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Abstract—We report on work in progress which allows on
the fly activation and deactivation of hardware virtualization
based security systems intended for protecting applications
running under the control of untrusted operating system.
We present an approach for reserving hardware resources
from the operating system for the hypervisor and additional
virtual machines that may be required by the security system.
We also consider that hypervisor is launched from the
untrusted environment that may try to fool the user during
the startup and shutdown of the hypervisor.
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I. INTRODUCTION

Hardware virtualization technology is widely used for
consolidating hardware resources, reducing power con-
sumption, simplifying datacenter administration and im-
proving system’s reliability. Recently it has got spread
into the computer security area. Among the problems that
are being solved with it are malware analysis [1], reliable
host-based intrusion detection systems [2], securing appli-
cations in the untrusted operating systems [3] and others.

Virtualization technology provides the means for exe-
cuting unmodified operating system (OS) inside a hard-
ware virtual machine (VM) under the control of a relative
small system program — virtual machine monitor (hyper-
visor) [4]. Depending on the requirements hypervisor may
assign a device to a particular VM or share a device among
virtual machines multiplexing their accesses to it. In the
former case VM has exclusive access to the device and
no other virtual machines may use it. In the later case the
amount of virtual machines that may access the device is
not limited but hypervisor must virtualize it providing each
VM with the device software model. Such models may
constitute significant amount of overall hypervisor code
size and require having device driver inside the hypervisor
or priviledged control virtual machine [5].

The common property of the existing virtualization-
based systems that secure applications inside the untrusted
operating system is the absence of necessity for such
systems to stay activated all the time the computer is
up and running. They are needed only for that periods
of time when user executes trusted applications. The
rest of time the execution of OS inside the VM may
introduce restrictions into the user workflow. In particular
the performance of virtualized system is lower than of real
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one and some features of specific devices may become
unavailable.

Overshadow [3] secures applications by keeping their
executable and data files encrypted in the file system.
When user launches such applications Overshadow dy-
namically decrypts their content in the memory. Over-
shadow is idle for the time when only untrusted appli-
cations are running. The same case applies to Proxos [6]
which runs trusted applications in the dedicated virtual ma-
chines. All other applications execute in one and the same
untrusted VM. In [7] hypervisor prevents data leakage
through the network connection by running OS in the VM
that doesn’t have network adapter at all. Then it provides
network access for trusted applications by delegating their
socket-related system calls to other network-enabled VM.
The same level of isolation may be ensured without the
hypervisor if network cable is disconnected from the
computer.

Obviously when user activities are restricted due to
system is virtualized he may switch between the bare
hardware and virtualized configurations by rebooting the
computer. During the boot time he selects the desired
configuration: bare system with high performance or vir-
tualized system with ability to run trusted applications.
However such workflow may be inconvenient for the user
and lead to declining using particular virtualization-based
security solution.

Therefore we deem that that the problem of dynamic
activation and deactivation of virtualization-based security
system is topical. The solution should allow on the fly
launch of the hypervisor which moves the up and running
OS into the virtual machine environment and if necessary
launches additional virtual machines. Then some time later
user should be able to bring the system to the original state
without rebooting the computer. Meaning that hypervisor
stops all additional virtual machines, brings back OS to
the bare environment and finally terminates itself. It is also
important to include robust attestation procedure into such
solution since hypervisor is launched from the untrusted
environment.

Dynamic load of the hypervisor is described in [8].
Authors discuss the consequences of using hardware as-
sisted virtualization for implementing malware and present
BluePill system that loads on the fly into the memory
putting operating system into the virtual machine. Authors



claim that malware hypervisor may fool OS inside the
VM that it runs on bare hardware. Since hypervisor has
unrestricted access to VM resources it may bypass built-on
OS security mechanisms and perform intended malicious
actions. Our work follows the same approach for on the
fly hypervisor loading however we propose to use our
approach for virtualization-based security systems that
normally do not need to hide from the OS. This gives
more options for reserving hardware resources from the
OS for the hypervisor own usage (for example, legally
disabling OS access to some devices).

The attestation of a software stack launched from the
untrusted environment is discussed in [9]. Authors present
an approach and describe attestation protocol that allows
safe usage of public computer by providing secure initial-
ization of trusted software stack. The protocol uses Trusted
Platform Module (TPM) chip that must be installed on
the machine and provides convincing evidences to the
user that actually initialized software stack is exactly the
same as the expected by the user one. Our approach to
attestation of the dynamically loaded hypervisor is also
based on the TPM chip however unlike the system in [9]
we do not need rebooting the computer which in turn
allows achieving simpler attestation procedure.

