
On Reasoning About Finite Sets in Software Model Checking

Pavel Shved
Institute for System Programming, RAS

email: shved@ispras.ru

Abstract

A number of static checking techniques is based on con-
structing and refining an abstract reachability tree (ART) and
reasoning about Linear Arithmetics. For example, in BLAST,
each program statement is represented as a series of assign-
ments of a linear functions to variables, and the procedure
of predicate discovery relies on Craig interpolation of linear
arithmetics and equality with uninterpreted function symbols.

In this paper we propose an approach to extend the domain
of mathematical operations a checker described can reason
about with the certain operations with finite sets: adding and
removing elements, testing whether set contains a particular
element, or is empty. It being implemented, the ART doesn’t
split at each operation. The tradeoff of it is more complex
formulas for a solver to handle and incapability of using
set-related operations in loops.

We implemented the algorithm, proceeding from the resric-
tion of making no modification in LA+EUF interpolation
algorithm. We also provide results of the performance evalu-
ation of the algorithm proposed and of the other known way
to reason about finite sets.

Index Terms

Software verification and validation

1. Introduction

The approach to static verification through utilizing CE-
GAR [6] with reasoning about linear arithmetics has been
proven succesful by such tools as SLAM [2] and BLAST [5].
The advantage of such approach to analysis is its precision
(interprocedural analysis, lower false positive rate) compared
to the other static analysis techniques. However, the tradeoff
to precision has always been the speed and scalability of the
process.

The tools described above work by constructing the lo-
cations reachable from the entry point by all syntactically
plausible program paths. The locations reached are tagged
with a set of linear constraints, which are discovered by an
interpolation procedure (in BLAST it’s Craig interpolation).
These constraints limit the possible state of program variables
just roughly, but precise enough to prove unreachability of
specially marked “error locations”.

The analysis stops when the program proves reachability
of the error location or marks it with an empty region

(i. e. with an unsatisfiable conjunction of constraints), having
examined all possible paths. To avoid exploring an infinite
amount of paths (for example, if there’s a loop), the checker
doesn’t explore the locations that are tagged with a contraints
implied by the constraints of some other location. The reason
is that such exploration would produce a superset of paths
and states as the children of the other node would.

All that being said, the analysis algorithm still has to
produce different paths if the program branches execution,
with an if statement, for example. Even if the control-
flows are then combined together the ART will remain split,
and each branch will be tracked separately until one of the
branches is proven infeasible. This doubles the time required
to verify the program.

It is a natural disadvantage of the approach, but such
branching is an inherent property of the program being
verified. However, the code verified consists not only of
the program code itself, which comes as an input. Another
part of code represents the instrumented safety property
being verfied, and is a native language implementation of
the abstract concepts behind the logic being verified. When
an integrated verification system is built, the developers
should pay attention that such verification code doesn’t add
extraneous complexity to the code of the original program.

Some safety properties can be defined in terms of fi-
nite sets. For example, a heap model may be represent-
ed as a set of currently available memory locations. Each
malloc() operation adds a unique pointer to that set, and
each free(p) call deletes a pointer p from that set. At
each free(p) invocation a check is performed, whether
the pointer being freed belongs to that set, and if it doesn’t,
the control flows to error location. Also at the end of the
program a check that that set is empty is performed—i. e.
that there’s no memory leak.

A classical approach to this problem, universal quantifi-
cation trick, attributed to [7], is that the set is represented
as a single varible. This variable represents one of possi-
ble elements currently in the set. This is achieved by the
following means. Each opertaion of adding element to set
is implemented as an if statement, one branch of which
overwrites the characteristical variable, the other keeping it
intact. However, each branch doubles the amount of ART
nodes consecutively build, thus expanding it exponentially.
Ditto for deletion form the set.

One of the approaches to reducing the numbers of nodes
checked is Large-Block Encoding [4]. While this approach is
generic and will be of help in the case under consideration,

it suffers from a yet unsolved disadvantage. At the current
state of art, it is not known how to produce a useful trace
from the entry point to the error location.

