A DSL for Hardware-accelerated
Grid-based Scientific Models

Alexander N. Gavrilov

R&D Department
Lanit-Tercom, Inc.
Saint-Petersburg, Russia
E-mail: Alexander.Gavrilov@ lanit-tercom.com

Abstract—This paper presents an ongoing effort to develop
a domain specific language that would simplify exploit-
ing hardware acceleration in grid-based scientific models.
The project is being implemented in Common Lisp, which
has the best built-in metaprogramming capabilities among
industrial-level compiled programming languages. The DSL
is applied to a hydrodynamic model of the atmosphere.

Keywords-GPU computing; SSE; lisp; metaprogramming;
DSL; simulation

I. INTRODUCTION

Grid-based physics simulations are among the most
easily parallelizable programming tasks, belonging to the
category of so called embarrassingly parallel applications.
They also are very close to the kind of calculations that
modern GPU chips are designed to perform, and therefore
should benefit greatly from using them.

Unfortunately, currently available free tools for pro-
gramming NVidia GPUs are basically limited to the offi-
cial C compiler [1] and accompanying libraries distributed
by NVidia Corporation. Moreover, before PGI released a
GPU-capable version of their commercial Fortran com-
piler [2] near the end of 2009, that was the only available
tool at all.

The C-based tools are designed to provide very close
control of the GPU, and thus require the programmer to
manually manage GPU memory allocation, data align-
ment, textures and other low-level features of the platform.
This makes GPU programming quite difficult to approach
for people who are not professional system programmers.

Moreover, with existing tools it is still impossible to use
the same code for both CPU and GPU, and fully exploiting
the high performance computing features of modern CPUs
in complex cases requires manual use of even more low-
level SSE intrinsic functions. Which cases are to be
considered complex depends on the capabilities of the
compiler, but these usually include any loops that contain
conditionals — even though the actual SSE instruction set
is flexible enough to be able to express them!'.

All these issues were encountered during an attempt to
speed up execution of an atmospheric model described in
[3], which resulted in the creation of the DSL.

IThis however requires dropping the lazy evaluation property of
conditionals, i.e. works by evaluating both branches and then choosing
which result to use.

II. RELATED WORK

In addition to the official C toolkit, there exist a number
of GPU programming libraries for other programming
languages like Java[4] or Python[5]. However, they mostly
only wrap the run-time library that is used to manage GPU
memory, load code to the GPU and execute it. The actual
GPU code still has to be written in C.

These wrappers already remove a large part of the
burden and make GPU programming a lot more accessible,
as user reports indicate. However, as noted above, due
to the lack of native meta-programming support in the
mentioned programming languages it is impossible to
achieve seamless integration. The Python version goes
further than the Java wrapper and allows C code to be
expressed as a data structure tree instead of strings, but that
is the limit of what can be done. This also means that these
languages are not a very good choice for implementing a
new DSL.

There are also some existing differential equation solver
libraries, e.g. the OpenCurrent[6] C++ library created by a
member of NVidia Research, but they are quite irrelevant
to the task of implementing a specific unique calculation.

III. METHODOLOGY
A. Initial problem

The project started as an attempt to optimize a hydro-
dynamic model [3] of the atmosphere. The initial program
was written in Fortran; Waterloo Maple was used to derive
the mathematical expressions and generate most of the
code.

As follows from their name, grid-based simulations
are based on a representation of the state of the world
produced by sampling the relevant physical quantities at
regular space intervals. These samples are then grouped
into 2D or 3D arrays depending on the model, and recal-
culated iteratively using a set of mathematical formulae as
in-model time progresses.

Since most of the time the value of a cell being cal-
culated depends only on array cells within a fixed nearby
area, these calculations can be easily parallelized along
array axes. Some models however improve computational
stability by employing additional smoothing schemes that
are serial along one of the axes; this is the case for
the model in question. These schemes are an obstacle

to achieving the best performance and may result in a
bottleneck on highly parallel architectures like the GPU.

