
 1

On the Formal Specification of Automata-
based Programs via Specification Patterns

Andrey A. Klebanov

Abstract—Model checking is a well developed verification technique still it is not widely adopted. One of the reasons is that
defining formal specification is an error-prone and time-consuming task. This paper gives an overview of the ongoing research
which focuses on expressing verifiable requirements in controlled natural language in the framework of automata-based
programming.

Index Terms—Model checking, Specification, Temporal logic, Language parsing and understanding.

—————————— � ——————————

1 INTRODUCTION

UTOMATA-BASED programming [1] – is a software
development paradigm based on the extended fi-
nite-state machine model. In this approach pro-

grams are represented as a system of automated con-
trolled entities which behavior is described by the system
of interacting state machines.

Model checking [2] could be successfully applied to
automata-based programs [3], [4]. The idea of model
checking is to verify the consistency between finite-state
model (Kripke structure) and formal specification ex-
pressed as a set of temporal logic formulae. In verification
the main advantage of automata-based approach over
traditional ones is a high extent of automaticity as in
automata-based programs behavior model is defined a
priori. Several methods [5], [6], [7] have been developed
to automatically transform both a control system into a
verifiable model and a counter-example produced by a
verification tool back into automata model. Still for all the
approaches a significant obstacle exists – considerable
mathematical background is required for expressing
specification as a temporal logic formula.

Design by Contract approach [8] could partly solve
this problem [9] as contracts are much simpler formalism.
However they are second to temporal logics in expressive
power – they can do no better than specifying invariance,
precondition or postcondition properties.

This paper presents an approach which battles tempo-
ral logics’ complexity. The requirements are expressed in
a controlled natural language defined by a formal gram-
mar introduced further. The grammar is based on a set of
specification patterns [10], [11] – a generalized description
(both formal and in natural language) of a commonly oc-
curring requirement on a permissible state sequences in a

finite-state model of a system. Thus for each requirement
equivalent verifiable formal mapping could be defined.

In [3] specification patterns are mentioned in the
framework of automata-based programming: “… it is
important to consider temporal properties patterns (struc-
tures) which are most suitable and appropriate for auto-
mata-based programs verification. Existence of such pat-
terns would allow focusing on classes of temporal proper-
ties of automata models which definitely would facilitate
flow chart development for automata-based programs
verification.” Still only one requirement (which is an in-
stance of existing pattern) is outlined and no further de-
velopment is provided.

The rest of the paper is organized as follows. Section 2
covers some background material on the nature of speci-
fication patterns and how they can be adapted for auto-
mata-based programming. Section 3 discusses specifica-
tion patterns applicability analysis results. Formal gram-
mar to derive verifiable requirements is introduced in
Section 4. Finally, Section 5 makes a conclusion.

2 SPECIFICATION PATTERNS
Specification patterns system has been introduced in [10],
[11]. They are based on a specifications analysis for the
programs developed in a traditional (i.e. non automata-
based) way.

Patterns could be classified according to the hierarchy
based on their semantics. Eight patterns which belong to
one of the groups (“Occurrence” and “Order”) are out-
lined. Patterns which belong to the group “Occurrence”
specify occurrence or absence of the states in which a
given state formula holds. “Order” group contains pat-
terns which describe order of the states during system
execution.

Pattern is described by its name (or set of names), in-
tent, mappings to some formalisms (LTL, CTL and etc.),
example of use and relationships with other patterns.

Each requirement has a scope – an extent of the system
execution over which it should hold. Five kinds of scopes
are defined:

• Global – entire execution path.

————————————————

The research is conducted in scope of the Federal target program "Sci-
entific and pedagogical personnel of innovative Russia for 2009 – 2013
years".
• A. A. Klebanov is with the Computer Technologies Department, Saint-

Petersburg State University of Information Technologies, Mechanics and
Optics (SPbSU IFMO), Saint-Petersburg, Russia.
E-mail: klebanov.andrey@gmail.com.

• The research is supervised by O. G. Stepanov, PhD, who is with the Com-
puter Technologies Department, SPbSU IFMO, Saint-Petersburg, Russia.

A

2

• Before - execution path up to a given state.
• After – execution path after a given state.
• Between – execution between two given states.
• After-until – the same as “Between”, but the right

end of the interval where property holds is optional.
For the state-oriented formalism intervals are left-

closed and right-open.
As an example, “Universality” pattern is presented in

Table 1. Original “Example and known uses” section’s
contents is substituted with an automata-oriented exam-
ple, this is a key idea behind patterns adaption for auto-
mata-based paradigm.