We will describe our approach with regards to the
security system described in [7]. However, we believe that
suggested approach may be used for other virtualization-
based security systems that 1) assign hardware devices to
virtual machines for exclusive usage 2) allow their late
launch (i.e. after OS has been booted) without sacrificing
security requirements.

We assume that computer has CPU supporting AMD-
SVM technology [10] including memory virtualization
(Nested Page Tables) [11]. Computer is also equiped with
Trusted Platform Module chip supporting TPM specifica-
tion version 1.2 [12] whose public certificate is known to
the user. However our choice of using AMD virtualization
technology is merely based on the hardware available to us
and the approach described in this article may be applied
to the computers equiped with Intel processors supporting
Intel-VT [13] virtualization technology.

We will briefly describe the security architecture pre-
sented in [7]. Hypervisor executes two virtual machines:
primary (called private VM) and service (called public
VM). User works in the primary VM which controls
all hardware devices except network adapter. Hypervisor
runs primary VM without network adapter since OS in
the primary VM is not trusted and may use network
connection to leak sensitive data from the VM. Service
VM may run in the background since the only purpose of
this VM is to serve socket-related system calls executed
by the trusted processes in the primary VM. System call
requests are delivered by the hypervisor to the service VM
through the tamper-proof inter-VM channel. It should be
noted that 1) primary VM must run on one CPU (one
CPU core) and 2) the only device that is controlled by the
service VM is network adapter while primary VM must
not have access to it at all.

Service VM is required only for providing network
access for the trusted applications. During the time in-
tervals when these applications are not executing the OS
in the primary VM may run directly on the bare hardware
and even may control network adapter as long as the
user ensures that network cable is disconnected from
the computer. Additionally primary and service virtual
machines do not share any peripheral devices.

This article is organized in the following way. In section
2 we describe the steps taken during the on the fly security
system activation. In section 3 we discuss the attestation of
activated system. In section 4 we describe the steps taken
to deactivate the security system in a fool-proof way. In
section 5 we conclude presented approach.

II. SECURITY SYSTEM ACTIVATION PROCESS

Initially user boots operating system installed on the
computer (hereafter we call it primary OS) ensuring that
network cable is disconnected from it, i.e. computer is
physically isolated from the network. Hypervisor is not
started during the boot process however it is possible
that there is a malware hypervisor (or any other kind of
malware) running on the computer.

The file system contains hypervisor image, image for
OS in the service VM (hereafter we call it service OS) and
a secure loader. Secure loader is a special piece of software
required for SKINIT instruction. OSLO secure loader may
be used for it [14]. It is worth mentioning that all these
files are not required to be encrypted however user knows
their checksums (hash codes) and these checksums were
calculated on a trusted machine.

There is a driver preloaded into the operating system
kernel which exposes an interface to the user space ap-
plications via a device file in the file system. The driver’s
task is to reserve specific hardware resources from the
operating system using built-in OS kernel interfaces, load
images from the file system into the memory and start
secure system initialization. Driver is also responsible for
printing informational messages coming from hypervisor
on the display. Hypervisor notifies driver about pending
messages by injecting interrupt into the virtual machine
which passes control to the handler installed by the driver.

To start security system activation user launches an
application that sends “activate” command to the driver
using ioctl system call passing the file names of the
images. The driver then:

1) Unplugs all CPU cores, except the boot strap core
(BSP), using the public Linux API for hot plugging
CPUs.

2) Reserves required amount of physical memory.
This may be done in two ways. The preferred
way is to unplug memory banks using the pub-
lic Linux API for hot plugging memory mod-
ules. Alternatively memory may be reserved using
get_free_pages () function. Unplugging mem-
ory banks gives less fragmented memory areas (in
ideal case not fragmented at all). The advantage for
having contiguous memory is described below.



3) Loads hypervisor image, service OS image and the
secure loader into the reserved memory.

4) Shutdowns network interface, unloads network
driver and installs “pci-stub” driver, that is available
in Linux, instead of it. This stub driver reports to
OS that it controls network adapter without actually
initializing the device.

5) Executes SKINIT instruction which securely trans-
fers control to the secure loader which in turn passes
control to the hypervisor.

Upon receiving the control hypervisor prepares VMCB
structure filling it with the current hardware state, creates
nested page tables [11] for the VM and starts VM exe-
cution. From the user perspective nothing has changed in
the environment except the decrease of active CPU cores
and memory amount. Since network cable was originally
disconnected completely removing network adapter from
the system does not harm user space applications.