Another major source of complications seen in this
model is the use of a skewed grid, i.e. a scheme where
physical coordinate grids used to sample different quan-
tities are displaced in relation to each other by a certain
fraction of the grid step (normally 1/2). This can be used to
noticeably improve the precision of the model, but results
in a certain technical difficulty:

The most straightforward and natural way for a human
to handle a skewed grid scheme is to actually allocate
a common grid with twice as many indexes, and use
a sparse sub-grid for every specific quantity; any other
way is very error-prone. However this naive approach
wastes half of the memory bandwidth and prevents the
use of some optimizations with strict memory positioning
requirements, e.g. Intel SSE instructions.

The skewed grid issue is most naturally solved via
automated transformation, i.e. meta-programming.

B. Implementation language

ANSI Common Lisp[7] is a dynamically typed multi-
paradigm compilable programming language that is de-
fined by an ANSI standard [8] finalized in 1994, and has
multiple independent implementations. It allows writing
code in functional, imperative or object-oriented style.

Like all languages of the lisp family, Common Lisp
provides excellent meta-programming support via macros,
which, unlike the identically called feature of the C
preprocessor, are actually full-featured Lisp functions that
are configured to be automatically called by the compiler,
and operate on syntax trees. Macros can do anything
that ordinary functions can do, including operations like
creating temporary files and calling external programs.

The existence of macros transforms arbitrary meta-
programming from something that usually requires modi-
fying the compiler via patching or plug-ins, or implement-
ing external preprocessors that operate on raw program
text, into a relatively mundane task that is done to some
extent by every proficient lisp programmer.

On the other end of the abstraction spectrum, almost
every Common Lisp implementation provides facilities
that can be used to access raw memory from lisp code
and directly call external C libraries. One notable imple-
mentation in this regard is Embeddable Common Lisp([9],
[10]), which compiles all lisp code by transforming it into
C and calling the system’s C compiler. This allows it to
provide support for using C directly from lisp code, much
like C compilers and inline assembler.

A couple of widely accepted utility libraries (e.g. [11])
can be used to call C functions from lisp code in an
implementation-independent way. When the developers of
the C library take care to maintain binary compatibility
(as is the case with NVidia drivers), this makes the
development and build process a lot more convenient by
removing the need for any kind of wrappers written in C.

C. Target platform

At the hardware level modern GPU systems produced
by NVidia are multi-core SIMD processors capable of ex-
ecuting divergent code[12], with native support for multi-
threading and a hardware scheduler. Processor cores also
include special units for texture fetching and interpolation,
limited caches for textures & constants, and on-chip shared
memory buffers for inter-thread communication. Ordinary
memory was not cached until the recently announced
Fermi architecture?.

This hardware is exploited through a programming
model that involves launching a large grid of threads, every
one of which executes the same function to process one
small chunk of input data. The threads are not required
to follow the same execution path, but unless the pattern
of branch divergence is matched to the underlying SIMD
hardware it results in heavily reduced performance.

More specifically, the thread grid is partitioned into
identical blocks of up to 1024 threads. Threads within one
block can communicate via shared memory and a barrier
primitive; different blocks are independent and may be
scheduled by hardware in any order.

When a block starts execution, it is assigned to a proces-
sor core and gets a slice of its shared memory buffer and
register pool’. These memory and register requirements
determine how many blocks can run on one core at once.
The threads of all running blocks are executed by the
core’s pre-emptive scheduler in static groups of 32 threads,
which are officially called warps.

If all threads of a warp execute the same instruction, it
is executed simultaneously in SIMD fashion; divergence
forces the scheduler to serialize processing by temporarily
disabling SIMD units for threads that don’t need the
instruction that it is going to execute.

In a similar fashion, if all threads of a warp access
adjacent addresses in global memory, the scheduler can
coalesce these operations into one large memory transac-
tion, thus reducing the overhead caused by the lack of
a traditional memory cache. Memory access transaction
coalescing is heavily affected by data alignment.

GPU code cannot allocate or free memory, call func-
tions by pointer or use recursive functions. GPU memory
cannot be directly accessed from host code, but modern
video cards allow mapping specially allocated regions of
host memory into GPU address space.