3 SPECIFICATION PATTERNS APPLICABILITY
ANALYSIS

Creating a new pattern system for the formal specification
of automata-based programs wouldn’t make much sense
without preliminary applicability analysis of the specifi-
cation patterns described before. To carry it out it’s neces-
sary to analyze how requirements for automata-based
programs (developed in SPbSU IFMO, Yaroslavl State
University, Concern AVRORA and available at [12])

could be expressed via specification patterns. An example
of intermediate results organization is presented in Table
2. Columns “Requirement” and “Original formal map-
ping” represent original requirements from the source
(column “Source”) expressed in natural language and one
of the formalisms correspondingly. Pattern which instan-
tiation with a real requirement leads to a formal equiva-
lent is provided in column “Pattern, Scope”. Equivalence
proof is provided where required.

Altogether 77 requirements for 13 programs from 15
sources have been analyzed. 87% of the requirements
could be expressed via five patterns. Remaining 13%
couldn’t be expressed due to the limitations of the pattern
system or issues of the concrete automata-based model of
the system. The percentage between used patterns is pre-
sented on the Fig. 1 and between used scopes – on the Fig.
2.

4 CONTROLLED NATURAL LANGUAGE GRAMMAR
Several approaches to extract verifiable requirements
form the natural language specifications have been de-
veloped. Among the most popular [13] are natural lan-
guage processing and formal grammars-based deriva-
tions.

In this paper grammar-oriented approach is used. The
grammar is based on the specification patterns. Also wide
spread variants of some patterns (i.e. “Response” and
chain patterns) are added explicitly. So the requirement
could be expressed both in natural language and in any
formalism supported by the pattern system. An extract of
the grammar is presented in Table 3; placeholders for real
requirements are in monospace font.

To exemplify this, requirement from [4] is considered:
“Coffee machine control system never gets to the state
where it doesn’t respond to either system timer events, or
buttons “OK” or “Cancel”. In the automata-based model
of the coffee machine control system requirement
“Doesn’t respond to either system timer events, or but-
tons “OK” or “Cancel” corresponds to the predicate act
= end. The adverb “never” implies to use “Absence” pat-

TABLE 1
“UNIVERSALITY” PATTERN

Intent The pattern is used to describe a por-
tion of a system's execution which con-
tains only states that have a desired
property. Also known as “Henceforth”
and “Always”.

Scope Mapping

Globally □(P)

Before R ◊R → (P U R)

After Q □(Q → □(P))

Between Q and
R

□((Q & !R &
◊R) → (P U
R))

LTL

After Q until R □(Q & !R → (P
W R))

Scope Mapping

Globally AG(P)

Before R A[(P |
AG(!R)) W R]

After Q AG(Q → AG(P))

Between Q and
R

AG(Q & !R →
A[(P |
AG(!R)) W R])

M
a

p
p

in
g

CTL

After Q until R AG(Q & !R →
A[P W R])

Example and
known uses

The pattern could be used to specify
either entire model or some group of
states properties. For example when
it’s desired to express requirement like:
“If an automaton is in state s, then P
holds.”

Relationships
with other
patterns

The pattern is closely related to the
“Absence” and “Existence” patterns.
Universality of a state can be viewed as
absence of its negation.

TABLE 2
INTERMEDIATE ANALYSIS EXAMPLE

Requirement Original
formal
mapping

Pattern,
Scope

Source

If either heater
of one of the
valves failure
has happened,
then coffee
machine
(automaton
A0) will man-
datory change
its state to the
state 5.

AG((y31
= 4 |
y32 = 4
| y2 =
4) & y0
= 2 →
A(y0 =
2 U y0
= 5)))

Response
(constrained),
Globally

AG(P →
A(S)),
P: (y31 =
4 | y32 =
4 | y2 =
4) & y0 =
2,
S: y0 = 2
U y0 = 5

[4]

 3

tern with a “Global” scope. The derivation follows:

<requirement> → <scope> <pattern> → For all the
states holds <pattern> → For all the states holds <ab-
sence> → For all the states holds that never P.

Instantiating P with a real requirement leads to a de-
sired requirement in natural language: “For all the states
holds that never act = end.” Formal expressions in
CTL and LTL used for verification purposes are AG(!
act = end) and □(!act = end) correspondingly.