The solution we propose is to define set operations that
will be treated differently by the checking engine. We present
a way to build a path formula that utilizes existing LA+EUF
interpolation procedure to devise constraints caused by per-
forming operations on sets. We also describe the model of
regions, by which the ART nodes will be tagged.

2. Reasoning about finite sets

To make model checker support reasoning about finite sets,
we need to modify certain parts of the algorithm. Second, we
need to describe what will be the description of the regions.
Third, we should modify predicate discovery algorithm, so
that it yields information about finite sets. But at first, we
define the concepts the approach works with.

2.1. Concept of a finite set

In this model, each set is recursively defined as either
• Empty set that contains no elements, or
• Union of an element (or, more precise, of a set that

contains one element), which is an arbitrary expression,
and of another set; or

• Subtraction of an element from a set.
Each set is a finite chain of these operations. That means

that at the beginning of each program, all sets are considered
empty1. This is necessary for all sets to be finite, since an
unspecified set (even if it’s finite) may have an arbitrarly big
lenght.

The relevant operations, as shown in the table 1, operate
with sets as with first-class values. These operations are
called set construction operators, and they shall not branch
execution.

Along with some operators to construct sets, a number of
set testing operations (shown in table 2) are introduced:
• Check if set contains a particular element, the ele-

ment being specified as an expression;
• Check if set is empty.
These operations don’t branch execution; only examining

the result of these checks is what branches execution. How-
ever, the common usage pattern is that one of the alternatives
of such a check leads to an error state immediately, thus the
amount of ART nodes explored doesn’t expand exponentially
to the number of checks. The problem of the classical
quantification trick is in branching that happend at the points
of set construction operators.

2.1.1. Definitions used in the article. To shorten the de-
scriptions, we present notations for some concepts used.

Set constitution and a set itself are different concepts.
Constitution is how the set is constructed, according to set

1. contrary to integer variables that are considered unspecified
untill they’re assigned a value

Table 1. Set construction

S = SetEmpty(); place an empty set to S
S = SetAdd(P,expr); place P ∪ {expr} to S
S = SetDel(P,expr); place P \ {expr} to S

Table 2. Set examining

rslt=SetInTest(S,expr); check if expr ∈ S
rslt=SetNotEmptyTest(S); check if S is empty

construction operators described in 2.1. A set that has a
constitution C is denoted as [C]. The set constitution may
be denoted like this:

C = ∅+{x1+z1}−{2∗y1+5}+{x2}+{x3}−{y2} (1)

A number of sets can have a given constitution, depending
on other external constraints. For example, given that x > 5,
any set that contains exactly one number that is greater than
ten, has a constitution of C = ∅+ {x+ 5}.

A set constitution may be presented in a normalized form,
with consequent add and subtraction operations grouped
together. If we unroll the constitution, up to a specific depth,
and group together the consequent additions and subtractions,
the constitution S may be presented in the following form:

S = Sn + αn − βn + ...+ α1 − β1 (2)

where αi and βj are sets, and

∀i > 1→ (αi 6= ∅) ∧ (βi 6= ∅) (3)

The normalized form is used to present different set
constitutions in a universal way.

As usual, foo.bar means bar “field” in the foo object.
The notation is inherited from object-oriented programming
and, we suppose, is easier for programmers to follow.

Also the following definitions will be used: given a func-
tion f , D(f) is the domain of f , and E(f) is the codomain
of f . We will use the notation mostly for maps; thus a
codomain of a map is implied to be the smallest set possible.

2.2. Predicate discovery algorithm for finite sets

In order to discover predicates specific to the finite sets,
we need to build a path formula that describes a concrete
state of the program variables in the error location. When we
try to add the logic related to finite sets to this formula, it
should retain the following properties. First, it should remain
precise, i.e. only program states that happen during real
execution of the program should satisfy the formula. Second,
it should be written in static single assignment form (or,
“SSA form”).

Since the formula built without finite sets concept satisfies
these properties, we can utilize it for building the formula
with sets concept. The idea is that set construction operators
do not have direct effect to path formula. However, these
operators are followed to calculate the exact constitution

of each set encountered in the trace. The expressions that
represent elements of sets are stored in SSA form. When set
testing operator is encountered in the trace, the consitution
of the set queried is already known; the constraints for the
values of set elements are precise, and are described by the
rest of the formula.