D. Current state of the DSL syntax

This work on rewriting the original program has led to
the creation of the following DSL:

1) Infix formula syntax: Common Lisp normally uses
identical prefix syntax for function invocation and arith-
metic operations. This is necessary for achieving the ex-
isting degree of meta-programming support, and tolerable

2Since Fermi-based cards are new technology that was not available
for purchase at the moment of writing, this paper does not take that
architecture into account.

3Each core has 16KB of shared memory, and, depending on the GPU
version, 8192 or 16384 32-bit registers

in ordinary code, but not at all convenient for expressing
huge mathematical expressions that are often used in the
problem domain.

Fortunately, this can be fixed using the extensibility of
the lisp reader (i.e. low-level code parser). A straight-
forward add-on with a simple expression parser allows
writing infix expressions delimited by curly brackets:

{ NEW.DT[i MW+1] := (TMP_ANU[MW- 1]+TMP_EPS [MW+1]

+TMP_ANU [MW+11])
/ (1.0 —TMP_EPS [MW+1]*TMP_EPS [MW—1]) }

The parser recognizes arithmetic operators, array refer-
ences, function calls and assignments. The syntax reflects
the one used by Maple and many other computer algebra
systems.

2) Virtual arrays: As a way to solve the skewed
grid issue outlined above, the system is based on virtual
arrays that have separate logical and physical dimension
structure.

Dimensions may be arbitrarily reordered, and any par-
ticular dimension can be configured to either contain
regular gaps, or distribute consecutive logical indexes
along a hidden fixed dimension. Either of these special
modes achieves contiguous arrangement in memory for
logical indexes that are separated by a specific fixed stride.

(def—multivalue DR ((i 1 Nl) :by 2) (k 1 MW :by 2)))
(def—multivalue PL ((i 1 Nl) (k 1 {MW+1} :bands 2)))

Virtual arrays are accessed via an iref macro, which is
similar to the standard aref function, but applies appropri-
ate static transformations to its index arguments. The infix
expression parser can be configured to generate either of
those as a representation of its array reference syntax.

3) Virtual array index loops: A useful macro allows
iterating over logical dimensions of a virtual array in a
way that reflects the underlying physical structure.
(do—indexes OUT_U (i k)

(format vel (formatter "~12,3E ~12,3E ~14,5E ~14,5E~%")

(iref xcoord i) (iref zcoord k)
(iref OUTU i k) (iref OUT_V i k)))

The actual loop variables in the macro expansion cor-
respond to physical dimension indexes, while the public
logical indexes are expanded to expressions based on
them. When said logical index variables are used as
arguments to the iref macro within the loop body, the
expressions are automatically simplified, and the resulting
code appears as if it was written directly for the physical
structure.

The order of index names in the loop header (which
must match the names used in the virtual array definition)
determines the loop nesting order. The iteration ranges are
derived from the array definition. Extended syntax can be
used to specify iteration direction and stepping, or reduce
its range.

4) The compute statement: Finally, main code trans-
lation features of the library are encapsulated in the
compute statement, which allows one to define a complete
computation, composed of a target array, index range
limits, iteration directions, and a mathematical expression
to compute.

(compute PL ((i :skip (1 1) :step (x 2))
(k :step (x 2)))
{ t3%t10/2.42.xtlx_grp(t2/t3)*xtl2 }
:parallel i
swith { tl := PLLi+1,k];
oD

Every such statement is converted to a separate GPU
invocation. Additional clauses can be used to specify
which index to focus parallelization efforts on, define
inter-value dependencies, or pass additional optimization
hints to the GPU compiler.

If the code translator fails to handle some parts of the
expression, the statement is expanded into ordinary lisp
loops. This ensures graceful integration of the functional-
ity in the language, and, very importantly, allowed the
optimized code generator to be implemented gradually
after the program was fully converted from Fortran to
Lisp.

E. Code optimizations

In order to ensure good performance of the generated
code, the compute statement applies a number of opti-
mization techniques. They can be classified into general
expression restructuring and hardware-specific modifica-
tions.

