to calculate virtual address, hypervisor disassembles
the current instruction of the trusted process (address of such
instruction is always stored in the IP register) and analyzes all
virtual addresses accessed by this instruction. Using page table
of the operating system, hypervisor calculates real addresses
corresponding to these virtual ones and detects which of them
corresponds to the pseudo-physical address access to which
led to the #NPF exception. With this virtual address, the
hypervisor is able to verify integrity of the page accessed by
the trusted process.

D. Protecting Dynamically Linked Applications

Address space protection approach described above easily
applies for statically linked programs. Such a program is
represented by a single executable file that does not import
any libraries from the OS, so we can know in advance
location of code and static data inside the application. How-
ever, nowadays developers often take an advantage of using
splitting functionality between separate libraries which are
combined together by the loader during program start up
or even loaded by request during program execution (such
functionality is provided in Linux by libdl library). Protection
of such programs (especially those that use libdl functionality)
introduces new challenges.

Dynamically linked application consists of a main exe-
cutable file and several libraries loaded by dynamic loader
during application launch. In Linux, for both executable files
and dynamic libraries ELF format is used. Every ELF file has a
set of DT_NEEDED entries which store names of libraries that
should be loaded with this file. When launching an executable,
dynamic loader processes DT_NEEDED entries of the file
itself, then DT_NEEDED entries of libraries loaded as file
dependencies and so on — such iterations are performed until
DT _NEEDED entries of all files from the loaded set are
satisfied by files from this set.

The set of DT_NEEDED entries can be extracted from the
ELF file by means of appropriate tools. However, the final set
of loaded libraries can be different for the same executable
in different Linux distributions, because internal dependencies
of libraries can differ. Moreover, in addition to dependencies
statically recorded in the ELF file structures which are resolved
during file launch, it is possible to load libraries at runtime by
means of functions provided by libdl library. In many cases,

it is almost impossible to automatically detect which libraries
will be loaded using such functionality, because the name of
the library to be loaded can be calculated at runtime.

Due to these facts, in our approach user should explicitly
list all the libraries that will be loaded during application work
in particular system. This set considered to be a set of trusted
files. If a library not included in this set will be loaded and
put to the application address space, this will be reported as
an attack attempt.

In addition to libraries, for every dynamically linked appli-
cation the Linux kernel exposes a shared object called Virtual
Dynamically-linked Shared Object (VDSO) which exports
symbols implementing virtual system calls [14]. Traditionally,
system calls in Linux on the x86 platform were implemented
using 0x80 software interrupt. With modern processors, faster
implementations are available that use SYSCALL or SY-
SENTER instructions for AMD and Intel processors respec-
tively. For every of these techniques, the Linux kernel has
a corresponding VDSO variant. Implementation of all these
three VDSO variants can be extracted from the Linux kernel
sources.

Thus, a memory image of a dynamically linked application
consists of the following components:

« cxecutable file (launched by user or by other process);

o dynamic loader (usually — 1d-linux.so);

o set of libraries specified as ELF file dependencies and

loaded at application start;

o set of libraries loaded at runtime using libdl functionality;

o VDSO library.

Registration data of dynamically linked application should
contain information about all these components.

An important feature of dynamic libraries is that their
code is position-independent and can be located any area of
application’s address space. Address value specified in the ELF
file header in Linux running on x86 platform nowadays is just
a recommendation for the loader. In reality, dynamic loader
can place every file at other address, and such addresses can
vary in different systems or even in different instances of the
same application.

Note that since VDSO is a shared object, it can also be
located at any address inside process address space. Thus,
location of VDSO in process memory can be different for
different processes.

Finally, executable files can also contain position-
independent code. Executable files that consist of such code
only (Position-Independent Executables, PIE) are relatively
widespread in the Linux ecosystem.

Thus, every component of dynamically linked application
can be located at any virtual address inside application address
space. Since the memory is allocated and managed on the
per-page basis, correlation between actual address of every
component and the value specified in ELF header is expressed
by the following formula:

Actual_address = ELF_address + k x (page_size)

where £ is some integer number.