If the Craig interpolation procedure succeedes the pred-
icates discovered form constraints for program variables.
Under certain conditions, discussed in section 2.2.3, these
constraints contain enough information to prove that the
error path is infeasible. Note that the constraints should not
include any symbols of the variables that represent sets. Only
“usual” variables (that contain integers) are the domain of
these contraints.

2.2.1. Formula for inclusion check. Each check separates
the execution into two branches. Path formula is always built
among one branch (i.e. the path from root to current node is
exactly known). So, to implement inclusion check, for each
of these two branches a separate predicate is needed:

1) SAT if the element belongs to the set, UNSAT other-
wise

2) UNSAT if the element belongs to the set, SAT other-
wise

Let’s build the predicate that satisfies the requirements
outlined under the first point. It can be built recursively.
Given a constitution of a set, C, and the element (expression)
x we want to check for inclusion into [C], the predicate is:
• Empty set: C = ∅, then x ∈ [C]⇔ false;
• Union: [C] = [C1] ∪ {y} then x ∈ [C] ⇔ (x = y) ∨

(x ∈ [C1]);
• Subtraction: [C] = [C1] \ {y} then x ∈ [C] ⇔

(x 6= y) ∧ (x ∈ [C1]);
Since error trace is always finite, the recursive unrolling

always terminates, and the formula is always built. Since
the path formula is in terms of LA+EUF, Craig interpolant
always exists [9], and only (SSA-terms of) variables that
appear in source code are used in them.

The predicate built that way satisfies the requirement under
the first point. Its negation also satisfies the second point.
So, we’ve built proper predicates for both branches for set
inclusion check.

2.2.2. Path formula for set emptiness. As described in sec-
tion 2.2.1, we need to present algorithm for two predicates:

1) SAT if the set is empty, UNSAT otherwise
2) UNSAT if the set is empty, SAT otherwise
We can notice that a set is empty iff each element that

was added to it was removed from it afterwards.
Given the set [S] such that, in a normalized form (see

section 2.1.1),

S = Sn + αn − βn...α1 − β1 (4)

let’s define S− function as follows:

S− (S, n) =
[

i=1..n

βi (5)

Figure 1. Demonstration of limitation of predicate-
discovery algorithm — source code

x = 1; y = 2;
S = SetAdd(SetEmpty(), x);
x = 3; y = 1;
S = SetDel(S, y);
if (SetNotEmptyTest(S)) error();

Then the predicate

(β1 6= ∅) ∧

0@ ^
i=1..depth(S)

^
a∈αi

_
b∈S−(S,i)

(a = b)

1A (6)

is true if and only if a set with constitution S is empty,
which is the predicate that satisfies the conditions under the
first point.

We should note that the predicate (6) is finite, since all
the sets αi are finite and the result of S− function is a finite
set.

Though finite, (6) is nevertheless large, and it also con-
tains disjunctions. This allows us to suggest that check for
emptiness will be more complex and less scalable than check
for inclusion. We will see if it’s correct in section 4.

We could use negation of (6) as a second predicate, but due
to its complexity we should search for another way. We note
the following. Given a set with constitution S, the second
predicate is equivalent to

x ∈ [S] (7)

where x is a variable that doesn’t appear anywhere in the
trace. Indeed, if set is empty then for every x (7) is false,
which means that it’s unsatisfiable. If set is not empty, then
there exists at least one element that belongs to it, and this
makes (7) satisfiable.

The negation of (7) doesn’t yield the first predicate, since
the set [S] is finite, hence there always exists an element that
doesn’t belong to it; this makes the negation of (7) satisfiable
even if set being checked is not empty.

2.2.3. Correctness of predicate discovery. The predicate
discovery procedure described above sometimes yields pred-
icates that are false for each program location. Let’s consider
a sample program shown on figure 1.

If we convert this program to SSA form (and expand
set checking predicate), we will get the program shown at
figure 2. Interpolation procedure that may yield the predicate
x0 == y1, it proves that error() is inreachable.