1) Expression restructuring: The following generic
simplifications are applied to the computation:

o Nested trees of associative-commutative operators
are flattened and reordered to reveal the internal
structure. This can be inhibited where needed* using a
special _grp(...) syntax, which works like unbreakable
parentheses.

e Very basic arithmetic expression simplification is
performed.

o Branch-on-sign® expressions are simplified using
hints about value signs supplied by the developer.

e Common sub-expression elimination with loop-
invariant value extraction is performed. CSE exploits
associativity of arithmetic operations.

2) Efficient GPU memory usage: The GPU has several
ways to store and access data with varying characteristics.
In order to achieve good performance it is necessary to
use the best method for the task. For instance:

o The code generator supports using texture fetches to
access arrays:
Before Fermi, textures were the only way to achieve
cached access to memory. In C using them requires
rewriting all statements that access the data, but the
generation-based approach reduces the complexity to
a simple hint clause with a list of arrays that should
be cached.

« Values that are the same for all threads of a block are
stored in shared memory:

4Since floating-point calculations are not associative, automated re-
ordering sometimes leads to severe precision degradation and situations
like 0/0.

3The program that was used as a base for the experiment uses many
expressions like (ifsign x 0.0 0.5 1.0). The branch value argument often
contains constants and other sub-expressions that don’t affect the sign.

Due to rather simple data access patterns combined
with complex computations being common in the
problem domain, shared memory is generally under-
used and thus cheaper than registers. Using it when
appropriate increases the number of blocks that can
run in parallel.

3) Serial inner loop representation: Due to memory
coalescing requirements, the innermost loop must always
be mapped to an in-block thread grid. If it has a serial
data dependency, this results in a performance problem.

First of all, this means that the whole of the inner loop
range must be handled within one block in order to allow
data exchange through shared memory. This reduces the
number of independent blocks.

The second issue is that the data-dependent part must
still be executed serially using inter-thread synchronization
barriers. The only way to improve performance here is
to move as much code as possible out of this part. This
especially applies to global memory access expressions.

In order to handle this case, the code generator includes
special dependency analysis and code extraction function-
ality.

4) Operation reordering: Reducing the number of reg-
isters needed by every thread is instrumental in increasing
the degree of parallelism and hiding memory latency.
Unfortunately, optimal expression DAG reordering under
register pressure is proven to be a NP-complete problem
([13], [14]), so no compiler can be expected to produce
the best possible code in all cases.

The code generator applies a simple ordering heuristic
that seems to help the official NVidia compiler produce
better register mappings.

IV. RESULTS

The above DSL was used to produce both SSE-ified
CPU code (integrated via ECL’s inline C feature), and
GPU kernels. The CPU code, including the original pro-
gram, was tested on an Intel Core 2 Quad 2.66GHz CPUS,
while the GPU version was executed using an NVidia
GeForce GTX 275 graphics card.

The SSE version showed a 14x speedup against the
original Fortran+Open-MP version. This can be explained
in the following way:

o Expected 4x speedup due to the use of single-
precision floating-point SIMD instructions.

e 40% speedup was observed after ifsign expression
simplification was implemented.

e 2.5x speedup probably can be explained by better
cache usage behavior, removal of function calls from
inner loops, etc.

The GPU version was observed to be about 5 times
faster than SSE code run on 3 of 4 cores. This number
slowly grows as the array dimensions are increased; this
is expected due to effects like diminishing utility of the
CPU’s caches.

%0nly 3 cores were used for measurement to reduce the impact of
other processes running on the same computer.

The raw peak FLOPS characteristics of the GPU allow
one to expect a 26x maximum speedup. However, these
numbers are computed under assumption that the MADD/-
MUL double-issue feature is active; when it is not (and no
code consists only of those two instructions), the expected
speedup decreases to somewhere around 8-10x.

GPU code profiling and some calculations show that
serialized inner loops are a noticeable local bottleneck in
the current version.

V. FUTURE WORK

These results show that the approach works for this
particular model. The next major goal is to make the
system more easily usable for implementation of similar
programs, while also improving its performance. This
requires fixing some shortcomings in the current imple-
mentation of the library.