Thus, though location of different components of dynam-
ically linked application in virtual memory is not known in
advance, these locations can be easily calculated by hypervisor
during application start up. Location of libraries loaded using
libdl functions can be calculated at the moment when dlopen()
function is invoked. This allows to adopt registration data
for every particular launch of application. As we will discuss
later, the only thing hypervisor has to calculate is a difference
between real address and the value specified in the ELF header
(and thus reflected in the registration data) which is identified
by a single integer number k. It is important to note that since
library code is position independent, it is not subjected to any
modifications by loader.

Before passing control to entry point of dynamically linked
application, dynamic loader should link together all compo-
nents of application and set actual addresses of all imported
symbols. For the context protection system, it is important
to ensure that no malicious code interfere with this process,
replacing address of legal imported function with address of
malicious symbol. Let us proceed with details of dynamic
loader work process and see how protection system guarantees
consistency of function addresses.

During dynamic linking process, system loader first loads all
necessary files to memory and then initiates symbol resolution
process. For every binary symbol imported by some ELF
file (this file is called importer) the loader should locate
the file where the symbol is implemented (this file is called
exporter). Dynamic loader analyzes symbol tables of exporter
and importer and updates the Global Offset Table (GOT),
which is located at the data segment of the importer. The GOT
table contains an entry for every imported binary symbol (cor-
responding to a function o global variable). Symbol resolution
procedure is the same for libraries loaded during application
launch and the one loaded at runtime using libdl functionality.

Code segment of ELF file that imports some functions
contains Procedure Linkage Table (PLT) which contains a
stub symbol for every imported function. When an attempt is
performed to call some imported function, the control is passed
to the corresponding stub which takes unnecessary address
from the GOT table and passes control to that address. Thus,
a call to an imported function is an indirect call by address
recorded in the appropriate GOT table entry.

GOT and PLT tables used when a call to imported function
happens are located in the segments of that ELF file from
which the call is performed. Thus, they are taken into account
when file hash sum is calculated and monitored by the pro-
tection system during application work. The whole dynamic
linking process, including modification of the GOT table, is
performed by the dynamic loader which works in the user
space. The process requires no kernel-level activities and thus
cannot influence other applications in case of errors. This is
one of the advantages of using ELF format for executable files.

Thus, if dynamic loader is a trusted program, then all the
actions during dynamic linking are performed by trusted code.
Dynamic loader is much more smaller then the Linux kernel
and it does not vary significantly among different distributions

(in particular, it does not allow insertion of some third-party
software such as drivers in its code). Thus, we believe that it is
reasonable to consider dynamic loader to be a trusted process.
In the rest of the paper, we use the assumption that the dynamic
loader is a trusted program. Note that since dynamic loader is
included in the process image, hypervisor is able to compare
its content with registration data. Thus, the protection system
is able to check that the loader is the same as the one in the
system where the registration data was generated.

When launching a dynamically linked application, the Linux
kernel creates a virtual address space for the new process
and loads application executable file (which was actually
launched), dynamic loader and VDSO library there. All other
libraries are loaded using explicit calls to the mmap() system
call from the dynamic loader. This call returns a virtual address
where the library is located. Since hypervisor monitors all
system calls performed by application, it can track library
loading and build a mapping between library name (passed
as a parameter to the open() call, whose result is then passed
to mmap()) and library location in the process address space.
For every loaded library it is checked, if the library is included
in the list which was provided by user when generating
registration data. If so, then hypervisor is able to compare
hash sum of the loaded library with the expected value and
verify that this is, indeed, an expected file. If the loaded file
is not included in the list of trusted libraries, or if its hash
sum does not match the value expected, then the loaded code
reported to be untrusted. If the control is passed to such code,
then hypervisor will nullify application privileges, so it will
not be considered to be trusted any more.

OS kernel passes addresses of components loaded during
application launch to dynamic loader using ELF auxiliary
vectors [15]. During application launch, array of such vectors
is put at the process stack just after environment variables and
thus can be easily analyzed by hypervisor. Each vector is just
a pair of numbers (vector type and value).