However, when we convert it back from SSA form, the
predicate would look like x = y. If we check figure 1 again,
we note that in no program location this predicate was
true! That means that this predicate discovery procedure
based on LA+EUF interpolation can’t yield a predicate good
enough if the value added to (or removed from) the set was
later changed.

Figure 2. Demonstration of limitation of predicate-
discovery algorithm — SSA form

x0 = 1;
y0 = 2;
S0 = SetAdd(SetEmpty(), x0);
x1 = 3;
y1 = 1;
S1 = SetDel(S0, y1);
if (x0 <> y1) error();

Figure 3. Instrumented program for which predicate
discovery is correct

x = 1; y = 2;
Add1 = x;
S = SetAdd(SetEmpty(), Add1);
x = 3; y = 1;
Rm1 = y;
S = SetDel(S, Rm1);
if (SetNotEmptyTest(S)) error();

We can mitigate this obstacle by instrumenting before
each set construction function call an assignment to a special
variable that doesn’t change later (see figure 3). It is possible
unless a set construction operator is in a loop.

So, we later assume that no set construction operation
should be in a loop. We beleive that it’s an inherent limita-
tion of our approach. However, even with this restriction the
approach amy be useful if it performs well in experiments.

2.3. Regions for finite sets

Some variables encountered during the ART construction
are considered to contain sets. The basis, based on which
they’re considered as such, is the application of relevant
operations to them, and storing the result of those into them.
The list of supported operations is in table 1. If a result is
stored into a variable, or a variable is a set operand of any
of those operations, the constitution of such a set is tracked
in this ART node and its subsequent children.

The regions are constructed from the very beginning
of the processing; this behaviour resembles lattice-shape-
analysis [3]. During that initial step a set constitution (in the
shape depicted at section 2.1) is tracked. When a value of an
expression is added to or removed from a set, the expression
is converted by assigning new names to its underlying
variables. The converted expression then becomes a part
of this set constitution. The rationale is similar to what
was discussed in seciton 2.2.3: a value may change after it
was added to a set, and set checking should take the old
value into account. Instead of checking this requirement, we
design region processing in such a way that it tries to work
for programs that don’t satisfy this condition, but does not
guarantee results in this case.

Sometimes constitution tracking alone may be of help. For
example, if it’s known that a value was recently added to
a particular set, the test whether it’s empty should return
negative response (note the first minterm in (6)). However,
in other cases it’s insufficient, and the relationship between
expressions that represent set elements should be taken into
account.

This is where the predicates discovered by the modified
trace analysis procedure come into play. Each time a variable
is added into a set, all predicates at the current region (we
assuime Cartesian abstraction [1]) are also added to the set
region, the variables in these predicates being converted in
the same way as set elements have been. When determining
the post-region of a set testing operation, both these accumu-
lated predicates and set constitutions are taken into account.
If they are sufficient to prove the program state infeasible
the post operation adds to the cartesian predicate region the
predicate that keeps the information about the variable the
result is stored in.

Formally speaking, each region reg = post(reg′, e)
consists of the following components:

• reg.binding : variable → variable (such that
E(reg.binding) ∩ D(reg.binding) = ∅) is the
current mapping between actual variables, in terms of
which the CFA blocks are expressed, and those used
within sets. This binding is used to convert elements
and predicates at current point. It is updated at each
location, when e is a basic block of assignments.

• reg.sets : variable → constitution is a mapping
from program variables to set constitutions (described
in section 2.1). Elements of the sets are expressions over
the E(reg.binding) set of variables. This mapping is
updated at each construction operation (see fig. 1); the
mapping between how constitution is updated and what
operation is along the edge is obviously inferred from
the description in seciton 2.1;

• reg.predicatei is the predicate over the
E(reg.binding) set of variables. In a post-region
of reg′ after an edge e, a predicate belongs to this set
if and only if:

– it belongs to reg′.predicate set; or
– it is equal to one of the predicates in cartesian

region in post(region′, e), the variables being up-
dated according to reg.binding.