Before hypervisor starts VM execution it re-initializes
released CPU cores and starts idle loop on them while
executing inside virtual machine primary OS cannot regain
control over released resources. Attempt to access mem-
ory outside its guest physical address space, re-initialize
unplugged CPU cores or reload original network adapter
driver will lead at worst to the VM crash without getting
access to the hardware resources.

One of the released CPU cores is used for running ser-
vice VM. Hypervisor virtualizes local APIC so it presents
this core to the service OS as a BSP core of a single core
processor. Service OS completely runs inside memory. The
OS kernel is preconfigured by the administrator in such
a way that it does not require access to any peripheral
devices except network adapter.

Both virtual machines execute on separate CPU cores:
primary VM on the BSP core (zero core), service VM
on the other core. Such approach does not require having
VM scheduler in the hypervisor that distributes CPU
time between virtual machines. Hypervisor itself does not
require dedicated CPU cores for execution since it gains
control only on virtual machine exit. We assume that CPU
has at least two cores which is common for most of
modern CPUs.

Mapping of the guest (virtual machine) physical address
space into the host address space (machine memory) is
resolved using nested page tables (NPT) provided by
the hardware. These page tables add additional layer
to the hardware address translation so every memory
access made from inside the virtual machine is translated
with NPT to evaluate machine address. It is desirable
to reserve physical memory from the primary OS using
memory hotplug feature available in Linux since having
large contiguous memory blocks makes the structure of
NPT rather simple. However success of memory unplug
operation depends on proper kernel configuration, kernel
boot options (‘“movablecore” option) and kernel runtime
state.

With nested page tables the hypervisor can control
accesses to the machine memory made from CPU context.

However if OS in VM owns DMA capable device then it
may use it to modify arbitrary physical memory areas.
This constitutes potential threat to the security system
since malware may use DMA operations to subvert hy-
pervisor [15]. Physical address space visible to a DMA
capable device may be limited by the IOMMU device [16].
IOMMU sits between PCI bus and system memory and
allows specifying page tables that are used to translate ev-
ery memory access originated from the devices connected
to PCI bus. Whenever an address does not have valid
translation in IOMMU page tables the device receives
master abort and memory access is rejected.

Currently hardware supporting IOMMU is not wide
spread so we also consider possibility to use Device
Exclusion Vector (DEV) feature of AMD CPUs. The
major difference between IOMMU and DEV is that DEV
does not support address translation. It simply allows to
specify bit mask (one bit per each physical page) that
marks DMA write-protected pages. Since DEV may not
perform address translation it may be used for one VM
only whose guest physical memory is one-to-one mapped
to the machine memory starting from zero address. That
is the case for the primary VM. DEV bit mask for that
VM write-protects all physical pages outside primary VM
memory.

The use of DEV for the service VM is not that straight-
forward. However service OS kernel is configured by the
administrator and he may include paravirtualized driver for
the network adapter into it. Such driver asks hypervisor
to translate address for every DMA operation. So DEV
may still be used for the service VM with the bit mask
write-protecting all machine memory outside service VM
address space.

It is worth mentioning that DEV does not provide ability
to read-protect pages so every VM may read data from any
machine address. This may violate security requirements if
malware in service VM would use DMA operations to read
sensitive data from the primary VM memory. Therefore
the use of DEV for DMA protection requires service OS
to be trusted. Service OS is merely used to execute socket-
related system calls so a microkernel OS (e.g. Minix 3)
may be used in service VM instead of Linux.

III. SECURITY SYSTEM ATTESTATION

We use Trusted Platform Module (TPM) [12] to perform
attestation of the activated security system. TPM is a chip
normally attached to the motherboard that provides set
of security primitives. TPM has several platform config-
uration registers (PCR) that are intended for accumulat-
ing SHA-1 hash-codes. These hash-codes (measurements)
represent hardware installed or software running on the
machine. The contents of a PCR register may be updated
by executing TPM_Extend operation only (there is no
way to write to PCR directly). TPM_Extend operation
concatenates current value of the PCR register with the
provided data, hashes the result and updates PCR with it.
CPU is integrated with the TPM to perform secure late
launch of the software using SKINIT instruction. Upon



executing SKINIT CPU asks TPM to reset PCR 17 register
to zero value. This is the only way how PCR 17 may
receive zero value.

Contents of the PCR register may be cryptographi-
cally signed with Attestation Identity Key (AIK) using
TPM_Quote operation. Private part of the AIK is sealed
inside the TPM while public part is exposed to the user.
Signed PCR value gives creditable and believable proof
to the user that PCR value originates from the legal
TPM. A random number (nonce) may be provided to the
TPM_Quote operation as a parameter in order to protect
signed PCR value from the replay attacks.