A. New code generation back-end

The low-level C code generation back-end has been
implemented in a hurry, and is too inflexible. This has
become an obstacle in exploring better representations of
serialized inner loops and other features.

This is being addressed by means of implementing a
new, more generic, and separately usable GPU interface
library for Lisp. The end result should be more or less
similar to the existing bindings for Java and Python, but
allow writing GPU code using normal Common Lisp
syntax and a subset of the standard library with appropriate
restrictions and extensions. Of course, the set of supported
data types and operations will (at least initially) reflect the
needs of this project.

The core part of the new library already works, but
many specific features like textures are missing.

B. New DSL syntax

The syntax outlined above is both too general for
the problem domain, and too specific in some technical
matters like inter-iteration dependencies.

This prevents easily implementing features like non-
SMP parallelism (e.g. multiple GPUs or clusters), and
makes the code difficult to write for people who are not
acquainted with the implementation of the library.

For example, it doesn’t make much sense to declare
different physical index orderings for different arrays. The
array dimensions correspond to physical spatial dimen-
sions, and it is more natural to select a global arrangement
for them. Neither is it necessary to allow transposing
indexes like this:

(compute foo (i j) { bar[j,i] })

Explicitly disallowing this would enable adding more
code generation features.

One additional possibility is integrating with the
Maxima[15] computer algebra system, which is also im-
plemented in Common Lisp. Things like ifsign simplifi-
cation more properly belong in the context of a CAS.

(1]

[2

—

(3]

(4]

(3]

(6]

(7]

[8

—_—

(9]

(10]

(1]

[12]

[13]

[14]

[15]

REFERENCES

“CUDA Downloads,” NVIDIA Corporation, 2010.
[Online]. Available: http://developer.nvidia.com/object/
cuda_download.html

“PGI CUDA Fortran Compiler,” The Portland Group, 20009.
[Online]. Available: http://www.pgroup.com/resources/
cudafortran.htm

S. Kshevetskii and N. Gavrilov, “Vertical propagation,
breaking and effects of nonlinear gravity waves in the
atmosphere,” Journal of atmospheric and solar-terrestrial
physics, vol. 67, no. 11, pp. 1014-1030, 2005.

“Java bindings for CUDA.” [Online]. Available: http:
/Iwww.jcuda.org/

A. Klockner, “PyCUDA,” Brown University. [Online].
Available: http://mathema.tician.de/software/pycuda

J. Cohen, “OpenCurrent,” NVidia Research. [Online].
Available: http://code.google.com/p/opencurrent/

K. Pitman, Common Lisp HyperSpec, LispWorks,
1996. [Online]. Available: http://www.lispworks.com/
documentation/common-lisp.html

American National Standards Institute and Information
Technology Industry Council, American National Stan-
dard for information technology: programming language —
Common LISP: ANSI X3.226-1994. pub-ANSIL:adr: pub-
ANSI, 1996.

G. Attardi, “The embeddable common Lisp,” in Papers
of the fourth international conference on LISP users and
vendors. ACM, 1994, p. 41.

J. J. Garcia-Ripoll, “Embeddable Common Lisp.” [Online].
Available: http://ecls.sourceforge.net/

J. Bielman and L. Oliveira, CFFI User Manual, 2005-
2009. [Online]. Available: http://common-lisp.net/project/
cffi/manual/index.html

CUDA Programming Guide 2.3, NVIDIA Corporation,
2009. [Online]. Available: http://developer.download.
nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA _
CUDA _Programming_Guide_2.3.pdf

J. Bruno and R. Sethi, “Code generation for a one-register
machine,” Journal of the ACM (JACM), vol. 23, no. 3, p.
510, 1976.

C. Kessler, “Scheduling expression DAGs for minimal
register need,” Computer Languages, vol. 24, no. 1, pp.
33-53, 1998.

Maxima 5.20.1 Manual, 2009. [Online]. Available: http:
//maxima.sourceforge.net/docs/manual/en/maxima.html