When at the location a set testing operator is encountered,
the region machinery should decide whether the post-region
is feasible. To notify the model checker that an infeasible
location is encountered, the predicate over the variable the
result is stored into is added to the Cartesian abstraction
region.

In a current region reg such a predicate should be
added when testing operation in e should fail on each
set constitution that belongs to reg′ region. Having
rewritten the element expression involved in set testing
operation with use of reg′.binding, and having applied
the relevant formula of those in section 2.2, we get a
formula F[S](E(reg.binding)). That is the exact formula

Figure 4. Header file with set-related functions

typedef int Set;
Set SetEmpty();
Set SetAdd(Set, ...);
Set SetDel(Set, ...);
int SetInTest(Set, ...);
int SetNotEmptyTest(Set);

that would have appeared in this location if we started error
trace analysis now.

However, such analysis, if it had already been completed
for a path this location belongs to, had yielded several
interpolants. We know that the error trace—even before it’s
converted to SSA—already has some variables not changing
their values (these are the instrumented variables introduced
in section 2.2.3), so these values will be reasoned about
in interpolants. These interpolants provide the necessary
predicates to prove set-related path infeasible if it really is
(since the formulas are equivalent). It means that the formula
(with unbound variables E(reg.binding))

F[S] ∧
^

p∈reg.predicates

p (8)

is UNSAT if the path to current location is on a subpath of
an infeasible error path checked for an error before. However,
if Cartesian abstraction succeeds in propagating set-related
predicated to other paths, this formula may work too. That
is one of the main benefits of lazy analysis [8].

2.3.1. Region coverage. Region machinery should address
another problem: region coverage. For finite sets it is possi-
ble, but unnecessary to devise the relevant formula.

Since finite sets can not be operated with in cycles, there
will never be a situation when one region would cover
another one due to reasons devised when analyzing set-
related operations. So the usual coverage checking procedure
would suffice.

3. How it is embedded into BLAST

A special header with C funciton headers is created (see
figure 4). It utilizes variadic arguments, since it’s not known,
what the types of the expressions added to sets will be.

When BLAST interprets the source code of a program
that uses these functions, it replaces each function call with
a separate edge in the CFA. Set functions are undefined, but
a separate edge will be created anyway.

Set construction functions will be inserted as is. Set testing
funcitons are intended to use in bodies of if operators.
However, they will anyways be represented with a separate
edge, the program being transformed to something like this:

tmp = SetInTest(S, expression);
if (tmp != 0) { ... } else {...}

Figure 5. Memory operations implemented in terms of
finite sets

int counter = 1;
/* Set of allocated regions */
Set memory;
ptr malloc()
{ counter += 1;

memory = SetAdd(memory, counter);
return counter; }

void free(void* p)
{ if (!SetInTest(memory,p)) error();

memory = SetDel(memory,p); }
void check_leaks()
{ if (SetNotEmptyTest(memory)) error(); }

Figure 6. Memory operations implemented with path
splitting

int maybe(); //returns an arbitrary bool
int counter = 1;
/* One of the pointers in set */
void* M = 0;
/* One of the pointers deleted from set */
void* F = 0;
ptr malloc()
{ counter += 1;

if (maybe()) M = counter;
return counter; }

void free(void* p)
{ if (M == p) M = 0;

if (F == p) error();
if (maybe()) F = p; }

void check_leaks()
{ if (M != 0) error(); }

To avoid branching at the point of function call assign-
ment, the predicates for such a check devised in section 2.2
pred are utilized in the following formula:

(tmp = 1 ∧ pred1) ∨ (tmp = 0 ∧ pred2) (9)

where pred1 and pred2 are the predicates devised in each
of secitons 2.2.2 and 2.2.1: one is satisfiable when condition
being checked is true, and the other is satisfiable when it’s
false.

This doesn’t affect correctness of any claims made above,
although requires some extra prover work as formulas pro-
duced this way contain more disjunctions.