In order to be able to protect application address space, we
should know values of vectors with the following types:

e AT PHDR - Base address of executable file;

o AT_ENTRY - Entry point of program ;

o AT_BASE - Base address of dynamic loader;

e AT_SYSINFO_EHDR - Base address of the VDSO li-

brary.

When application is launching, the control is first passed
to the entry point of the dynamic loader. The loader per-
forms dynamic linking of the executable file launched and
libraries loaded as its dependencies and then passes con-
trol to the address specified in the AT_ENTRY vector.
AT_SYSINFO_PHDR vector is used by libc library to perform
a system call.

Every component of dynamically linked application can be
loaded at (almost) random address which differs from the one
recorded in the file header. However, in any case the following
conditions are met:

o For every loaded component, hypervisor can obtain the

effective address where the component is located in

virtual memory before the control is passed to that
component or before that component is accessed by
someone else (e.g., by dynamic loader which should at
least read header of loaded file during dynamic linking
process). Thus, hypervisor can verify component integrity
before the component is used by other parts of trusted
application.

o Every file is stored in the address space continuously,
so if a file is loaded at the address different from the
one specified in its header, hypervisor just have to shift
registration data for this file, without a need to recalculate
it.

Thus, hypervisor is still able to protect application address
space, but for every application component it should calculate
an effective address where the component is loaded. For
executable files, dynamic interpreter and VDSO library such
addresses can be obtained from AT_PHDR, AT_BASE and
AT_SYSINFO_EHDR vectors respectively. For other libraries,
the effective address is a result of the mmap() system call.

After calculation of real address value, hypervisor adjusts
registration data for the trusted process by updating the MIT
table which stores mapping between addresses of every page
of trusted process and hash codes. For every component, such
an update is performed as soon as component virtual address
becomes known. For shared libraries, this happens after return
from the mmap() system call (for libraries specified directly
as ELF file dependencies — during application start up, for
libraries loaded using dlopen() function — when loading a
library during application work). For other components the
update happens at the moment of application start up (more
particular — after return from the execv() system call).

Information about real location of application components
is obtained from the Linux kernel, which is untrusted in our
threat model. However, if kernel provides hypervisor with
wrong information (that is, real address values differ from
the one reported by kernel), this will be detected as soon as
some part of application will try to access a page with wrong
data. In this case, expected hash sum for the page will differ
from the observed one and the attack will be reported. Thus,
it is impossible for the kernel to substitute some part of the
application without being noticed.

It is important to note that similar to hypervisor, dynamic
loader during the linking process uses information obtained
from the kernel. Protection system should guarantee that the
loader uses the same data as the hypervisor itself — otherwise
the resulting application image in memory can differ from
hypervisor expectations. Thus, we should guarantee that hy-
pervisor and dynamic loader use the same values of auxiliary
vectors. But these vectors are located in the application stack
which is monitored by our protection system and whose
integrity is guaranteed. Thus, hypervisor is able to control
that the loader itself (1d-linux.so) and application components
(executable and libraries) are consistent and match registration
data.

Thus, protection of stack, code segment and process data
automatically guarantees protection of PLT and GOT tables,

as well as ELF auxiliary vectors.

In order to prevent execution of unauthorized code, hypervi-
sor uses one more feature of modern hardware architectures,
namely NX (No eXecute) bit. If a process tries to execute
instruction from a page marked with this bit, a page fault
exception is thrown. Hypervisor sets NX bit in the NPT for all
pages of a trusted process except those that contain executable
code authorized by means of registration data. If a trusted
process attempts to execute a code from a NX page, a page
fault exception is thrown. In case of page fault, hypervisor
checks error code and if the fault was caused by attempt of
launching some instruction, then the process is considered to
be compromised and protection system deprives this process
of privileged rights, so it is not trusted any more.