5 CONCLUSION
Requirements expression as temporal logic formulae is
error-prone and time-consuming task. An approach
which facilitates this process has been introduced in this
paper.

There are a few open issues left to work on in future.
First of all it’s tool support. It has been shown in [9] how
JetBrains Meta Programming System [14] could be used
both to develop and verify automata-based programs.
Currently formal specifications are integrated with code
but only as temporal logic formulae. The major improve-
ment would be to replace them with the natural language
specifications as described above. Besides similar to [13],
[15], [16] some wizard to guide a user during property
construction could be implemented. Finally, further use
cases of the pattern system could be investigated.

REFERENCES
[1] N.I. Polikarpova, A.A. Shalyto, Automata-based programming,

Piter, 2009. (in Russian)

[2] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, MIT

Press, 2000.

[3] K.A. Vasileva, E.V. Kuzmin, “LTL Verification of Automaton

Programs,” Modeling and Analysis of Information Systems,

vol. 14, no. 1, pp. 3–14, 2007. (in Russian)

[4] E.V. Kuzmin, V.A. Sokolov, “Modeling, Specification, and Veri-

fication of Automaton Programs,” Programming and Computer

Software, vol. 34, no. 1, pp. 38–60, 2008. (in Russian)

[5] V.S. Gurov, B.R. Yaminov, “Automata-based Programs Verification

without Translation into Verification Tool’s Input Language,” Proc.

Conf. Scientific Software in Education and Research. 2008. (in

Russian)

[6] M.A. Lukin, A.A. Shalyto, “Automation of Visual Automata-based

Programs Verification,” Proc. 15th Int’l. Conf. Advanced Intellec-

tual Technologies and Innovation in Education and Science.

2008. (in Russian)

[7] E. Kurbatsky, “Verification of Automata-Based Programs,” Proc.

Sec. Spring Young Researchers Colloquium Software Engineer-

ing. 2008.

[8] B. Meyer, Object-Oriented Software Construction, 2nd Edition,

Prentice Hall PTR, 2000.

[9] A. Borisenko, P. Fedotov, O. Stepanov, A. Shalyto, “Reliable

Software with Complex Behavior Development,” Proc. 5th Central

and Eastern European Software Engineering Conf. in Russia.

2009.

[10] M.B. Dwyer, G.S. Avrunin, J.C. Corbett, “Property Specification

Patterns for Finite-state Verification,” Proc. 2nd Workshop Formal

Methods in Software Practice. 1998.

[11] M.B. Dwyer, G.S. Avrunin, J.C. Corbett, “Patterns in Property

Specifications for Finite-state Verification,” Proc. 21st Int’l. Conf.

Software Engineering. 1999.

[12] Programming Technologies Department, Saint Petersburg State Uni-

versity of Information Technologies, Mechanics and Optics,

http://is.ifmo.ru/

[13] S. Konrad, B.H.C. Cheng, “Facilitating the Construction of Specifi-

cation Pattern-based Properties,” Proc. IEEE Int’l. Requirements

Engineering Conf. 2005.

[14] JetBrains Meta Programming System,

http://www.jetbrains.com/mps/index.html
[15] R.L. Smith, G.S. Avrunin, L.A. Clarke, L.J. Osterweil, “PROPEL:

An Approach Supporting Property Elucidation,” Proc. 24th Int’l.

Conf. Software Engineering. 2002.

[16] O. Mondragon, A.Q. Gates, S. Roach, “Prospec: Support for Elici-

tation and Formal Specification of Software Properties,” Proc. Run-

time Verification Workshop. 2004.

Fig. 1. The percentage between used patterns.

Fig. 2. The percentage between used scopes.

TABLE 3
CONTROLLED LANGUAGE GRAMMAR EXTRACT

<requirement> ::= <scope> <pattern>

<scope> ::= «For all the states holds that»
| «Before the state where Q, holds
that»
| «After the state where Q, holds
that»
| «Between the states where Q and
R, holds that»
| «After the state where Q, before
the state where R, holds that»

<pattern> ::= <absence> | <universality>
| <existence> | <constrained exis-
tence> | <precedence>
| <response> | <constrained re-
sponse> | <chain precedence> …

<absence> ::= «never P.»

… …

<response> ::= «always if P, then eventually S.»

… …

78%

13%
6%3%

Globally

After Q

Between Q and R

After Q until R

17%

29%

6%

26%

22% Absence
Universality
Existence
Precedence
Response