Activation of security system starts from executing
SKINIT instruction passing address of secure loader (SL)
to it [14]. CPU disables interrupts, blocks DMA writes
to the memory area occupied by the SL, asks TPM to
measure (hash) SL and finally transfers control to the SL.
On a multi processor (multi core processor) SKINIT must
be executed on the BSP core with all other cores put into
the idle state. SL in turn performs the same operations with
regards to the hypervisor image and then transfers control
to the hypervisor code. Hypervisor measures service OS
image and asks TPM to sign the PCR 17 contents using the
TPM_Quote operation to which it passes user-provided
nonce. The signed PCR 17 value is delivered to the user
(e.g. displayed on the screen). The necessity of having SL
in this chain is caused by the hardware size limitations for
the SL. It should be at most 64K which may be insufficient
to fit all the hypervisor code.

The resulting PCR 17 value contains measurements of
the SL, hypervisor, service OS image and the nonce. User
knows hash-codes of these components so he may repeat
all calculations performed by TPM on a separate trusted
device (e.g. mobile phone). By comparing hash-code dis-
played on the screen against the hash-code calculated on
the trusted device he checks whether all security system
components have been activated in the proper order. And
by validating TPM signature using the public part of
AIK (known to the user) he gets assurance that displayed
measurement represents the actual state of the system and
is not a fake measurement generated by the malware that
has intercepted activation process and tries to fool the user.
Only after validating displayed measurement the user is
safe to connect network cable to the computer.

We consider that execution of SKINIT instruction may
be trapped by the malware hypervisor running on the
machine. This malware may perform all above-mentioned
measurements without actually passing control to the
security system or it may start security system inside
the virtual machine hence maintaining control over it in
a hidden way. However TPM_Quote operation may be
executed only against PCR register which in turn may be
updated using the TPM_Extend operation only. There-
fore malware must use TPM to perform all measurements.
However since PCR 17 is not reset to zero (this may be
done by executing SKINIT instruction only) the resulting
PCR value will not match the one calculated by the user
on the trusted device.

If malware executes SKINIT instruction to reset PCR 17
to zero value then hardware securely passes control to the
SL which in turn securely transfers it to the hypervisor
thus not allowing malware to interpose on the control
transfer. Malware can modify SL or hypervisor image to
regain control after security system has been activated but
then these modifications will be caught by the user upon
validating the final measurement displayed on the screen.

IV. SECURITY SYSTEM DEACTIVATION PROCESS

The deactivation of security system implies removing
hypervisor from the memory, bringing back primary OS
to the bare hardware and returning all reserved resources to
it. So this procedure may start only as long as hypervisor
has a proof that deactivation command originates from
the user that has disconnected network cable from the
computer. We propose the following protocol for the
deactivation procedure:

1) User disconnects network cable and executes a pro-
gram that requests hypervisor to deactivate security
system.

2) Hypervisor asks TPM to generate nonce using
TPM_GetRandom operation which is then passed
to the user.

3) User signs this nonce on a trusted device using his
own private key and returns signed nonce to the
hypervisor.

4) Hypervisor validates users signature with the public
user key known to him, compares original nonce
with the one received from the user and as long as
they are equal deactivates security system.

While completing deactivation procedure hypervisor
simply stops service VM. There is no information in this
VM that must be persistently stored. Then hypervisor upon
next VM exit event of the primary VM rewrites CPU
registers with the VM state stored in its VMCB struc-
ture and resumes primary OS execution without entering
virtual machine mode. Finally driver in the service OS
returns previously reserved hardware resources back to
the primary OS by hot plugging CPU, memory banks and
reloading original network adapter driver.

V. CONCLUSION

In this article we have presented an approach to on-
the-fly activation and deactivation of virtualization based
security systems. We target this approach on the systems
that allow discrete functioning without violating stated
security properties. Among such systems are hypervisor-
based solutions that secure user applications running under
the control of untrusted operating system. Both activation
and deactivation procedures consider the presence of mal-
ware on the computer and provide means for attesting
security system being activated and for performing safe
deactivation correspondingly.

In our approach the hypervisor is started on the fly from
the up and running operating system upon the user request.
Operating system and all running user applications are
transparently moved inside the hardware virtual machine



where they continue executing but from now under the
control of the launched hypervisor and security system
implemented inside it. If necessary additional virtual ma-
chines may be started at this moment. The security system
shutdown procedure is performed upon the user request
too with hypervisor being unloaded from the memory
and operating system brought back to the bare hardware.
Both activation and deactivation procedure do not require
rebooting the computer.

Currently we are working on implementing proposed
approach for the security system described in [7].
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