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On the Formal Specification of Automata-
based Programs via Specification Patterns 

Andrey A. Klebanov 

Abstract—Model checking is a well developed verification technique still it is not widely adopted. One of the reasons is that 
defining formal specification is an error-prone and time-consuming task. This paper gives an overview of the ongoing research 
which focuses on expressing verifiable requirements in controlled natural language in the framework of automata-based 
programming.  

Index Terms—Model checking, Specification, Temporal logic, Language parsing and understanding.  
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1 INTRODUCTION

UTOMATA-BASED programming [1] – is a software 
development paradigm based on the extended fi-
nite-state machine model. In this approach pro-

grams are represented as a system of automated con-
trolled entities which behavior is described by the system 
of interacting state machines.  

Model checking [2] could be successfully applied to 
automata-based programs [3], [4]. The idea of model 
checking is to verify the consistency between finite-state 
model (Kripke structure) and formal specification ex-
pressed as a set of temporal logic formulae. In verification 
the main advantage of automata-based approach over 
traditional ones is a high extent of automaticity as in 
automata-based programs behavior model is defined a 
priori. Several methods [5], [6], [7] have been developed 
to automatically transform both a control system into a 
verifiable model and a counter-example produced by a 
verification tool back into automata model. Still for all the 
approaches a significant obstacle exists – considerable 
mathematical background is required for expressing 
specification as a temporal logic formula.   

Design by Contract approach [8] could partly solve 
this problem [9] as contracts are much simpler formalism. 
However they are second to temporal logics in expressive 
power – they can do no better than specifying invariance, 
precondition or postcondition properties. 

This paper presents an approach which battles tempo-
ral logics’ complexity. The requirements are expressed in 
a controlled natural language defined by a formal gram-
mar introduced further. The grammar is based on a set of 
specification patterns [10], [11] – a generalized description 
(both formal and in natural language) of a commonly oc-
curring requirement on a permissible state sequences in a 

finite-state model of a system. Thus for each requirement 
equivalent verifiable formal mapping could be defined. 

In [3] specification patterns are mentioned in the 
framework of automata-based programming: “… it is 
important to consider temporal properties patterns (struc-
tures) which are most suitable and appropriate for auto-
mata-based programs verification. Existence of such pat-
terns would allow focusing on classes of temporal proper-
ties of automata models which definitely would facilitate 
flow chart development for automata-based programs 
verification.” Still only one requirement (which is an in-
stance of existing pattern) is outlined and no further de-
velopment is provided.   

The rest of the paper is organized as follows. Section 2 
covers some background material on the nature of speci-
fication patterns and how they can be adapted for auto-
mata-based programming. Section 3 discusses specifica-
tion patterns applicability analysis results. Formal gram-
mar to derive verifiable requirements is introduced in 
Section 4. Finally, Section 5 makes a conclusion. 

2 SPECIFICATION PATTERNS 
Specification patterns system has been introduced in [10], 
[11]. They are based on a specifications analysis for the 
programs developed in a traditional (i.e. non automata-
based) way.  

Patterns could be classified according to the hierarchy 
based on their semantics. Eight patterns which belong to 
one of the groups (“Occurrence” and “Order”) are out-
lined. Patterns which belong to the group “Occurrence” 
specify occurrence or absence of the states in which a 
given state formula holds. “Order” group contains pat-
terns which describe order of the states during system 
execution. 

Pattern is described by its name (or set of names), in-
tent, mappings to some formalisms (LTL, CTL and etc.), 
example of use and relationships with other patterns.  

Each requirement has a scope – an extent of the system 
execution over which it should hold. Five kinds of scopes 
are defined: 

• Global – entire execution path. 
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• Before - execution path up to a given state. 
• After – execution path after a given state. 
• Between – execution between two given states. 
• After-until – the same as “Between”, but the right 

end of the interval where property holds is optional. 
For the state-oriented formalism intervals are left-

closed and right-open. 
As an example, “Universality” pattern is presented in 

Table 1. Original “Example and known uses” section’s 
contents is substituted with an automata-oriented exam-
ple, this is a key idea behind patterns adaption for auto-
mata-based paradigm. 

3 SPECIFICATION PATTERNS APPLICABILITY 
ANALYSIS  

Creating a new pattern system for the formal specification 
of automata-based programs wouldn’t make much sense 
without preliminary applicability analysis of the specifi-
cation patterns described before. To carry it out it’s neces-
sary to analyze how requirements for automata-based 
programs (developed in SPbSU IFMO, Yaroslavl State 
University, Concern AVRORA and available at [12]) 

could be expressed via specification patterns. An example 
of intermediate results organization is presented in Table 
2. Columns “Requirement” and “Original formal map-
ping” represent original requirements from the source 
(column “Source”) expressed in natural language and one 
of the formalisms correspondingly. Pattern which instan-
tiation with a real requirement leads to a formal equiva-
lent is provided in column “Pattern, Scope”. Equivalence 
proof is provided where required.  