4. Performance evaluation

We evaluated our algorithms for simple programs. Each
test program consists of consequent allocations of several

Table 3. Evaluation results (seconds elapsed; “X” means CSIsat failure)

of regions allocated 1 2 3 4 5 6 7 8 9 10 15
“Trick” with checking leaks 1 5 52 540 1553 > 2000 > 2000 > 2000 > 2000 > 2000 > 2000
Sets with checking leaks 1 4 10 X 80 X X X X X X
“Trick” without checking leaks 1 4 41 443 1289 > 2000 > 2000 > 2000 > 2000 > 2000 > 2000
Sets without checking leaks 1 3 6 17 36 70 200 333 X X X

memory regions and consequent deallocations of them, fol-
lowed by an optional check for unfreed memory. We also
introduced double-free errors and memory leaks to verify
correctness of our approach. All such tests didn’t demonstrate
any errors in the algorithms used.

The checking for memory operation safety was similar
to that presented in the introduction. For finite set it’s
presented on figure 5, and for universal quantification trick—
on figure 62.

The complexity of the test programs range from one to
fifteen allocated regions. We also thought that it would be
fruitful to check how algorithms behave in absense of leak
checking, because formula to check emptines. (6), is more
complex than other set-related formulas. The results are in
table 3.

We found out that after amount of allocations exceeds a
certain limit, algorithms start failing due to the failures of the
underlying Craig interpolant generator, CSIsat. We believe
that the reason is that formulas fed to it appear to be more
complex than it is capable to handle. We also see that leak
checking (i. e. emptiness checks) is way more complex than
reasoning if an element belongs to a set.

5. Conclusion

In this paper we showed that certain common properties
checked by static analysis frameworks can be represented
in terms of finite sets. Sections 2.1 and 2.2 contain sound
algorithms to discover predicates and refine abstraction with
utilization of set-related functions in C code.

The algorithms proposed have a serious limitation: each
variable in expressions being added to/removed from sets
may not be used later in the code. Further research could
discard this requirement if it extended the logic used beyond
LA+EUF, by adding some set-related concepts into interpo-
lation procedure. In this article we failed to demonstrate that
it is unnecessary.

The concepts described here were prototyped as a patch for
BLAST of version 2.5, the prototype being of low quality and
was just to check if the concepts presented here are correct
and viable.

Several simple artificial programs were generated for the
experiments. The tests held compare the approach proposed
with already known solutions. It’s clear that our novel al-
gorithm performs better than the known one. However, the
complexity of formulas generated limits the scalability of the
approach.

2. note that in the original paper [7] the elaborated algorithm was
not presented. The algorithm on figure 6 was devised by us, but we
beleive that Bandera tool has something similar.

Thus, the approach proposed in the paper doesn’t perform
well in the experiments with the currently used interpolating
tools. Given also the severe limitations on its applicability,
we think that further improvement of the prototype developed
to make it useful in industrial application is ineffectual.

References

[1] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and
cartesian abstractions for model checking c programs. Proc.
TACAS, page 268–283, 2001.

[2] T. Ball and S.K. Rajamani. The slam project: Debugging
system software via static analysis. Proc. POPL, page 1–3,
2002.

[3] D. Beyer, T.A. Henzinger, and G. Théoduloz. Lazy shape
analysis. Proc. CAV, LNCS, 4144:532–546, 20006.

[4] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan
Keremoglu, and Roberto Sebastiani. Software model check-
ing via large-block encoding. In Proceedings of the 9th
International Conference on Formal Methods in Computer-
Aided Design (FMCAD 2009, Austin (TX), November 15-
18), pages 25–32. IEEE Computer Society Press, Los Alami-
tos (CA), 2009.

[5] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak
Majumdar. The software model checker blast. Int J Softw
Tools Technol Transfer, 9:505–525, 2007.

[6] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. Proc. CAV,
LNCS, 1855:154–169, 2000.

[7] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, Psreanu,
Robby C.S., and H Zheng. Zheng, h.: Bandera: extracting
finite-state models from java source code. ICSE’00: Proc.
22nd Intl. Conf. on Software Engineering, page 439–448,
2000.

[8] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. Proc. POPL, page 58–70, 2002.

[9] K.L. McMillan. An interpolating theorem prover. Theor.
Comput. Sci., pages 101–121, 2005.