E. Protecting MultiThread Applications

In addition to dynamically linked programs, nowadays many
applications use multithread paradigm, when program consists
of several threads which work in parallel in the same address
space. In Linux, threads are created using clone() system call
with CLONE_V M flag.

All threads of the same process have the same page tables.
For such threads, hypervisor also uses the same nested page
tables and the control MIT table. It is important that in our
system a virtual machine where the trusted processes work
has only one CPU core available, so at any time point only
one thread can really execute CPU instructions. Thus, when
considering address space access, we can safely ignore the
fact that the process is divided on several threads. In a single-
core system, it does not matter if the access is performed
from mono-thread trusted process or from some thread of
multithread trusted process. In addition, absence of “real”
parallelism allows us not to care about synchronization of
thread access to nested page tables or MITs.

However, every process thread in Linux can have its own
address space to store data unique to particular thread. This
storage (called thread local storage) is created automati-
cally by compiler for variables that have __thread specifier,
or can be created at runtime by means of functions like
set_thread_area().

Thread local storage is implemented completely on the
software layer by compiler, libc library and Linux kernel. For
every thread, a separate memory area is allocated to store
thread-specific data. Since all this memory areas are allocated
inside process address space (common for all threads), every
thread can potentially access a local storage of any other
thread.

Thread local storage is located in a separate segment man-
aged by the GS register which is set to different values for
different threads when thread-local data is accessed. In order
to control integrity of thread local data, the memory protection
system should monitor GS register value and corresponding
record in the segment table. These values can be monitored
in the same way as other resources and processor registers, so
protection of multithread applications fits well the approach
used in our protection system.

IV. IMPLEMENTATION

The approach suggested in this paper was implemented on
the basis of KVM (Kernel-based Virtual Machine) hypervisor
which is included in the Linux kernel. KVM itself is a kernel
module which adds hypervisor functionality to the Linux ker-
nel. KVM requires QEMU application to manage and emulate
different virtual machine resources and devices (keyboard,
network card, etc.). In our work, we use KVM version 88,
kernel 2.6.31.6 and QEMU 0.13.0. Virtual machines with
trusted applications are run under Fedora Linux 13 with the
same kernel (2.6.31.6). Currently our implementation supports
virtualization of 32-bit systems on AMD platform. For the
experiments described below, we have used AMD Phenom
9750 Quad-Core Processor which has four 2.4MHz cores.
The host machine had 4GB RAM, and virtual machine was
configured with 512MB RAM. It is important to note that it
is not necessary to load hypervisor when the machine starts;
we have investigated possibility of on-demand activation of
protection system [16]. Such on-demand activation (which
involves launching hypervisor from running OS, creation of
a virtual machine and placing the OS inside this machine) is
possible, though requires special hardware (Trusted Platform
Module, TPM).

To automate generation of registration data for trusted
processes, we provide a tool named ElfHash that processes
executable file which will be launched and its DT_NEEDED
dependencies. We suppose that the system where the regis-
tration data is generated provides trusted versions of libraries
used by dynamically linked application. On the basis of such
assumption, the ElfHash tool analyzes system libraries that
satisfy application dependencies and create registration data
for them. Alternatively, user can provide the tool with his
own versions of such libraries. In additional, user can specify
libraries not mentioned in file dependencies but that can be
loaded at runtime using libdl functionality. Finally, we provide
registration data for the dynamic loader itself. The data is
generated using VDSO implementation which is considered
to be trusted.

A. Attack Detection

In order to evaluate if the protection system works as
expected, we have emulated two kinds of attacks on trusted
processes: modification of application files on disk and mod-
ification of trusted code in memory. For our experiments, we
have used the SSH tool which was establishing connection
from the virtual machine to some remote host. Network
card was considered to be a protected system resource, So
only trusted applications were allowed to access it. Operating
system itself was not aware of network card.

When emulating attacks concerning application file modifi-
cations, we have investigated behavior of the protection system
in the following cases:

o SSH executable differs from the one registered in the
protection system;

o one of the libraries from ELF DT_NEEDED dependen-
cies differs from the one used to register SSH in the
protection system;

o one of the libraries loaded by SSH using dlopen() differs
from the one registered in the protection system.