Altogether 77 requirements for 13 programs from 15 
sources have been analyzed. 87% of the requirements 
could be expressed via five patterns. Remaining 13% 
couldn’t be expressed due to the limitations of the pattern 
system or issues of the concrete automata-based model of 
the system. The percentage between used patterns is pre-
sented on the Fig. 1 and between used scopes – on the Fig. 
2. 

4 CONTROLLED NATURAL LANGUAGE GRAMMAR 
Several approaches to extract verifiable requirements 
form the natural language specifications have been de-
veloped. Among the most popular [13] are natural lan-
guage processing and formal grammars-based deriva-
tions. 

In this paper grammar-oriented approach is used. The 
grammar is based on the specification patterns. Also wide 
spread variants of some patterns (i.e. “Response” and 
chain patterns) are added explicitly. So the requirement 
could be expressed both in natural language and in any 
formalism supported by the pattern system. An extract of 
the grammar is presented in Table 3; placeholders for real 
requirements are in monospace font. 

To exemplify this, requirement from [4] is considered: 
“Coffee machine control system never gets to the state 
where it doesn’t respond to either system timer events, or 
buttons “OK” or “Cancel”. In the automata-based model 
of the coffee machine control system requirement 
“Doesn’t respond to either system timer events, or but-
tons “OK” or “Cancel” corresponds to the predicate act 
= end. The adverb “never” implies to use “Absence” pat-

TABLE 1 
“UNIVERSALITY” PATTERN 

Intent The pattern is used to describe a por-
tion of a system's execution which con-
tains only states that have a desired 
property. Also known as “Henceforth” 
and “Always”. 

Scope Mapping 

Globally □(P) 

Before R ◊R → (P U R) 

After Q □(Q → □(P)) 

Between Q and 
R 

□((Q & !R & 
◊R) → (P U 
R)) 

LTL 

After Q until R □(Q & !R → (P 
W R)) 

Scope Mapping 

Globally AG(P) 

Before R A[(P | 
AG(!R)) W R] 

After Q AG(Q → AG(P)) 

Between Q and 
R 

AG(Q & !R → 
A[(P | 
AG(!R)) W R]) 
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CTL 

After Q until R AG(Q & !R → 
A[P W R]) 

Example and 
known uses 

The pattern could be used to specify 
either entire model or some group of 
states properties. For example when 
it’s desired to express requirement like: 
“If an automaton is in state s, then P 
holds.”  

Relationships 
with other 
patterns 

The pattern is closely related to the 
“Absence” and “Existence” patterns. 
Universality of a state can be viewed as 
absence of its negation. 

TABLE 2 
INTERMEDIATE ANALYSIS EXAMPLE 

Requirement Original 
formal 
mapping 

Pattern, 
Scope 

Source 

If either heater 
of one of the 
valves failure 
has happened, 
then coffee 
machine 
(automaton 
A0) will man-
datory change 
its state to the 
state 5. 
 

AG((y31 
= 4 | 
y32 = 4 
| y2 = 
4) & y0 
= 2  → 
A(y0 = 
2 U y0 
= 5))) 

Response 
(constrained), 
Globally 
 
AG(P → 
A(S)),  
P: (y31 = 
4 | y32 = 
4 | y2 = 
4) & y0 = 
2,  
S: y0 = 2 
U y0 = 5 

[4] 
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tern with a “Global” scope. The derivation follows: 

<requirement> → <scope> <pattern> → For all the 
states holds <pattern> → For all the states holds <ab-
sence> → For all the states holds that never P. 

Instantiating P with a real requirement leads to a de-
sired requirement in natural language: “For all the states 
holds that never act = end.” Formal expressions in 
CTL and LTL used for verification purposes are AG(! 
act = end) and □(!act = end) correspondingly. 

5 CONCLUSION 
Requirements expression as temporal logic formulae is 
error-prone and time-consuming task. An approach 
which facilitates this process has been introduced in this 
paper. 

There are a few open issues left to work on in future. 
First of all it’s tool support. It has been shown in [9] how 
JetBrains Meta Programming System [14] could be used 
both to develop and verify automata-based programs. 
Currently formal specifications are integrated with code 
but only as temporal logic formulae. The major improve-
ment would be to replace them with the natural language 
specifications as described above. Besides similar to [13], 
[15], [16] some wizard to guide a user during property 
construction could be implemented. Finally, further use 
cases of the pattern system could be investigated.     
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Fig. 1. The percentage between used patterns.  

 
 

 
 
 
 
 
 

Fig. 2. The percentage between used scopes.  

TABLE 3 
CONTROLLED LANGUAGE GRAMMAR EXTRACT 

<requirement> ::= <scope> <pattern> 

<scope> ::= «For all the states holds that»  
| «Before the state where Q, holds 
that»  
| «After the state where Q, holds 
that»  
| «Between the states where Q and 
R, holds that»  
| «After the state where Q, before 
the state where R, holds that» 

<pattern> ::= <absence> | <universality>  
| <existence> | <constrained exis-
tence> | <precedence>  
| <response> | <constrained re-
sponse> | <chain precedence> … 

<absence> ::= «never P.» 

… … 

<response> ::= «always if P, then eventually S.» 

… … 
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