In the first two cases, the protection system reported the
attack attempt during application startup. In the third situation,
attack attempt was reported at the moment of dlopen() call. In
all cases, access to network card was denied and connection
to remote host was not established.

In addition, we have checked situations when library is
loaded which is not present in registration data. The library
can either be loaded by the process itself or pre-loaded if user
sets LD_PRELOAD variable. In such situations, the protection
system also reported attack attempt, as expected.

To emulate attacks concerning modification of the code of
a running process, we have used techniques based on the
ptrace() system call. In particular, we have used the PreZ
tool [17] which attaches to running process and creates its own
thread inside it. This thread opens a port for TCP connections
and spawns a shell for every incoming connection. The shell
can then be used by remote party to perform different actions
on the machine with privileges of the infected process.

During our experiments, the protection system has success-
fully detected all code injection attempts and blocked access
to the network card for the SSH process.

B. Performance

In order to estimate delays introduced by the protection
system, we have compared performance of two applications
— Apache web server and SSH client — in the following cases:

« applications are launched on bare hardware;

« applications are launched inside virtual machine without

protection systems;

« applications are launched inside virtual machine with

protection system controlling their address space.

In order to measure Apache performance, we have used
the Flood load tester (a part of the Apache project). Number
of processes launched by Apache to serve the requests (that
is, number of trusted processes) was limited to ten. In case
of SSH, we have used the SCP utility to copy large (four
gigabytes) file through network. There was only one trusted
process in this experiment.

Since our protection system assumes that only one processor
core is assigned to virtual machine, in our experiments we
were using a single core in all cases. Measurement results
are presented at Fig.1. We have normalized the results and
assigned 100 units to performance on the bare hardware, so it
is easy to compare the measurements.

As one can see, in case of Apache performance loss is
almost unnoticeable, while for SSH it is much more higher.
This is probably caused by the fact that during the experiment
Apache was receiving simple requests and their processing
did not require much memory, while copying file with SSH
involved encryption of large amount of data which led to
significant usage of memory by trusted process. In addition,

152

124
101 104 2
100 100 [] Bare hardware
Usual VM
[] Protection system
Apache SCP
Fig. 1. Protection system performance

when dealing with large data transferring through network, a
significant delay is introduced by emulation software by itself.
Nevertheless, even for SSH performance loss is acceptable if
sender wants to protect the data from potentially compromised
OS.

V. CONCLUSION

In this paper, we have presented a novel approach for pro-
tecting applications running inside potentially compromised
operating system. The approach is based on using virtual ma-
chine monitor (hypervisor) which tracks all events inside OS
and prevents unallowed modifications of application resources.

Unlike other hypervisor-based protection techniques, our
approach does not lead to isolation of application from other
OS components. Hypervisor’s functionality is flexible and
can be adjusted to control usage of any particular hardware
resources, so only trusted applications have access to them.
For example, application of our protection system to control
usage of network connection is described in [18]. Finally, the
approach can be extended in order to protect all application
files, not only executables and libraries. This will require
interception of direct file input/output (using read()/write()
system calls) in addition to mmap() manipulations and storing
hash codes for all files used by application. We believe that it
is not hard to extend our approach in this way, though such
improvements can introduce significant performance drop.

The approach does not require any modifications in op-
erating system or applications, but relies on several aspects
of hardware-assisted virtualization implemented in Intel and
AMD x86 processors. In order to implement the approach,
there is no need to develop a hypervisor from scratch. In-
stead, one can extend existing products such as KVM or
Xen. Our KVM-based implementation has demonstrated that
performance overhead introduced by the protection system is
acceptable, so we believe that the approach is viable and can
be applied in those areas where information security is the
primary goal.

REFERENCES

[1] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the reliability
of commodity operating systems,” ACM Trans. Comput. Syst., vol. 23,
no. 1, pp. 77-110, 2005.

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]
[15]

[16]

(17]

[18]

A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler, “An empirical
study of operating system errors,” in SOSP, 2001, pp. 73-88.

G. Kroah-Hartman, “How linux supports more devices than any other
os, ever,” O’Reilly Media Interview, Oct. 2008. [Online]. Available: http:
//broadcast.oreilly.com/2008/10/how-linux-supports-more-device.html
A. S. Tanenbaum, J. N. Herder, and H. Bos, “Can we make
operating systems reliable and secure?” Computer, vol. 39, pp. 44-51,
May 2006. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1137232.1137291

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: a
virtual machine-based platform for trusted computing,” SIGOPS Oper.
Syst. Rev., vol. 37, pp. 193-206, October 2003. [Online]. Available:
http://doi.acm.org/10.1145/1165389.945464

R. Ta-Min, L. Litty, and D. Lie, “Splitting interfaces: making
trust between applications and operating systems configurable,”
in Proceedings of the 7th symposium on Operating systems
design and implementation, ser. OSDI ’06. Berkeley, CA, USA:
USENIX Association, 2006, pp. 279-292. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1298455.1298482

J. S. Dwoskin and R. B. Lee, “Hardware-rooted trust for secure key
management and transient trust,” in Proceedings of the 14th ACM
conference on Computer and communications security, ser. CCS *07.
New York, NY, USA: ACM, 2007, pp. 389—400. [Online]. Available:
http://doi.acm.org/10.1145/1315245.1315294

R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang,
“Architecture for protecting critical secrets in microprocessors,”
SIGARCH Comput. Archit. News, vol. 33, pp. 2-13, May 2005.
[Online]. Available: http://doi.acm.org/10.1145/1080695.1069971

X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow:
a virtualization-based approach to retrofitting protection in commodity
operating systems,” SIGOPS Oper. Syst. Rev., vol. 42, pp. 2-13, March
2008. [Online]. Available: http://doi.acm.org/10.1145/1353535.1346284
J. Yang and K. G. Shin, “Using hypervisor to provide data secrecy for
user applications on a per-page basis,” in Proceedings of the fourth
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, ser. VEE "08. New York, NY, USA: ACM, 2008, pp. 71—
80. [Online]. Available: http://doi.acm.org/10.1145/1346256.1346267
Oracle vm virtualbox. [Online]. Available: http://www.oracle.com/us/
technologies/virtualization/oraclevim/061976.html

J. Fisher-Ogden. (2006) Hardware support for efficient virtual-
ization. [Online]. Available: http://www.cse.ucsd.edu/~jfisherogden/
hardwareVirt.pdf

R. Krishnakumar, “Hugetlb - large page support in the linux
kernel.” Linux Gazette, vol. 155, Feb. 2008. [Online]. Available:
http://linuxgazette.net/155/krishnakumar.html

J. Petersson, “What is linux-gate.so.1?” Aug. 2005. [Online]. Available:
http://www.trilithium.com/johan/2005/08/linux- gate/

M. Garg, “About elf auxiliary vectors.” 2006. [Online]. Available:
http://articles.manugarg.com/aboutelfauxiliaryvectors.html

D. Yefremov and P. Iakovenko, “An approach to on-demand
activation and deactivation of virtualization-based security systems,”
in Proceedings of the fourth Spring/Summer Young Researchers’
Colloguium on Software Engineering (SYRCoSE 2010), 2010, pp. 157-
161. [Online]. Available: http://syrcose.ispras.ru/2010/files/syrcose10_
submission_5.pdf

F. Loukos. (2010) Injecting code at a running process. [Online].
Available: http://fotis.loukos.me/blog/?p=145

I. Burdonov, A. Kosachev, and P. Iakovenko, ‘“Virtualization-based
separation of privilege: working with sensitive data in untrusted
environment,” in Proceedings of the Ist EuroSys Workshop on
Virtualization Technology for Dependable Systems, ser. VDTS ’09.
New York, NY, USA: ACM, 2009, pp. 1-6. [Online]. Available:
http://doi.acm.org/10.1145/1518684.1518685

